Detection of Resting Myocardial Perfusion Defects by Sonovue Myocardial Contrast Echocardiography

Total Page:16

File Type:pdf, Size:1020Kb

Detection of Resting Myocardial Perfusion Defects by Sonovue Myocardial Contrast Echocardiography Detection of Resting Myocardial Perfusion Defects by SonoVue Myocardial Contrast Echocardiography Tamanna Nahar, M.D., Peng Li, M.D., Ph.D., Bettina Kuersten, M.D., Sanjay Batra, Ph.D., and Mani A. Vannan, M.B.B.S. Department of Medicine, Division of Cardiology, University of Michigan Health System, Ann Arbor, Michigan Background: SonoVue is a new microbubble contrast agent containing sulfur hexafluoride. We as- sessed the efficacy of SonoVue myocardial contrast echocardiography (MCE) to detect resting perfu- sion abnormalities. Methods: Nineteen adult patients with a wall motion abnormality in a screening echocardiogram were studied. Each patient received up to four bolus injections of 2.0 mL SonoVue (Bracco Diagnostics, Inc.) during echocardiographic examination using either B-mode (n = 12) or power Doppler (n = 7) imaging. Each patient also had SPECT nuclear perfusion imaging performed. Segmental assessment of myocardial perfusion from SonoVue MCE images were compared with corresponding SPECT nuclear images. Results: Using B-mode imaging, the mean number of views obtained with a single SonoVue injection ranged from 1.4 to 1.9, with 2 or 3 injections required for a complete examination. Ninety-four percent of segments were scored as diagnostic. Agreement between B-mode and SPECT images was 72% for segments with a perfusion defect, 86% for normal perfusion, and 80% for segments with either perfusion defect or normal perfusion (all views com- bined). Using power Doppler imaging, the mean number of views obtained with a single SonoVue injection ranged from 1.0 to 1.3, with 2 to 4 injections required for a complete examination. Sixty- eight percent of segments were scored as diagnostic. Agreement between power Doppler and SPECT images was 67% for perfusion defects, 53% for segments with normal perfusion, and 59% for segments with either perfusion defect or normal perfusion (all views combined). Conclusions: SonoVue MCE has the potential to assess myocardial perfusion at rest. B-mode imaging was more accurate than power Doppler imaging when compared with SPECT nuclear imaging. (ECHOCARDIOGRAPHY, Volume 20, August 2003) SonoVue, myocardial perfusion, myocardial contrast echocardiography Myocardial contrast echocardiography vascular ultrasound applications.2−5 It consists (MCE) using newer microbubbles has shown of sulfur hexafluoride-filled microbubbles in a promise in the clinical setting to delineate nor- phospholipid shell. Sulfur hexafluoride (SF6) mal and abnormal myocardial perfusion. It has is a poorly soluble, totally innocuous gas that also been demonstrated that high mechanical does not undergo metabolism and is eliminated index (MI) triggered MCE using can be used in expired air.6 to detect perfusion defects in patients with The purpose of this study was to evaluate coronary artery disease (CAD).1 SonoVue whether SonoVue MCE is able to detect rest- (BR1; Bracco Diagnostics, Inc., Princeton, NJ, ing myocardial perfusion defects. USA) is a new microbubble contrast agent currently being evaluated for cardiac and other Methods Supported in part by a research grant from Bracco Study Population Diagnostics Inc. Nineteen patients were enrolled sequentially Address for correspondence and reprint requests: Mani A. in two groups: the first group of patients was Vannan, MBBS, Drexel University College of medicine, De- = partment of Cardiovascular Medicine and Surgery, 245 N. evaluated using B-mode imaging (n 12) and 15th Street, MS 313, Philadelphia, PA 19102. Fax: (215) 762 the second group using power Doppler imag- 1525; E-mail: [email protected] ing (n = 7). Patients were eligible for the Vol. 20, No. 6, 2003 ECHOCARDIOGRAPHY: A Jrnl. of