(Bloch, 1787) and Leiognathus Equulus (Forsskal, 1775) (Leiognathidae) from the Odisha Coast, Bay of Bengal

Total Page:16

File Type:pdf, Size:1020Kb

(Bloch, 1787) and Leiognathus Equulus (Forsskal, 1775) (Leiognathidae) from the Odisha Coast, Bay of Bengal Indian Journal of Geo Marine Sciences Vol. 47 (02), February 2018, pp. 469-474 Karyomorophometry of two pony fishes, Secutor insidiator (Bloch, 1787) and Leiognathus equulus (Forsskal, 1775) (Leiognathidae) from the Odisha Coast, Bay of Bengal * Jaya Kishor Seth , Tapan Kumar Barik & Ramesh Chandra Choudhury P.G. Department of Zoology, Berhampur University, Berhampur-760007, Odisha, India * [E.mail: [email protected]] Received 25 January 2016 ; revised 17 November 2016 Somatic metaphase chromosomes of two marine fishes, Secutor insidiator and Leiognathus equulus of Leiognathidae, were obtained from the gill epithelial and kidney cells and their morphmetric analyses were done. S. insidiator showed 2n = 48 and NF = 48 with the chromosome formula, n = 24t. Whereas, L. equulus showed 2n = 48 and NF = 52 with the chromosome formula, n = 2 st + 22 t. [Key words: Secutor insidiator, Leiognathus equulus, Leiognathidae, Karyomorphometry] Introduction The number of marine and estuarine fish species such as its functional mechanism and the balance reported from Odisha is 607 belonging to 139 of the genetic complex. The possibilities of families and 27 order1-3. Of them, the family karyotype transformation are obviously limited. Leognathidae includes only 16 species. The Therefore, karyotypes can not adapt to the species of this family are commercially important boundless series of morphological and functional for their abundance, although they contribute variation realised by evolution6. However, of late, comparatively less amount of protein. These it has been felt that cyto-taxonomic approach with fishes are also used for the preparation of the knowledge on karyotypes could solve the fishmeal and other fish products. Moreover, they accumulated controversies brewed by morpho- belong to an important part of the food chain and taxonomy and typological studies in fishes, at food web of marine ecosystem. least in lower taxon levels. In comparison to other groups of animals, fishes Materials and Methods are less known chromosomally. Out of the 28,000 Live specimens were collected from the Bay of fish species known World over, only 12.2% of Bengal at Goplapur-on-Sea during the months of them are known karyotypically4-5. Moreover, such February to May, 2013. Identification of fishes information are centred on the fresh water forms was carried out based on the standard taxonomic while the marine species are chromosomally less keys7-8. The specimens were deposited in the attended. As karyotype is a definite and constant museum of the Animal Diversity Laboratory, character of each species, it has been considered Berhampur Univeristy, Odisha, India. (S. as the fundamental physical basis of evolution. It insidiaror registration number: is also endowed with the evolution of its own BUZOOLAD2013-24, L. equulus registration dictated by intrinsic conditions and requirements, number: BUZOOLAD2013-25). 