Studies Towards Lightfast Automotive Dyes for Polyester
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ANTHRAQUINONE and ANTHRONE SERIES Part IX
ANTHRAQUINONE AND ANTHRONE SERIES Part IX. Chromatographic Adsorption of Aminoanthraquinones on Alumina BY N. R. RAo, K. H. SHAH AND K. VENKATARAMAN, F.A.Sc. (Department of Chemical Technology. University of Bombay, Bombay) Received November 10, 1951 CORRELATIONS between chemical constitution and chromatograpl~c behaviour can only be attempted in molecales of the same or similar types and under specified conditions of chromatographic treatment, since complex solvent- adsorbent, solute-solvent and solute-adsorbent relationships are involved. Changes in the sequence of adsorption of the constituents in a mixture have been observed, ooth when the adsorbent is changed and when the deve- loping solvent is changed. Thus Strain was able tc separate some ternary mixtures in four of the six pessible sequences by changing the solvent1; and LeRosen found that cryptoxanthin is aloove lycopene on alumina and on calcium carbonate columns, but the order is inverted on a column of calcium hydroxide, using benzene as developer with all the three adsoroents. 2 An inversion of the sequence of adsorption of N-ethyl-N, N'-diphenylurea and 4-nitro-N-ethylaniline was observed by Schroeder when a slight alteration in the composition of the developer (2 or 5~o of ethyl acetate in light petro- leum) was made. 3 LeRosen has defined the adsorption affinity R as the rate of movement of the adsorptive zone (mm./min.) divided by the rate of flow of developing solvent. 2 R values have been used for standardizing adsorbents and for determining the efficiency of developers; using the same adsorbent and solvent, R values provide a quantitative measure of the adsorption affinities of a series of compounds which can then be correlated with their chemical constitution. -
Ozone and the Deterioration of Works of Art
.. ENVI RONHENTAL SCIENCE AND TECHNOLOGY A-129 OZONE AND THE DETERIORATION OF WORKS OF ART Cynthia L. Shaver and Glen R. Cass * Environmental Engineering Science Department and Environmental Quality Laboratory California Institute of Technology Pasadena, California 91125 James R. Druzik Conservation Center Los Angeles County Museum of Art Los Angeles, California 90036 ABSTRACT Seventeen artists' watercolor pigment samples and two Japanese woodblock prints were exposed to 0.40 ppm ozone in a controlled test chamber for three months. It was found that several artists' pigments when applied on paper will fade in the absence of light if exposed to an atmosphere containing ozone at the concentrations found in photochemical smog. Alizarin-based watercolors containing 1,2 dihydroxyanthraquinone lake pigments were shown to be particularly sensitive to ozone damage, as were the yellow pigments used in the Japanese woodblock prints tested. Indoor-outdoor ozone monitoring in a Pasadena, CA art gallery confirmed that ozone concentrations half as high as those outdoors can be found in art galleries that lack a chemically protected air conditioning system. Care should be taken to protect works of art from damage due to photochemical smog. Introduction The fading of pigments 1s a major hazard to works of art. Poor lightfastness usually is blamed, a process in which photochemical oxidation of the pigments occurs involving both light and oxygen (1-4). Short of encasing art objects in hermetically sealed inert atmospheres, the customary response has been to reduce lighting levels in museums and to restrict the display of light-sensitive artwork. Ozone, an oxidant much stronger than oxygen, is formed by reactions between hydrocarbons and oxides of nitrogen in photochemical smog (5). -
Lightfastness Guide