CV Ultrasound & Allied Tech. 511 NAHAR, ET AL. study if they were at least 18 years of age, optimal PRF was selected for each patient based had a history of ischemic heart disease, had on minimal motion artifact and best myocardial a discrete left ventricular wall motion abnor- contrast effect. mality (ie, two consecutive segments graded A screening noncontrast B-mode examina- as hypokinetic, dyskinetic, or akinetic) on a tion was performed for assessment of wall mo- noncontrast echocardiogram performed within tion abnormalities within 7 days prior to ad- 7 days prior to SonoVue administration, and ministration of SonoVue. Echocardiographic were clinically indicated for a radionuclide views for assessment of wall motion were se- perfusion study. Exclusion criteria included a lected from the following six views: apical technically inadequate imaging window on four-chamber (A4C), apical two-chamber (A2C), screening noncontrast echocardiogram, severe apical long-axis (APLAX), parasternal mid- congestive heart failure, unstable angina, se- short-axis (SAX-PM), parasternal apical-short- vere arrhythmia, a right-to-left circulatory axis (SAX-AP), and parasternal long-axis shunt, pulmonary hypertension, or pregnancy (PLAX) views. SonoVue MCE imaging began and lactation. The study protocol was approved with the echocardiographic view most likely by the institutional review board, and writ- to reveal a myocardial perfusion defect based ten informed consent was obtained from all pa- on the wall motion abnormality seen in the tients prior to enrollment. screening noncontrast echocardiogram. A sec- ond echocardiographic view was selected that anatomically complemented the first view (ie, Study Agent Administration the view that illustrated the same defect or an Patients received up to four intravenous bo- additional defect in the same territory). Addi- lus injections of SF6 microbubbles (SonoVue ) tional views were imaged if they were deemed at a dose of 2.0 mL each, in accordance with essential to detect the perfusion abnormality in the prespecified phase II protocol. The bolus a given patient. was administered over 30 seconds followed by For each injection of SonoVue, echocardio- slow 5-mL normal saline flush. The number graphic imaging (B-mode or power Doppler) of injections each patient received was deter- began 30-seconds prior to SonoVue adminis- mined by the need to obtain a complete MCE tration (minimum of three frames acquired). examination. SonoVue was provided by Bracco Following administration of SonoVue, trig- Diagnostics Inc. as a sterile, pyrogen free, gered images that were gated to an electro- lyophilized powder. A white, milky suspension cardiogram at end-systole, at every cardiac of SF6 microbubbles was obtained by adding 5 cycle (1 : 1) and every fourth cardiac cycle (1 : 4), mL of physiologic saline (0.9% sodium chloride) were obtained. At least three evaluable frames to the powder, using standard clinical aseptic were obtained for each pulsing interval in one techniques followed by hand agitation. After re- view before switching to the next view. Imag- constitution, bubble concentrations are in the ing continued after each injection until virtual range of 1 to 5×108 microbubbles per milliliter. disappearance of the contrast effect from the SonoVue microbubbles range in diameter left ventricle and myocardium. All images were from 1 to 10 µm (mean diameter, 2.5 µm; recorded on SVHS videotape. 