470 INDIAN J. MAR. SCI., VOL. 47, NO. 02, FEBRUARY 2018 Mitotic metaphase spreads were obtained from gill epithelial and kidney cells by following the conventional colchicine- sodium citrate- aceto- methanol- flame drying- Giemsa technique reported earlier9. Absolute length of each chromosome in micra with standard deviation was measured and calculated from at least five camera lucida diagrams of mitotic metaphases from each species. Morphometric analyses like relative R c percentage length (L ) and centromeric index (I ) of the chromosomes were carried out and nomenclature of the chromosomes as per the standard format10. According to the decreasing length of the chromosomes, the karyotypes were prepared from the photomicrographs. Results In Secutor insidiator (Bloch, 1787), the diploid number, 2n = 48, was determined from 112 Fig.1-A - metaphases from 2 males and 21 metaphases from 1.Somatic metaphase of male Secutor insidiator (Bloch, 2 female specimens (Figure: 1-A). All the 1787) chromosomes in both the sexes were telocentrics 2. Karyotype of male 3. Somatic metaphase of female (t). Thus, the chromosome formula is n = 24 t and 4. Karyotype of female the number of fundamental arms in diploid complement (NF) = 48 in both sexes of S.insidiator. The chromosomes ranged between 2.97± 0.40 to 1.00± 0.19 micra in a total haploid genome length of 44.94 micra. The relative percentage lengths of the chromosomes vary from 6.66 to 2.22 (Table-1). Sex chromosome, if present, was not identifiable. In Leiognthus equulus (Forsskal, 1775), the diploid number, 2n=48, was determined from 25 Fig.1-B- metaphases from 2 female specimens (Figure: 1- 1.Somatic metaphase of female Leiognathus B). equulus(Forsskal,1775) 2. Karyotype of female Its diploid complement includes 2 pairs of sub- telocentrics (st) (nos.1 and 4) and 22 pairs of However, little attention has been paid to study telocentrics (t).The chromosomes range between the karyomorophology of the species of the 2.88 ± 0.46 to 1.18 ± 0.17 micra in haploid family Lieognathidae. Our present study deals genome length of 48.45 micra. However, the 5th with the karyomorphometric information of pair sometimes shows very short arms of variable another two species of the said family viz., length. Thus, the chromosome formula is n= 2 st Secutor insidiator (Bloch, 1787) and Leiognathus +22 t and the number of fundamental arms in the equulus (Forsskal,1775), which has been reported diploid complement (NF) = 52. The relative for the first time from the Odisha coast of the Bay percentage lengths of the chromosomes range of Bengal. The chromosomes of three species of from 5.94 to 2.44 (Table-2). the family Leiognathidae. viz., Photopectoralis bindus (Valenciennes, 1835), Nuchequula Discussion nuchalis (Temminck and Schlegel, 1845) and Gazza minuta (Bloch, 1795) have already been Karyotypic study on fish species provides 13 essential information on karyotypic variations. repoted ( Table:3). The possible mechanisms of such variations leading to speciation can be of use in solving many controversial problems of systematics11-12. SETH et al: KARYOMOROPHOMETRY OF TWO PONY FISHES 471 Table 1-Morphometric data of Secutor insidiator (Bloch, 1787) Chromosome Absolute length of the Relative Percentage Centromeric index Morphology number Chromosomes in micra length with S.D 1 2.97±0.40 6.60 0.00 t 2 2.66±0.33 5.92 0.00 t 3 2.47±0.32 5.50 0.00 t 4 2.33±0.36 5.19 0.00 t 5 2.25±0.36 5.01 0.00 t 6 2.16±0.32 4.82 0.00 t 7 2.12±0.34 4.71 0.00 t 8 2.06±0.35 4.59 0.00 t 9 2.02±0.32 4.49 0.00 t 10 1.97±0.28 4.38 0.00 t 11 1.91±0.30 4.25 0.00 t 12 1.85±0.29 4.13 0.00 t 13 1.82±0.28 4.05 0.00 t 14 1.76±0.26 3.92 0.00 t 15 1.73±0.26 3.85 0.00 t 16 1.69±0.27 3.76 0.00 t 17 1.65±0.26 3.66 0.00 t 18 1.59±0.26 3.54 0.00 t 19 1.53±0.24 3.40 0.00 t 20 1.47±0.24 3.27 0.00 t 21` 1.41±0.22 3.14 0.00 t 22 1.33±0.21 2.95 0.00 t 23 1.17±0.20 2.61 0.00 t 24 1.00±0.19 2.22 0.00 t 472 INDIAN J. MAR. SCI., VOL. 47, NO. 