Cfreptiles & Amphibians

Total Page:16

File Type:pdf, Size:1020Kb

Cfreptiles & Amphibians HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL & AMPHIBIANS15, NO 4 • DEC 2008 • 28(2):189 292–294 • AUG 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS ObservationsFEATURE ARTICLES of Southern Italian Wall Lizards . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: On the Road to Understanding(Podarcis the Ecology and Conservation siculus of the Midwest’s Giant siculus Serpent ......................) Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: A HypotheticalScavenging Excursion ............................................................................................................................ Artificial FoodsRobert W. Henderson 198 RESEARCH ARTICLES in. Thethe Texas Horned Province Lizard in Central and Western Texasof ....................... Messina, Emily Henry, Jason Brewer, Sicily,Krista Mougey, and Gad PerryItaly 204 . The Knight Anole (Anolis equestris) in Florida .............................................Brian J. Camposano, Kenneth L. Krysko, Kevin M. Enge, Ellen M. Donlan, and Michael Granatosky 212 Matthew Mo and Elouise Mo CONSERVATION ALERT Sydney, New South Wales, Australia ([email protected]) . World’s Mammals in Crisis ............................................................................................................................................................. 220 . More Than Mammals ...............................................................................................................................Photographs by the authors. ....................................... 223 . The “Dow Jones Index” of Biodiversity ........................................................................................................................................... 225 HUSBANDRY . Captive Care of the Central Netted Dragon ....................................................................................................... Shannon Plummer 226 he Italian Wall Lizard or Ruin Lizard (Podarcis siculus) other reptiles, including conspecifics, small mammals (Capula is a lacertidPROFILE lizard naturally occurring on the Italian and Aloise 2011; Zuffi and Giannelli 2013), and plant mat- T . Peninsula, the islandKraig of Adler: Sicily A Lifetime and Promoting adjacent Herpetology parts ................................................................................................of south- ter including seeds and fruit Michael (Pérez-Mellado L. Treglia 234 and Corti 1993; ern Europe (SpeybroeckCOMMENTARY et al. 2016). These opportunistic Mačát et al. 2015). Here, we report observations of the nomi- lizards, effectively .habituatedThe Turtles Have to Been urban Watching situations Me ........................................................................................................................ (Putman nate subspecies scavenging artificial Eric Gangloff foods. 238 et al. 2020), haveBOOK successfully REVIEW colonized areas far from their Italian Wall Lizards are common in the streets and public native range, including. Threatened the UnitedAmphibians States of the World of America edited by S.N. (Kolbe Stuart, M. Hoffmann,gardens J.S. of Chanson,Taormina N.A. (37.850904Cox, °N, 15.289437°E), a seaside et al. 2013) and RussiaR. Berridge, (Tuniyev P. Ramani, et andal. B.E. 2020). Young ..............................................................................................................The spread town in the Province of Messina Robert Powell in northeastern243 Sicily. On of the species at least in part has been aided by its general- 10 May 2019, we observed lizards scavenging pieces of cheese ist diet, which consists CONSERVATION mainly of RESEARCHinvertebrates REPORTS: (Capula Summaries et al. of Publishedthat Conservation had fallen Research to theReports ground ................................. from a picnic245 table. Our first NATURAL HISTORY RESEARCH REPORTS: Summaries of Published Reports on Natural History ................................. 247 1993; Rugiero 1994; NEWBRIEFS Bonacci ............................................................................................................................... et al. 2008), but can extend to observation involved....................................................... a rectangular piece 248 of parmesan cheese EDITORIAL INFORMATION ..................................................................................................................................................... 251 FOCUS ON CONSERVATION: A Project You Can Support ............................................................................................... 