90% < 8 µm). Radionuclide Perfusion Imaging B-Mode and Power Doppler Echocardiography The 99m Tc-sestamibi single-photon emission Images were obtained using a commercially computerized tomography (SPECT) imaging available echocardiographic machine ATL 5000 was done in each patient within 4-weeks prior (Bothell, WA, USA). The frequencies of the to or 1-week after administration of SonoVue. probe used for harmonic imaging were 1.8-MHz A standard image acquisition protocol was used transmit and 3.6-MHz receive. Instrument set- 1-hour after administration of 99m Tc-sestamibi. tings were optimized prior to SonoVue admin- The reconstructed data set was reformatted to istration. For B-mode imaging, MI ranged from yield horizontal long-axis views, vertical long- 0.7 to 1.2 for all patients. For power Doppler axis views, and a series of SAX views from apex imaging, MI ranged from 0.7 to 1.3, while pulse to the base of the left ventricle. No percuta- repetition frequency (PRF) ranged from 500 to neous or surgical coronary interventions were 2100. The optimal PRF for SonoVue was not done in any of the patients between the SPECT established at the time of this study. Hence the and MCE studies. 512 ECHOCARDIOGRAPHY: A Jrnl. of CV Ultrasound & Allied Tech. Vol. 20, No. 6, 2003 SONOVUE MCE IN RESTING PERFUSION DEFECTS Efficacy Assessment Methods of Analysis A single reader blinded to the results of the Descriptive statistics were used to sum- SPECT study interpreted all of the echocardio- marize all parameters. Data obtained from graphic images. For each patient, the reader B-mode and power Doppler assessments were recorded the number of SonoVue injections re- analyzed separately. For assessment of echocar- quired for a complete examination, i.e., suffi- diographic images, the frequency of each dis- cient to determine whether or not a perfusion tinct myocardial perfusion score and the cor- defect was present (additional injections, not responding percentage of the total number of to exceed a total of four, may have been ad- segments evaluated were determined based on ministered at the investigator’s discretion). For all echocardiographic views obtained. The per- each bolus injection, the reader recorded the centage of segments with scores indicating di- number of assessable views and pulsing inter- agnostic images (i.e., scores of 0, 1, or 2) was vals. Segmental assessments of myocardial per- also determined. Agreement
Recommended publications
  • Resting Coronary Flow Velocity in The
    European Heart Journal – Cardiovascular Imaging (2012) 13,79–85 CLINICAL/ORIGINAL PAPERS doi:10.1093/ehjci/jer153 Resting coronary flow velocity in the functional evaluation of coronary artery stenosis: study on sequential use of computed tomography angiography and transthoracic Doppler Downloaded from https://academic.oup.com/ehjcimaging/article/13/1/79/2397059 by guest on 30 September 2021 echocardiography Esa Joutsiniemi 1, Antti Saraste 1,2*, Mikko Pietila¨ 1, Heikki Ukkonen 1,2, Sami Kajander 2, Maija Ma¨ki 2,3, Juha Koskenvuo 3, Juhani Airaksinen 1, Jaakko Hartiala 3, Markku Saraste 3, and Juhani Knuuti 2 1Department of Cardiology, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland; 2Turku PET Centre, Kiinamyllynkatu 4-8, 20520 Turku, Finland; and 3Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland Received 10 March 2011; accepted after revision 2 August 2011; online publish-ahead-of-print 30 August 2011 Aims Accelerated flow at the site of flow-limiting stenosis can be detected by transthoracic Doppler echocardiography (TTDE). We studied feasibility and accuracy of sequential coronary computed tomography angiography (CTA) and TTDE in detection of haemodynamically significant coronary artery disease (CAD). ..................................................................................................................................................................................... Methods We prospectively enrolled 107 patients with intermediate (30–70%) pre-test likelihood of CAD. All patients under- and results went CTA using a 64-slice scanner. Using TTDE, the ratio of maximal diastolic flow velocity to pre-stenotic flow velocity (M/P ratio) was measured in the coronary segments with stenosis in CTA. In all patients, the results were compared with invasive coronary angiography, including measurement of fractional flow reserve when appropriate.