02, FEBRUARY 2018 Table 2-Morphometric data of Leiognathus equulus (Forsskal, 1775) Chromosome number Absolute length of the Relative Percentage Centromeric index Morphology Chromosomes in micra length with S.D 1 2.88±0.46 5.94 15.80 st 2 2.68±0.39 5.52 0.00 t 3 2.46±0.42 5.07 0.00 t 4 2.40±0.29 4.96 16.08 st 5 2.36±0.22 4.87 10.51 t 6 2.32±0.35 4.79 0.00 t 7 2.25±0.30 4.64 0.00 t 8 2.22±0.29 4.58 0.00 t 9 2.14±0.28 4.43 0.00 t 10 2.09±0.26 4.32 0.00 t 11 2.06±0.27 4.25 0.00 t 12 2.02±0.28 4.17 0.00 t 13 1.98±0.29 4.09 0.00 t 14 1.94±0.27 4.01 0.00 t 15 1.91±0.25 3.95 0.00 t 16 1.88±0.26 3.88 0.00 t 17 1.83±0.26 3.77 0.00 t 18 1.79±0.26 3.69 0.00 t 19 1.76±0.25 3.64 0.00 t 20 1.72±0.24 3.55 0.00 t 21` 1.65±0.24 3.40 0.00 t 22 1.56±0.16 3.22 0.00 t 23 1.46±0.16 3.01 0.00 t 24 1.18±0.17 2.44 0.00 t SETH et al: KARYOMOROPHOMETRY OF TWO PONY FISHES 473 Table 3-Summary of the chromosome features of the species available from the family Leiognathidae Species 2n NF Chromosome formula References P. bindus 40 40 n= 20 acrocentric/ telocentric Arkhipchuk, 1999 N. nuchalis 48 48 n = 24 acrocentric Arkhipchuk, 1999 G. minuta 48 48 n = 24 acrocentric Arkhipchuk, 1999 S. insidiator 48 48 n = 24 telocentric Present study L. equulus 48 52 n = 2 subtelocentric + 22 telocentric Present study The family Leiognathidae includes 9 genera viz. References Gazza, Leiognathus, Secutor, Photopectoralis, 1. Seth,J.K. and Sahoo,S., First record of Nuchequula, Eublekeria, Equulatis, Pempheris vanicolensis Cuvier,1881from Odisha coast, India.
Recommended publications
  • Teleostei: Perciformes: Leiognathidae): Phylogeny, Taxonomy, and Description of a New Species
    CORE Metadata, citation and similar papers at core.ac.uk Provided by American Museum of Natural History Scientific Publications PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3459, 21 pp., 8 ®gures, 2 tables October 28, 2004 A Clade of Non-Sexually Dimorphic Pony®shes (Teleostei: Perciformes: Leiognathidae): Phylogeny, Taxonomy, and Description of a New Species JOHN S. SPARKS1 AND PAUL V. DUNLAP 2 ABSTRACT A phylogeny was generated for Leiognathidae, commonly known as pony®shes, using nu- cleotide characters from two mitochondrial genes. Results indicate that Leiognathidae com- prises two major clades, one consisting of species that exhibit internally sexually dimorphic light-organ systems (LOS), and the Leiognathus equulus species complex, whose members exhibit neither internal nor external sexual dimorphism of the LOS. Species with internally sexually dimorphic LOS generally also exhibit associated male-speci®c external modi®cations in the form of transparent patches on the margin of the opercle, the midlateral ¯ank, or behind the pectoral ®n axil. The L. equulus species complex is the sister group to all other leiog- nathids, and a new species, L. robustus, recovered within this clade is described herein. Results demonstrate that Leiognathus is paraphyletic, whereas Gazza and Secutor are each monophy- letic and are nested within the sexually dimorphic clade. The morphology of the LOS of non- sexually dimorphic leiognathids is compared to the more common sexually dimorphic state, and differences in these systems are discussed and illustrated. In the context of a family-level phylogeny, we can trace the evolution of the leiognathid LOS from a ``simple'' non-sexually dimorphic circumesophageal light organ to a complex and species-speci®c luminescence sys- tem involving not only major structural modi®cations of the light organ itself but also nu- merous associated tissues.