252 Front Cover. Shannon Plummer. Back Cover. Michael Kern Totat et velleseque audant mo Totat et velleseque audant mo estibus inveliquo velique rerchil estibus inveliquo velique rerchil erspienimus, quos accullabo. Ilibus erspienimus, quos accullabo. Ilibus aut dolor apicto invere pe dolum aut dolor apicto invere pe dolum fugiatis maionsequat eumque fugiatis maionsequat eumque moditia erere nonsedis ma sectiatur moditia erere nonsedis ma sectia- ma derrovitae voluptam, as quos tur ma derrovitae voluptam, as accullabo. Fig. 1. An Italian Wall Lizard (Podarcis siculus) nips at a piece of parmesan cheese (top) before seeing off a conspecific (bottom). Copyright is held by the authors. Articles in R&A are made available under a 292 Reptiles & Amphibians ISSN 2332-4961 Creative Commons Attribution-NonCommercial 4.0 International license. MO AND MO REPTILES & AMPHIBIANS • 28(2): 292–294 • AUG 2021 Fig. 2. An Italian Wall Lizard (Podarcis siculus) watches picnickers from a rock wall (top) and snatches up a piece of cheese that fell to the ground (bottom). approximately 1 x 4 cm. A lizard approached cautiously, pastina. After swallowing a second morsel, it lost interest and paused next to the cheese, appeared vigilant for approximately scampered away. We left the remaining pieces for the rest of 30 seconds, then lowered its snout as if to sniff the cheese the day, but they did not appear to attract any further interest before nipping at the side of it and dislodging a morsel with from lizards. a brief shake (Fig. 1). A second lizard approached and was That Italian Wall Lizards sought artificial food, even met by the first. After a brief standoff, the first lizard chased when humans were present, matched descriptions of them off the interloper and resumed nipping at the cheese. It was being active foragers (Vervust et al. 2010; Capula and Aloise subsequently disturbed and driven into nearby vegetation by 2011) that sometimes are drawn to motionless food items passing people. We remained in the area for a further 10 min- (e.g., carrion and plant matter; Capula and Aloise 2011; utes but did not see the lizard reappear. Mačát et al. 2015). Scavenging food scraps from humans has On the same day, we sighted another Italian Wall Lizard been reported for a range of lizard taxa (e.g., Uyeda 2009; Mo emerging from a rock wall showing interest in a group of pic- and Mo 2021). Such reports demonstrate an ecological adapt- nickers. When a small morsel of cheese was dropped from ability of species that enhances their ability to colonize human the table, this lizard immediately descended to the ground, settlements. consumed the cheese (Fig. 2), and remained in place for a few seconds before scampering back to the wall. Literature Cited We also encountered a population of Italian Wall Lizards Bonacci, T., G. Aloise, P. Brandmayr, T. Zetto Brandmayr, and M. Capula. 2008. Testing the predatory behavior of Podarcis sicula (Reptilia: Lacertidae) towards inhabiting an agricultural area on the outskirts of Graniti, aposematic and non-aposematic prey. Amphibia-Reptilia 29: 449–453. Sicily (37.878972°N, 15.213753°E). The lizards were asso- Capula, M. and G. Aloise. 2011. Extreme feeding behaviours in the Italian ciated with rockeries, rock walls, logs, or tree stumps, but Wall Lizard, Podarcis siculus. Acta Herpetologica 6: 11–14. https://doi. particularly abundant near homesteads, where refugia were org/10.13128/Acta_Herpetol-9573. Capula, M., L. Luiselli, and L. Rugiero. 1993. Comparative ecology in sym- readily available. On 11 May 2019, we spilled a few pieces of patric Podarcis muralis and P. sicula (Reptilia: Lacertidae) from the his- freshly cooked pastina where lizards sometimes basked. After torical centre of Rome: what about competition and niche segregation in an urban habitat? Bollettino di Zoologia 60: 287–291. https://doi. two hours, a lizard approached one of the pieces (Fig. 3), org/10.1080/11250009309355825. spent approximately 2 minutes sizing it up before mouthing Kolbe, J.J., B.R. Lavin, R.L. Burke, L. Rugiero, M. Capula, and L. Luiselli. 2013. it repeatedly and finally shaking off a morsel. The lizard held The desire for variety: Italian Wall Lizard (Podarcis siculus) populations intro- duced to the United States via the pet trade are derived from multiple native- the morsel in its mouth for some time but eventually swal- range sources. Biological Invasions 15: 775–783. https://doi.org/10.1007/ lowed it. After several minutes this lizard again nipped at the s10530-012-0325-7. 293 MO AND MO REPTILES & AMPHIBIANS • 28(2): 292–294 • AUG 2021 Fig. 3. An Italian Wall Lizard (Podarcis siculus) negotiates morsels from a piece of pastina. Mačát, Z., M. Veselý, and D. Jablonski. 2015. New case of fruit eating observation Plc, London, UK. in Podarcis siculus (Rafinesque-Schmaltz,
Recommended publications
  • Short Note Phylogeographic Evidence for Multiple Long-Distance