    [Show full text]
  • The Challenge of Assessing Heart Valve Prostheses by Doppler Echocardiography
    Editorial Comment The Challenge of Assessing Heart Valve Prostheses by Doppler Echocardiography Helmut Baumgartner, MD, Muenster, Germany The assessment of prosthetic valve function remains challenging. by continuous-wave Doppler measurement. Using these velocities Echocardiography has become the key diagnostic tool not only be- for the calculation of transvalvular gradients results in marked overes- cause of its noninvasive nature and wide availability but also because timation of the actual pressure drop across the prostheses.6 The fact of limitations inherent in alternative diagnostic techniques. Invasive that this phenomenon more or less disappears in malfunctioning bi- evaluation is limited particularly in mechanical valves that cannot leaflet prostheses when the funnel-shaped central flow channel ceases be crossed with a catheter, and in patients with both aortic and mitral to exist because of restricted leaflet motion makes the interpretation valve replacements, full hemodynamic assessment would even of Doppler data and their use for accurate detection of prosthesis mal- require left ventricular puncture. Although fluoroscopy and more function even more complicated.7 Furthermore, the lack of a flat ve- recently computed tomography allow the visualization of mechanical locity profile and the central high velocities described above cause valves and the motion of their occluders, the evaluation of prosthetic erroneous calculations of valve areas when the continuity equation valves typically relies on Doppler echocardiography. incorporates such measurements.8 For these reasons, the analysis of Although Doppler echocardiography has become an ideal nonin- occluder motion using fluoroscopy (in mitral prostheses, this may vasive technique for the evaluation of native heart valves and their also be obtained on transesophageal echocardiography) remains es- function, the assessment of prosthetic valves has remained more dif- sential to avoid the misinterpretation of high Doppler velocities across ficult.
    [Show full text]
  • 2Nd Quarter 2001 Medicare Part a Bulletin
    In This Issue... From the Intermediary Medical Director Medical Review Progressive Corrective Action ......................................................................... 3 General Information Medical Review Process Revision to Medical Record Requests ................................................ 5 General Coverage New CLIA Waived Tests ............................................................................................................. 8 Outpatient Hospital Services Correction to the Outpatient Services Fee Schedule ................................................................. 9 Skilled Nursing Facility Services Fee Schedule and Consolidated Billing for Skilled Nursing Facility (SNF) Services ............. 12 Fraud and Abuse Justice Recovers Record $1.5 Billion in Fraud Payments - Highest Ever for One Year Period ........................................................................................... 20 Bulletin Medical Policies Use of the American Medical Association’s (AMA’s) Current Procedural Terminology (CPT) Codes on Contractors’ Web Sites ................................................................................. 21 Outpatient Prospective Payment System January 2001 Update: Coding Information for Hospital Outpatient Prospective Payment System (OPPS) ......................................................................................................................... 93 he Medicare A Bulletin Providers Will Be Asked to Register Tshould be shared with all to Receive Medicare Bulletins and health care
    [Show full text]
  • June-July 2000 Part a Bulletin
    In This Issue... Disclosure of Itemized Statement Providers Must Furnish an Itemmized Statement when Requested in Writing by the Beneficiary .................................................................................................... 6 Prospective Payment System The Outpatient Code Editor Software Has Been Modified in Preparation for the Implementation of Outpatient Prospective Payment System ........................... 8 Reclassification of Certain Urban Hospitals Certain Urban Hospitals in the State of Florida May Be Permitted to Be Reclassified as Rural Hospitals................................................................................ 13 ulletin Final Medical Review Policies 33216, 53850, 70541, 82108, 83735, 87621, 93303, 94010, 95004, A0320, J0207, J2430, J2792, J3240, J7190, and J9999 .......................................... 15 B Payment of Skilled Nursing Facility Claims Involving a Terminating Medicare+Choice Plan Payment of Skilled Nursing Facility Care for Beneficiaries Involuntarily Disenrolling from M+C plans Who Have Not Met the 3-Day Stay Requirement ........................................................................................... 67 Features From the Medical Director 3 Administrative 4 lease share the Medicare A roviders PBulletin with appropriate General Information 5 members of your organization. Outpatient Prospective Payment System 7 Routing Suggestions: General Coverage 12 o Medicare Manager Hospital Services 13 o Reimbursement Director Local and Focused Medical Policies 15 o Chief Financial
    [Show full text]
  • Assessment of Myocardial Perfusion by Contrast Echocardiography - Ready for Clinical Practice?