    [Show full text]
  • Estuarine Fish Diversity of Tamil Nadu, India
    Indian Journal of Geo Marine Sciences Vol. 46 (10), October 2017, pp. 1968-1985 Estuarine fish diversity of Tamil Nadu, India H.S. Mogalekar*, J. Canciyal#, P. Jawahar, D.S. Patadiya, C. Sudhan, P. Pavinkumar, Prateek, S. Santhoshkumar & A. Subburaj Department of Fisheries Biology and Resource Management, Fisheries College & Research Institute, (Tamil Nadu Fisheries University), Thoothukudi-628 008, India. #ICAR-National Academy of Agricultural Research Management, Rajendranagar, Hyderabad-500 030, Telangana, India. *[E-Mail: [email protected]] Received 04 February 2016 ; revised 10 August 2017 Systematic and updated checklist of estuarine fishes contains 330 species distributed under 205 genera, 95 families, 23 orders and two classes. The most diverse order was perciformes with 175 species, 100 genera and 43 families. The top four families with the highest number of species were gobidae (28 species), carangidae (23 species), engraulidae (15 species) and lutjanidae (14 species). Conservation status of all taxa includes one species as endangered, five species as vulnerable, 14 near threatened, 93 least concern and 16 data deficient. As numbers of commercial, sports, ornamental and cultivable fishes are high, commercial and recreational fishing could be organized. Seed production by selective breeding is recommended for aquaculture practices in estuarine areas of Tamil Nadu. [Keywords: Estuarine fishes, updated checklist, fishery and conservation status, Tamil Nadu] Introduction significant component of coastal ecosystem due to The total estuarine area of Tamil Nadu their immense biodiversity values in aquatic was estimated to be 56000 ha, which accounts ecology. The fish fauna inhabiting the estuarine 3.88 % of the total estuarine area of India 1.
    [Show full text]
  • (W. Indian Ocean) Leiognathus Elongat
    click for previous page LEIOG Leiog 4 1983 FAO SPECIES IDENTIFICATION SHEETS FAMILY: LEIOGNATHIDAE FISHING AREA 51 (W. Indian Ocean) Leiognathus elongatus (Günther, 1874) OTHER SCIENTIFIC NAMES STILL IN USE: None VERNACULAR NAMES: FAO : En - Slender ponyfish Fr - Sapsap élégant Sp - Motambo elegante NATIONAL: DISTINCTIVE CHARACTERS: Body elongate and slender, moderately compressed, not deeper than head length, maximum depth contained more than 3 times in standard length. Mouth pointing downward when protracted. Top of head scaleless, but cheek and breast covered with small scales. Colour: body silvery; back with irregular green and dark marbling; horizontal yellow band at mid-height of spinous part of dorsal fin, most of margin of soft part orange; underside of pectoral fin base with minute, dark dots; anal fin between 2nd and 3rd spines yellow, as also margin of anterior part of fin; males have bluish longitudinal stripes on belly. DISTINGUISHING CHARACTERS OF SIMILAR SPECIES OCCURRING IN THE AREA: Other Leiognathus species: body deeper its depth greater than head length. and contained less than 3 times in standard length; no scales on cheek. Secutor species: mouth pointing upward when pro- tracted. Gazza species: caniniform teeth present in jaws. Species of Gerreidae: large scales present on most of head, nuchal crest absent (present in Leiognathidae). L. lineolatus SIZE : Maximum: 12 cm; common to 8 cm. GEOGRAPHICAL DISTRIBUTION AND BEHAVIOUR: Along the east coast of Africa to about 10°N, and scales here L. elongatus off southwest India. Outside the area, it occurs in the Eastern Indian Ocean and the South China Sea, including Indonesia, Thailand, the Philippines and South, China, extending westward and northward to southern Japan.
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • A New Species of Ponyfish (Teleostei: Leiognathidae: Photoplagios)
    PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3526, 20 pp., 7 figures, 2 tables September 8, 2006 A New Species of Ponyfish (Teleostei: Leiognathidae: Photoplagios) from Madagascar, with a Phylogeny for Photoplagios and Comments on the Status of Equula lineolata Valenciennes JOHN S. SPARKS ABSTRACT A new species of ponyfish in the genus Photoplagios is described from material collected in coastal waters of northeastern Madagascar. Photoplagios antongil, new species, is distinguished from congeners by the presence of a broad midlateral stripe and two darkly pigmented flank patches located ventral to the lateral midline, which are presumably translucent in life but darkly pigmented in preservative due to a concentration of melanophores. The new species is further distinguished from P. leuciscus, the only externally similar species occurring in the region, by the absence of a large translucent triangular patch on the flanks, a much shorter second dorsal-fin spine, a straight predorsal profile, pigmentation pattern on the upper flanks, absence of black pigment in the pectoral-fin axil, and exposed conical oral dentition in two distinct rows. A phylogeny for Photoplagios is provided based on the simultaneous analysis of anatomical features of the light-organ system and nucleotide characters. The taxonomic statusofEquula lineolata Valenciennes, in Cuvier and Valenciennes, 1835 is discussed, and the species is herein concluded to be a nomen dubium of uncertain placement beyond the family level. INTRODUCTION olatus (Valenciennes, in Cuvier and Valen- ciennes, 1835), P. moretoniensis (Ogilby, Photoplagios Sparks, Dunlap, and Smith, 1912), P. rivulatus (Temminck and Schlegel, 2005 comprises eight species: P.