LIGHTFASTNESS GUIDE www.danfloor.co.uk WHAT IS FADING? Fading is a change in colour over time. It is measured by evaluating the colour of a material at two or more points in a given period of time. Often the loss of colour, or a reduction in colour saturation, is due to bleaching and this is a dilemma common to all industries and locations with the plain truth being that all colour fades. While ultraviolet (UV) radiation often causes discolouration and degradation of materials, it is by no means the only cause. Visible light also plays a part, and can be more damaging than UV light. Causes of Fading in Carpets Darker shades of colour, such as blues and reds, will usually be more susceptible to fading than lighter colours. These will Heat absorb more solar energy and reflect less. 25% Primarily, it is the breakdown of the dyes due to their inability to dissipate absorbed UV Light energy that ultimately causes fading. Misc 40% 10% Visible Light Ultraviolet (UV) light from the sun accounts for approximately 40% of the fading process. 25% Visible light and solar heat each contribute approximately 25% and 10% can be attributed to miscellaneous effects such as indoor artificial lighting, humidity, gassing, heat and poor dye affinity. Innovatve Carpet Solutions LIGHTFASTNESS EXPLAINED Lightfastness is the term used to describe how resistant to fading an item is when exposed to light. Light striking a surface can alter or break the chemical bonds of the pigment, causing the colours to bleach or change, in a process known as photo degradation. -
03.4-Bleaching-Presentation.Pdf
Bleaching Contemporary wool dyeing and finishing Dr Rex Brady Deakin University Topics 1. The effect of sunlight on wool 2. Why bleach wool? 3. Why wool becomes yellow in sunlight 4. Oxidiative bleaches 5. Bleaching of pigmented wool 6. Reductive bleaches 7. Combined process ‘full’ bleaching 8. Photobleaching by light 9. Fluorescent brightening agents 10.Pastel shades with reductive bleach and FWA 11.The future for bleached wool 1. The effect of sunlight on wool The effect of sunlight on wool § Sunlight causes wool to change colour and lowers the strength and abrasion resistance of wool. § Initially, wool is bleached by sunlight (photobleaching); subsequently, photoyellowing predominates. § Prolonged exposure to sunlight leads to a loss in strength and abrasion resistance, resulting in photo-tendering. § The shortest wavelengths present in solar radiation (290- 320 nm) are the most damaging to wool, and they cause both photo-yellowing and photo-tendering. § Although window glass cuts out the wavelengths below 320 nm, the transmitted UV light (320-400 nm) still causes photoyellowing and phototendering, at a reduced rate. Poor light stability of wool limits the range of products in some areas of application § The photo degradation of wool limits the use of wool in markets where requirements for light fastness are stringent. § These include car upholstery, curtains, and apparel requiring bleached and lightfast bright pastel shades. § Particularly with car upholstery, dyeing with selected 2:1 premetallised dyes (mostly cobalt complexes) in heavy to medium depths, enhances the light fastness and photo-stability of wool, but only a limited range of shades is available. § Pale shades and particularly bright pale shades are limited to product areas where relatively low lightfastness can be tolerated. -
Opinion on the SCCNFP on Disperse Violet 1 Impurified with Disperse Red
SCCNFP/0504/01, final OPINION OF THE SCIENTIFIC COMMITTEE ON COSMETIC PRODUCTS AND NON-FOOD PRODUCTS INTENDED FOR CONSUMERS CONCERNING DISPERSE VIOLET 1 IMPURIFIED WITH DISPERSE RED 15 Colipa n° C64 & C61 adopted by the SCCNFP during the 19th Plenary meeting of 27 February 2002 SCCNFP/0504/01, final Evaluation and opinion on : Disperse Violet 1 impurified with Disperse Red 15 ____________________________________________________________________________________________ 1. Terms of Reference 1.1 Context of the question The adaptation to technical progress of the Annexes to Council Directive 76/768/EEC of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products. 1.2 Request to the SCCNFP The SCCNFP is requested to answer the following questions : * Is Disperse Violet 1 impurified with Disperse Red 15 safe for use in cosmetic products? * Does the SCCNFP propose any restrictions or conditions for its use in cosmetic products? 1.3 Statement on the toxicological evaluation The SCCNFP is the scientific advisory body to the European Commission in matters of consumer protection with respect to cosmetics and non-food products intended for consumers. The Commission’s general policy regarding research on animals supports the development of alternative methods to replace or to reduce animal testing when possible. In this context, the SCCNFP has a specific working group on alternatives to animal testing which, in co-operation with other Commission services such as ECVAM (European Centre for Validation of Alternative Methods), evaluates these methods. The extent to which these validated methods are applicable to cosmetic products and its ingredients is a matter of the SCCNFP. -