    Journal of Clinical and Basic Cardiology An Independent International Scientific Journal Journal of Clinical and Basic Cardiology 2002; 5 (2), 145-148 Assessment of Myocardial Perfusion by Contrast Echocardiography - Ready for Clinical Practice? Kuntz-Hehner St, Becher H, Luederitz B, Omran H Schlosser Th, Tiemann K Homepage: www.kup.at/jcbc Online Data Base Search for Authors and Keywords Indexed in Chemical Abstracts EMBASE/Excerpta Medica Krause & Pachernegg GmbH · VERLAG für MEDIZIN und WIRTSCHAFT · A-3003 Gablitz/Austria FOCUS ON NEW DEVELOPMENTS IN ECHOCARDIOGRAPHY Contrast Echocardiographic Myocardial Perfusion Assessment J Clin Basic Cardiol 2002; 5: 145 Assessment of Myocardial Perfusion by Contrast Echocardiography – Ready for Clinical Practice? St. Kuntz-Hehner1, K. Tiemann1, Th. Schlosser1, H. Omran1, B. Luederitz1, H. Becher2 Increasing interest has been focused on myocardial contrast echocardiography (MCE) since latest ultrasound-specific imaging modalities allow the detection of ultrasound contrast agents within the myocardium after intravenous injection. Due to significant improvements in imaging technology MCE has become a valuable add-on tool for the diagnosis of coronary artery disease. This review summarizes and estimates the clinical value of recent developments in myocardial contrast echocardiography, particularly with regard to the new real-time perfusion imaging, which allows simultaneous assessment of perfusion and wall- motion. J Clin Basic Cardiol 2002; 5: 145–8. Key words: echocardiography, coronary artery disease, ultrasound contrast agent, myocardial contrast echocardiography, myocardial perfusion he assessment of myocardial perfusion following intra- nals in a process known as stimulated acoustic emission [12– T venous injection of ultrasound contrast agents (USCAs) 15]. has been a major objective of research in the last two decades.
    [Show full text]
  • Dual Imaging Stress Echocardiography Versus Computed
    Ciampi et al. Cardiovascular Ultrasound (2015) 13:21 DOI 10.1186/s12947-015-0013-8 CARDIOVASCULAR ULTRASOUND RESEARCH Open Access Dual imaging stress echocardiography versus computed tomography coronary angiography for risk stratification of patients with chest pain of unknown origin Quirino Ciampi1,2*, Fausto Rigo3, Elisabetta Grolla3, Eugenio Picano2 and Lauro Cortigiani4 Abstract Background: Dual imaging stress echocardiography, combining the evaluation of wall motion and coronary flow reserve (CFR) on the left anterior descending artery (LAD), and computed tomography coronary angiography (CTCA) are established techniques for assessing prognosis in chest pain patients. In this study we compared the prognostic value of the two methods in a cohort of patients with chest pain having suspected coronary artery disease (CAD). Methods: A total of 131 patients (76 men; age 68 ± 9 years) with chest pain of unknown origin underwent dipyridamole (up to 0.84 mg/kg over 6 min) stress echo with CFR assessment of LAD by Doppler and CTCA. A CFR ≤ 1.9 was considered abnormal, while > 50% lumen diameter reduction was the criterion for significant CAD at CTCA. Results: Of 131 patients, 34 (26%) had ischemia at stress echo (new wall motion abnormalities), and 56 (43%) had reduced CFR on LAD. Significant coronary stenosis at CTCA was found in 69 (53%) patients. Forty-six patients (84%) with abnormal CFR on LAD showed significant CAD at CTCA (p < 0.001). Calcium score was higher in patients with reduced than in those with normal CFR (265 ± 404 vs 131 ± 336, p = 0.04). During a median follow-up of 7 months (1st to 3rd quartile: 5–13 months), there were 45 major cardiac events (4 deaths, 11 nonfatal myocardial infarctions, and 30 late [≥6 months] coronary revascularizations).