    [Show full text]
  • Download Full Article in PDF Format
    Notes on the status of the names of fi shes presented in the Planches de Seba (1827-1831) published by Guérin-Méneville Paolo PARENTI Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, I-20126 Milano (Italy) [email protected] Martine DESOUTTER-MENIGER Muséum national d’Histoire naturelle, Département Systématique et Évolution, USM 602, Taxonomie et Collections, case postale 26, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] Parenti P. & Desoutter-Meniger M. 2007. — Notes on the status of the names of fi shes presented in the Planches de Seba (1827-1831) published by Guérin-Méneville. Zoosystema 29 (2) : 393-403. ABSTRACT Th e Planches de Seba were published in 48 issues (livraisons) between 1827 and 1831 under the direction of Guérin-Méneville. Livraison 13 contains two sheets (eight pages) of text dealing with plates 1 to 48 of volume 3 of Seba’s Locupletissimi rerum naturalium Th esauri (1759). Plates 23 through 34 depict fi shes. No types are known for these specimens. Examination of the text published in the Planches de Seba reveals the presence of 94 specifi c names of fi shes. Th e present status of each of them is reported. In particular, we found that 16 binomina represent original combinations and all but one (Anampses moniliger) have never been recorded in the ichthyological literature, with Planches de Seba as reference. Except for one name (Amphiprion albiventris), which is completely unknown in the literature, all other names bear the date of the original description of well established fi sh names.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • List of Colour Plates
    click for previous page LIST OF COLOUR PLATES PLATE I - LEIOGNATHIDAE PLATE V - LUTJANIDAE 1. Gazza achlamys 27. Aphareus furca 2. Gazza minuta 28. Aphareus rutilans 3. Leiognathus aureus 29. Aprion virescens 4. Leiognathus berbis 30. Etelis carbunculus 5. Leiognathus bindus 31. Etelis coruscans 6. Leiognathus blochii 32. Lipocheilus carnolabrum 7. Leiognathus daura 33. Lutjanus adetii 8. Leiognathus decants 34. Lutjanus argentimaculatus PLATE II – LEIOGNATHIDAE PLATE VI - LUTJANIDAE 9. Leiognathus dussumieri 35. Lutjanus bengalensis 10. Leiognathus elongates 36. Lutjanus biguttatus 11. Leiognathus equulus 37. Lutjanus bohar 12. Leiognathus fasciatus 38. Lutjanus boutton 13. Leiognathus leuciscus 39. Lutjanus carponotatus 14. Leiognathus longispinis 40. Lutjanus decussatus 41. Lutjanus dodecacanthoides 42. Lutjanus ehrenbergii PLATE III - LEIOGNATHIDAE 15. Leiognathus moretoniensis 16. Leiognathus pan PLATE VII - LUTJANIDAE 17. Leiognathus rapsoni 43. Lutjanus fulviflamma 18. Leiognathus splendens 44. Lutjanus fulvus 19. Leiognathus stercorarius 45. Lutjanus gibbus 20. Leiognathus sp. 1 46. Lutjanus johnii 47. Lutjanus kasmira 48. Lutjanus lemniscatus PLATE IV - LEIOGNATHIDAE 49. Lutjanus lunulatus 21. Leiognathus sp. 2 50. Lutjanus lutjanus 22. Secutor hanedai 23. Secutor indicius 24. Secutor insidiator PLATE VIII - LUTJANIDAE 25. Secutor megalolepis 51. Lutjanus madras 26. Secutor ruconius 52. Lutjanus malabaricus 53. Lutjanus monostigma 54. Lutjanus quinquelineatus 55. Lutjanus rivulatus 56. Lutjanus russelli 57. Lutjanus semicinctus 58. Lutjanus stellatus PLATE IX – LUTJANIDAE PLATE XIII - HAEMULIDAE 59. Lutjanm vitta 91. Diagramma pictum 60. Paracaesio kusakarii 92. Diagramma pictum 61. Paracaesio sordida 93. Plectorhinchus albovittatus 62. Paracaesio xanthura 94. Plectorhinchus albovittatus 63. Parapristipomoides squamimaxillaris 95. Plectorhinchus albovittatus 64. Pinjalo lewisi 96. Plectorhinchus chaetodonoides 65. Pinjalo pinjalo 97. Plectorhinchus chaetodonoides 66. Pristipomoides argyrogrammicus 98.