Pigments Stability in a Lipstick
Pigments stability in a lipstick 1 November 2016 by Redazione Pigments is a group of compound insoluble in a medium in which it is to be used. Major function of which is to improve the appearance or give color to the other materials. It must be stable in solid form at ambient temperatures The main features that contribute together to define a pigment are of chemical nature (basic composition, additives, impurities), and physical nature (crystalline structure, colour, index of refraction, form, dimension and state of aggregation of the particles, specific weight). All these data, mostly interdependent with each other, have a decisive influence on the pigment performance, that combine to calculate the pigments and application characteristics. Most important are: colour, covering power or matting, coloring power, disperdibility, brilliance, resistance to the light, to the heat, to chemical agents. Pigments are classified as either organic or inorganic: – Organic pigments are based on carbon chains and carbon rings. However, they can also contain metallic (inorganic) elements that help to stabilize the properties of the organic components. – Inorganic pigments, chemical compounds not based on carbon, are usually metallic salts precipitated from solutions. Inorganic pigments can be defined as insoluble compounds with a basis of metallic ions. Metallic ions are generally elements of transition such as iron, titanium or chrome and their structures are often three- dimensional. Typical examples of inorganic pigments used in a lipstick are iron oxides, titanium dioxide, mica covered in titanium dioxide and bismuth oxychloride. The overall stability of inorganic pigments is good, even if in certain conditions they may sustain chemical reactions due to acidity and alkalinity. -
95[.95]Functionalizable Glyconanoparticles for A
nanomaterials Communication Functionalizable Glyconanoparticles for a Versatile Redox Platform Marie Carrière 1,2, Paulo Henrique M. Buzzetti 1 , Karine Gorgy 1, Muhammad Mumtaz 2, Christophe Travelet 2 , Redouane Borsali 2,* and Serge Cosnier 1,* 1 UMR 5250, Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes, CEDEX 09, 38058 Grenoble, France; [email protected] (M.C.); [email protected] (P.H.M.B.); [email protected] (K.G.) 2 CERMAV, UPR 5301, CNRS, Université Grenoble Alpes, CEDEX 09, 38058 Grenoble, France; [email protected] (M.M.); [email protected] (C.T.) * Correspondence: [email protected] (R.B.); [email protected] (S.C.) Abstract: A series of new glyconanoparticles (GNPs) was obtained by self-assembly by direct nano- precipitation of a mixture of two carbohydrate amphiphilic copolymers consisting of polystyrene- block-β-cyclodextrin and polystyrene-block-maltoheptaose with different mass ratios, respectively 0–100, 10–90, 50–50 and 0–100%. Characterizations for all these GNPs were achieved using dynamic light scattering, scanning and transmission electron microscopy techniques, highlighting their spher- ical morphology and their nanometric size (diameter range 20–40 nm). In addition, by using the inclusion properties of cyclodextrin, these glyconanoparticles were successfully post-functionalized using a water-soluble redox compound, such as anthraquinone sulfonate (AQS) and characterized by cyclic voltammetry. The resulting glyconanoparticles exhibit the classical electroactivity of free AQS in solution. The amount of AQS immobilized by host–guest interactions is proportional to the percentage of polystyrene-block-β-cyclodextrin entering into the composition of GNPs. -
Structural Changes and Dynamic Behaviour of Vanadium Oxide‐Based Catalysts for Gas‐Phase Selective Oxidations