    [Show full text]
  • Blood Flow Hemodynamics, Cardiac Mechanics, and Doppler Echocardiography
    79351_CH04_Bulwer.qxd 12/1/09 7:46 AM Page 45 CHAPTER 4 Blood Flow Hemodynamics, Cardiac Mechanics, and Doppler Echocardiography THE CARDIAC CYCLE Figure 4.1 The cardiac cycle showing superimposed hemody- namic and echocardio- graphic parameters. A4C: apical 4-chamber view; A5C: apical 5-chamber view; AC: aortic valve clo- sure; AO: aortic valve opening; E- and A-waves: spectral Doppler depiction of early and late diastolic filling of the left ventricle; MC: mitral valve closure; MO: mitral valve opening; LA: left atrium; LV: left ven- tricle; left atrial “a” and “e” waves reflecting atrial pressures; EDV: end dias- tolic LV volume; ESV: end- systolic LV volume. © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. 79351_CH04_Bulwer.qxd 12/1/09 7:46 AM Page 46 46 CHAPTER 4 BLOOD FLOW HEMODYNAMICS Figure 4.2 Flow velocity profiles in normal pulsatile blood flow. Normal blood flow through the heart and blood vessels, at any instant in time, is not uniform. There is a range or spectrum of velocities at each instant during the cardiac cycle. This spectrum, at each instant during the cardiac cycle, can be differentiated and displayed using Doppler echocardiography (see Figures 4.3–4.22). © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. 79351_CH04_Bulwer.qxd 12/1/09 7:46 AM Page 47 Blood Flow Velocity Profiles 47 BLOOD FLOW VELOCITY PROFILES Doppler echocardiography can assess blood flow velocity, direction and flow patterns/profiles (e.g., plug), and laminar, parabolic, and turbulent flow Figures 4.3–4.19 . Crucial to understanding Doppler echocardiography is the need to understand certain basic characteristics of blood flow.
    [Show full text]
  • 2019 FAQ EP Coding and Reimbursement Physicians and Facilities RESOURCES to ASSIST YOU with the REIMBURSEMENT PROCESS
    2019 FAQ EP Coding and Reimbursement Physicians and Facilities RESOURCES TO ASSIST YOU WITH THE REIMBURSEMENT PROCESS Reimbursement and Coding and Reimbursement Electrophysiology EP Procedure Documentation Coding Guide Frequently Asked Questions Coding Checklist Best Practices Online HCPCS C-Code Finder Coding & Reimbursement Webinars Email your Coding Questions www.biosensewebster.com/reimbursement 2 TABLE OF CONTENTS ABLATION PROCEDURES 4 - 6 ELECTROPHYSIOLOGY STUDIES 8 - 11 MAPPING 12 TRANSSEPTAL ACCESS 13 ECHOCARDIOGRAPHY (TEE AND ICE) 14 - 17 HCPCS CODES (C-CODES) 18 - 19 MISCELLANEOUS 20 - 21 PROCEDURE VIGNETTES 22 - 25 ® ASSIGNMENT OF CPT CODES TO APC CATEGORIES 26 - 27 GLOSSARY AND ACRONYMS 28 - 29 REIMBURSEMENT METHODOLOGIES 30 - 31 CODING RESOURCES AND REFERENCES 32 The information is provided to assist you in understanding the reimbursement process. It is intended to assist providers in accurately obtaining reimbursement for health care services. It is not intended to increase or maximize reimbursement by any payer. We strongly suggest that you consult your payer organization with regard to local reimbursement policies. The information contained in this document is provided for information purposes only and represents no statement, promise or guarantee by Biosense Webster, Inc. concerning levels of reimbursement, payment or charge. Similarly, all CPT® & HCPCS codes are supplied for information purposes only and represent no statement; promise or guarantee by Biosense Webster, Inc. that these codes will be appropriate or that reimbursement will be made. Third party trademarks used herein are trademarks of their respective owners. www.biosensewebster.com/reimbursement 3 ABLATION PROCEDURES PROCEDURES ABLATION Q. What CPT® codes are reported for ablation procedures? A. As a result of the Joint CPT® / RUC screen for procedures inherently performed together, three primary codes were introduced in 2013 which bundle electrophysiological (EP) evaluation and intracardiac ablation procedures, as well as two add-on ablation codes.