    [Show full text]
  • From Miyazaki Prefecture, Kyushu, Japan
    Early maturation of rosyface dace Biogeography 19. 127–132. Sep. 20, 2017 First record of the ponyfish Deveximentum interruptum (Teleostei: Leiognathidae) from Miyazaki Prefecture, Kyushu, Japan Ryohei Miki1, 2*, Atsunobu Murase1, 3 and Masaaki Wada4 1 Nobeoka Marine Science Station, Field Science Center, University of Miyazaki, 376-6 Akamizu, Nobeoka, Miyazaki 889-0517, Japan 2 Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki 889-2192, Japan 3 Department of Marine Biology and Environmental Sciences Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki 889-2192, Japan 4 Fisheries Cooperative Association of Iorigawa, 6-188 Iorigawa-nishi, Kadogawa-cho, Miyazaki 889-0605, Japan Abstract. A specimen (35.6 mm in standard length) of the leiognathid fish Deveximentum interruptum (Va- lenciennes in Cuvier and Valenciennes, 1835) collected from Kadogawa Bay, Miyazaki Prefecture, Kyushu, Japan represents the first record of the species from Japan and northernmost specimen-based record of the species to date. It has previously been recorded from the tropical Eastern Indian and Western Pacific oceans, from India to New Guinea, northward to Taiwan and southward to northern Australia. A brief description of the specimen is given, and comparisons with congener similar species provided. Key words: Deveximentum megalolepis, distribution, Kadogawa Bay, new record, Perciformes, Secutor The leiognathid fish genus Deveximentum scribed by Valenciennes in Cuvier & Valenciennes Fowler, 1904 is currently represented in the Indo- (1835) as Equula interrupta, based on a single West Pacific by five species (Eschmeyer et al., specimen collected from Puducherry (formerly 2017: as genus Secutor). Although members of the Pondicherry), India.
    [Show full text]
  • Reproductive Biology of Leiognathus Splendens (Cuvier) from Kochi, South-West Coast of India
    23 Indian J. Fish., 58(3) : 23-31, 2011 Reproductive biology of Leiognathus splendens (Cuvier) from Kochi, south-west coast of India K. J. ABRAHAM, V. S. R. MURTY AND K. K. JOSHI Central Marine Fisheries Research Institute, P. B. No. 1603, Kochi - 682 018, Kerala, India e-mail: [email protected] ABSTRACT The reproductive biology of Leiognathus splendens (N = 2112) was studied using the samples collected from the Kerala coast during 1998 - 2000. A separate scale of five stages of maturation has been developed for the first time for any Indian marine fish and applied in the present study. Analysis of data on the ova diameter in different length groups showed that spawning takes place in batches at regular intervals after the juveniles undergo the process of maturation and reach ripe stage. Spawning takes place almost round the year. The length at first maturity was 75 mm. The estimated fecundity ranges from 5715 (88 mm TL) to 37160 (106 mm TL). Keywords: Fecundity, Leiognathus, Length at first maturity, Maturation, Silverbelly, Spawning Introduction Pillai (1972). James (1986) as well as James and Badrudeen (1975, 1981, 1986) reported on spawning of selected Determination of the timing of spawning and the total silverbelly species from the Palk Bay and Gulf of Mannar. output of eggs is necessary for assessing the reproductive Murty (1983, 1990) studied the maturation and spawning potential of a population. These studies along with in L. bindus from Kakinada. Spawning biology of information on the survival of early and vulnerable stages L. splendens from Porto Novo has also been reported in the life history would facilitate determination of the short (Jayabalan, 1986; Jayabalan and Ramamoorthi, 1986).