    Amphibia-Reptilia 40 (2019): 121-127 brill.com/amre Short Note Phylogeographic evidence for multiple long-distance introductions of the common wall lizard associated with human trade and transport Joana L. Santos1, Anamarija Žagar1,2,3,∗, Katarina Drašler3, Catarina Rato1, César Ayres4, D. James Harris1, Miguel A. Carretero1, Daniele Salvi1,5,* Abstract. The common wall lizard has been widely introduced across Europe and overseas. We investigated the origin of putatively introduced Podarcis muralis populations from two southern Europe localities: (i) Ljubljana (Slovenia), where uncommon phenotypes were observed near the railway tracks and (ii) the port of Vigo (Spain), where the species was recently found 150 km far from its previously known range. We compared cytochrome-b mtDNA sequences of lizards from these populations with published sequences across the native range. Our results support the allochthonous status and multiple, long-distance origins in both populations. In Ljubljana, results support two different origins, Serbia and Italy. In Vigo, at least two separate origins are inferred, from western and eastern France. Such results confirm that human-mediated transport is promoting biological invasion and lineage admixture in this species. Solid knowledge of the origin and invasion pathways, as well as population monitoring, is crucial for management strategies to be successful. Keywords: biological invasions, human-mediated introduction, Podarcis muralis, population admixture, Slovenia, Spain. Introduction al., 2013). Species are
    [Show full text]
  • Molecular Cloning of VIP and Distribution of VIP/VPACR System In
    RESEARCH ARTICLE Molecular Cloning of VIP and Distribution of VIP/VPACR System in the Testis of Podarcis sicula MARISA AGNESE*, LUIGI ROSATI, FRANCESCA CORAGGIO, SALVATORE VALIANTE, AND MARINA PRISCO Department of Biology, University of Naples Federico II, Naples, Italy ABSTRACT Using molecular, biochemical, and cytological tools, we studied the nucleotide and the deduced amino acid sequence of PHI/VIP and the distribution of VIP/VPAC receptor system in the testis of the Italian wall lizard Podarcis sicula to evaluate the involvement of such a neuropeptide in the spermatogenesis control. We demonstrated that (1) Podarcis sicula VIP had a high identity with other vertebrate VIP sequences, (2) differently from mammals, VIP was synthesized directly in the testis, and (3) VIP and its receptor VPAC2 were widely distributed in germ and somatic cells, while the VPAC1R had a distribution limited to Leydig cells. Our results demonstrated that in Podarcis sicula the VIP sequence is highly preserved and that this neuropeptide is involved in lizard spermatogenesis and steroidogenesis. J. Exp. Zool. 321A:334–347, 2014. © 2014 Wiley Periodicals, Inc. J. Exp. Zool. How to cite this article: Agnese M, Rosati L, Coraggio F, Valiante S, Prisco M. 2014. Molecular 321AA:334–347, cloning of VIP and distribution of VIP/VPACR system in the testis of Podarcis sicula. J. Exp. Zool 2014 321A:334–347. Vasoactive Intestinal Peptide (VIP) is a 28 amino acid neuropeptide subtype 2), that are coupled in the adenylate cyclase pathway (Mutt and Said, '74), originally isolated from the porcine ileum (Dickson and Finlayson, 2009). The PACAP also binds to these (Said and Mutt, '70); it belongs to the glucagon/secretin receptors, in addition to a PACAP‐specific receptor (PAC1R).
    [Show full text]
  • “Italian Immigrants” Flourish on Long Island Russell Burke Associate Professor Department of Biology
    “Italian Immigrants” Flourish on Long Island Russell Burke Associate Professor Department of Biology talians have made many important brought ringneck pheasants (Phasianus mentioned by Shakespeare. Also in the contributions to the culture and colchicus) to North America for sport late 1800s naturalists introduced the accomplishments of the United hunting, and pheasants have survived so small Indian mongoose (Herpestes javan- States, and some of these are not gen- well (for example, on Hofstra’s North icus) to the islands of Mauritius, Fiji, erally appreciated. Two of the more Campus) that many people are unaware Hawai’i, and much of the West Indies, Iunderappreciated contributions are that the species originated in China. Of supposedly to control the rat popula- the Italian wall lizards, Podarcis sicula course most of our common agricultural tion. Rats were crop pests, and in most and Podarcis muralis. In the 1960s and species — except for corn, pumpkins, cases the rats were introduced from 1970s, Italian wall lizards were imported and some beans — are non-native. The Europe. Instead of eating lots of rats, the to the United States in large numbers for mongooses ate numerous native ani- the pet trade. These hardy, colorful little mals, endangering many species and lizards are common in their home coun- Annual Patterns causing plenty of extinctions. They also try, and are easily captured in large num- 3.0 90 became carriers of rabies. There are 80 2.5 bers. Enterprising animal dealers bought 70 many more cases of introductions like them at a cut rate in Italy and sold them 2.0 60 these, and at the time the scientific 50 1.5 to pet dealers all over the United States.