    [Show full text]
  • Assessment of Right Ventricular Function with Doppler
    244 CARDIOVASCULAR MEDICINE Heart: first published as 10.1136/heart.88.3.244 on 1 September 2002. Downloaded from Assessment of right ventricular function with Doppler echocardiographic indices derived from tricuspid annular motion: comparison with radionuclide angiography O M Ueti, E E Camargo, A de A Ueti,ECdeLima-Filho, E A Nogueira ............................................................................................................................. Heart 2002;88:244–248 Objective: To assess right ventricular systolic function using indices derived from tricuspid annular motion, and to compare the results with right ventricular ejection fraction (RVEF) calculated from radio- nuclide angiography. Design: Pulsed Doppler echocardiography indices were obtained from 10 patients with a normal RVEF (group 1) and from 20 patients whose RVEF was less than 45% (group 2). See end of article for Results: The patients in the two groups were similar in age, systolic blood pressure, and heart rate. authors’ affiliations There was a close correlation between the tricuspid annular motion derived indices (D wave integral ....................... (DWI), peak velocity of D wave (PVDW), and tricuspid plane systolic excursion (TPSE)) and RVEF Correspondence to: (r = 0.72, 0.82, and 0.79, respectively). DWI was significantly higher in group 1 than in group 2. Dr Eduardo A Nogueira; PVDW discriminated adequately between individuals with abnormal and normal right ventricular ejec- [email protected] tion fraction. The sensitivity and specificity of tricuspid annular motion derived indices were very good. Accepted 26 April 2002 Conclusions: Indices derived from tricuspid annular motion appear to be important tools for assessing ....................... right ventricular systolic function. ssessment of the right ventricular ejection fraction out clinical, electrocardiographic, or echocardiographic evi- (RVEF) is difficult owing to the complex structure and dence of heart disease.
    [Show full text]
  • Reliability in Using Routine Coronary CT Angiography with Retrospective
    J Korean Soc Radiol 2019;80(1):69-80 Original Article https://doi.org/10.3348/jksr.2019.80.1.69 pISSN 1738-2637 / eISSN 2288-2928 Received May 28, 2018 Revised July 4, 2018 Accepted August 2, 2018 Reliability in Using Routine *Corresponding author Jongmin Lee, MD Department of Radiology, Coronary CT Angiography Kyungpook National University Hospital, 130 Dongduk-ro, Jung-gu, Daegu 41944, Korea. with Retrospective Tel 82-53-420-5399 Fax 82-53-422-2677 Electrocardiographic Gating E-mail [email protected] This is an Open Access article distributed under the terms of the Creative Commons Attribu- for the Comprehensive tion Non-Commercial License (https://creativecommons.org/ licenses/by-nc/4.0) which permits Functional Evaluation of the unrestricted non-commercial use, distri-bution, and reproduc- tion in any medium, provided the Left Ventricle original work is properly cited. 일상적으로 촬영된 후향적 심전도 동기화 관상동맥전산화단층 영상을 이용한 ORCID iDs Jongmin Lee 좌심실 기능의 포괄적 평가 https:// orcid.org/0000-0002-4163-913X 1 2 2 Eun-Ju Kang Eun-Ju Kang, MD , Jihoon Hong, MD , Jongmin Park, MD , https:// 2 Jongmin Lee, MD * orcid.org/0000-0003-0937-3607 1 Department of Radiology, Dong-A University Hospital, Busan, Korea 2 Department of Radiology, Kyungpook National University Hospital, Daegu, Korea Purpose To evaluate the feasibility of comprehensive left ventricle (LV) functional parameters on routine coronary computed tomographic angiography (CCTA) based on two-dimensional echocardiography (2DE). Materials and Methods Ninety-nine patients who underwent CCTA accompanied by 2DE were included in the study. The volumetric LV systolic functional parameters were acquired from 10-phase reconstruction of CCTA data.