Alma Mater Studiorum ‐ Università di Bologna Facoltà di Chimica Industriale Dipartimento di Chimica Industriale e dei Materiali Structural changes and dynamic behaviour of vanadium oxide‐based catalysts for gas‐phase selective oxidations Tesi di Dottorato di Ricerca Presentata da: Relatore: Dott.ssa Silvia Luciani Prof. Fabrizio Cavani Co‐relatore: Dott. Nicola Ballarini Coordinatore: Chiar.mo Prof. Luigi Angiolini Dottorato di Ricerca in Chimica Industriale (settore CHIM/04) ciclo XXI Esame finale anno 2009 Index INDEX ABSTRACT 1 PART A 5 1 Introduction 7 1.1 Maleic Anhydride: production and uses 7 1.1.1 Maleic Anhydride uses 8 1.1.2 Maleic Anhydride production 9 1.2 Catalytic System 16 1.2.1 Synthesis of vanadyl pyrophosphate 16 1.2.2 P/V ratio 21 1.2.3 The role of the different V species 21 1.2.4 Supported systems 22 1.2.5 Recent developments to improve the catalytic system 25 1.3 Reaction scheme and mechanism 28 1.3.1 Reaction scheme 28 1.3.2 Reaction mechanism 30 1.3.3 Nature of active sites 31 1.4 References 34 2 Experimental 41 2.1 Catalysts synthesis 41 2.1.1 Synthesis of vanadyl pyrophosphate, (VO)2P2O7 41 2.1.2 Synthesis of supported catalysts 42 2.2 Samples characterization 42 2.3 Catalytic tests 43 2.3.1 Bench scale plant 43 2.3.2 Analytical system 45 2.3.3 Elaboration of catalytic data 46 I Index 3 Surface dynamic of V/P/O catalyst 47 3.1 Introduction 47 3.2 Experimental 48 3.3 Results and discussion 49 3.3.1 “In‐situ” calcination 49 3.3.2 Ex‐situ characterization 52 3.3.3 “In‐situ” Raman spectroscopy 55 3.3.4 Steady state -
Colour Chart.Indd
The Paints, Past and Present Details and Descriptions of Colours This section gives assessments for certain determinable characteristics of all the colours presently in my range, as well as a few informal remarks on their qualities and idiosynchrasies when used. Following the pattern already laid out on all my tube and can labels, and on my more recent colour charts, I give: (1) The Colour Index Number: This is an international system for classifying and identifying pigments solely by their (often very complex) chemical formulae( e.g P(igment) R(ed) 106, Mercuric Sulphide known as Genuine Vermilion). The use of vague traditional or invented colour names is thus clarifi ed, and so, in theory at least, is the vexed matter of what pigments manufacturers actually put into their paints. If a colourman is honest, each constituent pigment in a paint can be specifi ed precisely, and the practice of secretly adulterating or even completely substituting cheaper alternatives is made impossible. Assuming, that is, the colourman is honest…I can certainly state that there are no secret additions to any of the paints in my range. What you read as the C.I number on the label is what you get. (2) Estimated Relative Drying Speed: Bearing in mind that all drying speeds will be affected by temperature, humidity and light levels, these give a broad calibration of comparative speeds, from the Very Fast, such as the Umbers, many of which, if used neat, will be touch dry within a hot summer day, to the Very Slow, which in unmixed state, might take up to a week. -
Process for Preparation of Hydrogen Peroxide
Europaisches Patentamt J) European Patent Office ® Publication number: 0 286 610 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION Application number: 88850082.4 ® Int.CI.4: C 01 B 15/023 Date of filing: 09.03.88 Priority: 27.03.87 SE 8701293 @ Applicant: Eka Nobel Aktiebolag S-44501Surte (SE) Date of publication of application: 12.10.88 Bulletin 88/41 @ Inventor: Bengtsson, Erik Alvar Asbacken 45 Designated Contracting States: S-44500Surte (SE) AT BE DE FR GB IT SE Andersson, Ulf, Mikael Bangegatan 2B S-41504G6teborg (SE) @ Representative: Schold, Zaid c/o Nobel Industries Sweden AB Patent Department Box 11554 S-1 00 61 Stockholm (SE) @ Process for preparation of hydrogen peroxide. (57) A process for the production of hydrogen peroxide according to the anthraquinone process. According to the process certain alkyl substituted caprolactames are used as solvents, and particularly as solvents for anthrahydroquinones. The substituted caprolactames, which