    [Show full text]
  • 5-Review-Fish-Habita
    United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility UNEP/GEF/SCS/RWG-F.8/5 Date: 12th October 2006 Original: English Eighth Meeting of the Regional Working Group for the Fisheries Component of the UNEP/GEF Project: “Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand” Bangka Belitung Province, Indonesia 1st - 4th November 2006 INFORMATION COLLATED BY THE FISHERIES AND HABITAT COMPONENTS OF THE SOUTH CHINA SEA PROJECT ON SITES IMPORTANT TO THE LIFE- CYCLES OF SIGNIFICANT FISH SPECIES UNEP/GEF/SCS/RWG-F.8/5 Page 1 IDENTIFICATION OF FISHERIES REFUGIA IN THE GULF OF THAILAND It was discussed at the Sixth Meeting of the Regional Scientific and Technical Committee (RSTC) in December 2006 that the Regional Working Group on Fisheries should take the following two-track approach to the identification of fisheries refugia: 1. Review known spawning areas for pelagic and invertebrate species, with the aim of evaluating these sites as candidate spawning refugia. 2. Evaluate each of the project’s habitat demonstration sites as potential juvenile/pre-recruit refugia for significant demersal species. Rationale for the Two-Track Approach to the Identification of Fisheries Refugia The two main life history events for fished species are reproduction and recruitment. It was noted by the RSTC that both of these events involve movement between areas, and some species, often pelagic fishes, migrate to particular spawning areas. It was also noted that many species also utilise specific coastal habitats such as coral reefs, seagrass, and mangroves as nursery areas. In terms of the effects of fishing, most populations of fished species are particularly vulnerable to the impacts of high levels of fishing effort in areas and at times where there are high abundances of (a) stock in spawning condition, (b) juveniles and pre-recruits, or (c) pre-recruits migrating to fishing grounds.
    [Show full text]
  • Authorship, Availability and Validity of Fish Names Described By
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Fricke Ronald Artikel/Article: Authorship, availability and validity of fish names described by Peter (Pehr) Simon ForssSSkål and Johann ChrisStian FabricCiusS in the ‘Descriptiones animaliumÂ’ by CarsSten Nniebuhr in 1775 (Pisces) 1-76 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 1–76; Stuttgart, 30.IV.2008. 1 Authorship, availability and validity of fish names described by PETER (PEHR ) SIMON FOR ss KÅL and JOHANN CHRI S TIAN FABRI C IU S in the ‘Descriptiones animalium’ by CAR S TEN NIEBUHR in 1775 (Pisces) RONALD FRI C KE Abstract The work of PETER (PEHR ) SIMON FOR ss KÅL , which has greatly influenced Mediterranean, African and Indo-Pa- cific ichthyology, has been published posthumously by CAR S TEN NIEBUHR in 1775. FOR ss KÅL left small sheets with manuscript descriptions and names of various fish taxa, which were later compiled and edited by JOHANN CHRI S TIAN FABRI C IU S . Authorship, availability and validity of the fish names published by NIEBUHR (1775a) are examined and discussed in the present paper. Several subsequent authors used FOR ss KÅL ’s fish descriptions to interpret, redescribe or rename fish species. These include BROU ss ONET (1782), BONNATERRE (1788), GMELIN (1789), WALBAUM (1792), LA C E P ÈDE (1798–1803), BLO C H & SC HNEIDER (1801), GEO ff ROY SAINT -HILAIRE (1809, 1827), CUVIER (1819), RÜ pp ELL (1828–1830, 1835–1838), CUVIER & VALEN C IENNE S (1835), BLEEKER (1862), and KLUNZIN G ER (1871).
    [Show full text]