    [Show full text]
  • Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: from the American Society of Echocardiography
    GUIDELINES AND STANDARDS Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography Patricia A. Pellikka, MD, FASE, Chair, Adelaide Arruda-Olson, MD, PhD, FASE, Farooq A. Chaudhry, MD, FASE,* Ming Hui Chen, MD, MMSc, FASE, Jane E. Marshall, RDCS, FASE, Thomas R. Porter, MD, FASE, and Stephen G. Sawada, MD, Rochester, Minnesota; New York, New York; Boston, Massachusetts; Omaha, Nebraska; Indianapolis, Indiana Keywords: Echocardiography, Stress, Guidelines, Imaging, Ischemic heart disease, Stress test, Pediatrics This document is endorsed by the following ASE International Alliance Partners: Argentine Federation of Cardiology, Argentine Society of Cardiology, ASEAN Society of Echocardiography, Association of Echocardiography and Cardiovascular Imaging of the Interamerican Society of Cardiology, Australasian Sonographers Association, Canadian Society of Echocardiography, Chinese Society of Echocardiography, Cuban Society of Cardiography Echocardiography Section, Department of Cardiovascular Imaging of the Brazilian Society of Cardiology, Indian Academy of Echocardiography, Indian Association of Cardiovascular Thoracic Anaesthesiologists, Indonesian Society of Echocardiography, Iranian Society of Echocardiography, Israeli Working Group on Echocardiography, Italian Association of CardioThoracic and Vascular Anaesthesia and Intensive Care, Japanese Society of Echocardiography, Korean Society of Echocardiography, Mexican Society of Echocardiography
    [Show full text]
  • Recommendations for the Practice of Echocardiography in Infective Endocarditis
    European Journal of Echocardiography (2010) 11, 202–219 RECOMMENDATIONS doi:10.1093/ejechocard/jeq004 Recommendations for the practice of echocardiography in infective endocarditis Gilbert Habib (France)*, Luigi Badano (Italy), Christophe Tribouilloy (France), Isidre Vilacosta (Spain), and Jose Luis Zamorano (Spain) Scientific Committee: Maurizio Galderisi (Italy), Jens-Uwe Voigt (Belgium), Rosa Sicari (Italy) Document Reviewers: Bernard Cosyns (Belgium), Kevin Fox (UK), Svend Aakhus (Norway) On behalf of the European Association of Echocardiography Service de Cardiologie, CHU La Timone, Bd Jean Moulin, 13005 Marseille, France Received 20 December 2009; accepted after revision 30 December 2009 Echocardiography plays a key role in the assessment of infective endocarditis (IE). It is useful for the diagnosis of endocarditis, the assessment of the severity of the disease, the prediction of short- and long-term prognosis, the prediction of embolic events, and the follow-up of patients under specific antibiotic therapy. Echocardiography is also useful for the diagnosis and management of the complications of IE, helping the physician in decision-making, particularly when a surgical therapy is considered. Finally, intraoperative echocardiography must be performed in IE to help the surgeon in the assessment and management of patients with IE during surgery. The current ‘recommendations for the practice of echocardiography in infective endocarditis’ aims to provide both an updated summary concerning the value and limitations of echocardiography in IE, and clear and simple recommendations for the optimal use of both transthoracic and transoesophageal echocardiography in IE. ----------------------------------------------------------------------------------------------------------------------------------------------------------- Keywords Echocardiography † Endocarditis † Valve disease Table of Contents Introduction . 202 2. Echocardiographic follow-up under therapy . 212 Chapter 1: Echocardiography for the diagnosis of infective 3.
    [Show full text]