for example can be hexyl caprolactam and octyl caprolactam, give a very good solubility for anthrahydroquinones and also for anthraquinones. The compounds can be used as the sole solvent at the production of hydrogen peroxide or in combination with conventionally used solvents such CM as hydrocarbons. < O to CO 00 CM Q_ LLJ Bundesdruckerei Berlin 0 286 610 , Description A process for the production of hydrogen peroxide The present invention relates to the production of hydrogen peroxide according to the per se well known anthraquinone process. More particularly the invention relates to the production of hydrogen peroxide 5 according to the anthraquinone process using particular solvents which give very good solubility for anthrahydroquinones and also for anthraquinones. -
The Anthraquinone Process
COVER STORY: H₂O₂ BACKGROUND How H₂O₂ is produced: The anthraquinone process Healthy and durable: In The industrial production of hydrogen peroxide began in the town of Weißenstein in the Austrian state of the food industry, PET bottles are sterilized Carinthia. This is where the Österreichische Chemische Werke company operated the world’s first hydrogen with hydrogen peroxide peroxide factory using electrolysis. Today this production plant is part of Evonik. The Weißenstein process before being filled made it possible to produce hydrogen peroxide on an industrial scale for the first time. Today this plant uses the autoxidation process, as do almost all the other hydrogen peroxide factories in the world. This process was developed by Georg Pfleiderer and Hans-Joachim Riedl at IG Farben in Ludwigshafen between 1935 and 1945, and since then it has been continuously refined. The process is based on the cyclical reduction and oxidation of an alkylated anthraquinone. The first step, hydrogenation, takes place in a reactor full of a solution of the anthraquinone (the “working solution”). “In the reactor, in the presence of a palladium catalyst hydrogen combines with the reaction carrier, a quinone derivative, to form a hydroquinone,” explains Dr. Jürgen Glenneberg, Head of Process Engineering at the Active Oxygens Business Line. The catalyst is then completely filtered out of the working solution. In the second step, the oxidation stage, huge compressors pump air into a bubble reactor that is full of the working solution. When the hydroquinone in the organic phase comes into contact with the oxygen in the air, it oxidizes spontaneously back into quinone, forming hydrogen peroxide in the process. -
Managing Hazardous Materials Incidents
1,3-Butadiene 1,3-Butadiene (C4 H6 ) CAS 106-99-0; UN 1010 Synonyms include butadiene, buta-1,3-diene, biethylene, bivinyl, vinylethylene, erythrene, ",(-butadiene, divinyl, and pyrrolylene. • Persons exposed to 1,3-butadiene gas do not pose a significant risk of secondary contamination to response personnel outside the Hot Zone. Persons whose skin or clothing has been contaminated with liquid 1,3-butadiene can secondarily contaminate response personnel by direct contact or through off-gassing vapor. • 1,3-Butadiene is a colorless, highly flammable gas at room temperature. The gas is heavier than air and potentially explosive. It has a mild, aromatic, gasoline-like odor that is often an adequate warning to protect against acute overexposure. • The major route of exposure to 1,3-butadiene is inhalation. 1,3-Butadiene escaping its container in liquid or gas form can produce irritation or frostbite injury. Significant dermal absorption is unlikely. • 1,3-Butadiene’s extreme flammability and potential for explosion is probably of greater health concern than its toxic effects. Description 1,3-Butadiene is a colorless gas with a mild, aromatic, gasoline- like odor. It is non-corrosive but highly flammable. The vapor is heavier than air. 1,3- Butadiene is commercially available as a liquefied gas (under pressure) with a stabilizer added for shipment. Liquid 1,3-butadiene floats and boils on water. Because of 1,3-butadiene’s physical properties (e.g., low flashpoint and tendency to polymerize), its fire and explosion potential might be greater concerns (more likely to occur and more dangerous) than its health effects.