    [Show full text]
  • Population Profile of an Introduced Species, the Common Wall Lizard (Podarcis Muralis), on Vancouver Island, Canada
    51 Population profile of an introduced species, the common wall lizard (Podarcis muralis), on Vancouver Island, Canada G. Michael Allan, Christopher J. Prelypchan, and Patrick T. Gregory Abstract: Introduced species represent one of the greatest potential threats to persistence of native species. Therefore, it is important to understand the ecology of introduced species in order to develop appropriate mitigation strategies if required. In this study, using data collected in 1992–1993, we describe some fundamental population attributes of com- mon wall lizards, Podarcis muralis (Laurenti, 1768), of Italian origin, introduced near Victoria, British Columbia, in the early 1970s. Male and female wall lizards reached similar snout–vent lengths, but males had relatively longer tails and were heavier. However, when gravid, females attained a body mass similar to that of males of equal snout–vent length. We found gravid females in all months from May to July, inclusive, but hatchlings did not appear in the field before late July. Growth rate was inversely related to body size, and lizards probably reached maturity in their second full summer. Larger lizards were more likely than smaller lizards to have experienced tail loss prior to capture, but the probability of tail loss upon capture was higher for smaller lizards than for adults. Our results suggest no fundamental differences in population characteristics between P. muralis on southern Vancouver Island and populations at sites within the species’ natural range in Europe. Whether P. muralis on Vancouver Island is a threat to the native northern alligator lizard, Elgaria coerulea (Wiegmann, 1828), remains an open question. Résumé : Les espèces introduites représentent une des menaces potentielles les plus importantes à la persistance des espèces indigènes.
    [Show full text]
  • Notes on Egg and Hatchling Size in Podarcis Siculus (Squamata: Lacertidae) from Central Italy
    Phyllomedusa 18(1):127–129, 2019 © 2019 Universidade de São Paulo - ESALQ ISSN 1519-1397 (print) / ISSN 2316-9079 (online) doi: http://dx.doi.org/10.11606/issn.2316-9079.v18i1p127-129 Short CommuniCation Notes on egg and hatchling size in Podarcis siculus (Squamata: Lacertidae) from central Italy Marta Biaggini and Claudia Corti Museo di Storia Naturale dell’Università degli Studi di Firenze, Sede “La Specola”. Via Romana 17, 50125 Florence, Italy. Keywords: clutch, Italian Wall Lizard, lacertid, newborn, reproductive traits. Palavras-chave: características reprodutivas, desova, lacertídeos, lagarto-dos-muros-italiano, recém-nascido. The Italian Wall Lizard, Podarcis siculus 10°59' E, ca. 100 m a.s.l.).We housed females in (Rafnesque-Schmaltz, 1810), is mainly distributed individual terraria exposed to natural conditions in Italy and surrounding islands, and along the (light, ventilation, and temperatures) and eastern coast of the Adriatic Sea; it is oviparous provided mealworm (Tenebrio molitor Linnaeus, with a seasonal reproductive cycle (Corti et al. 1758) larvae and water ad libitum. Eggs were 2010 and references therein). Females become laid at most 1 wk after the lizards were captured; fertile after reaching a snout–vent length of 50 thus, even though egg deposition occurred in mm (Henle 1988) and as many as three egg terraria, egg development was affected by the depositions may occur in the same reproductive conditions experienced by females in their season (Angelini et al. 1982, Henle 1988, Capula natural environment. We checked terraria for et al. 1993). Despite the many aspects of eggs twice a day. Upon egg deposition, each reproduction in P.
    [Show full text]
  • Podarcis Siculus)
    WWW.IRCF.ORG/REPTILESANDAMPHIBIANSJOURNALTABLE OF CONTENTS IRCF REPTILES & IRCF AMPHIBIANS REPTILES • VOL &15, AMPHIBIANS NO 4 • DEC 2008 • 189 21(4):142–143 • DEC 2014 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS INTRODUCED SPECIES FEATURE ARTICLES . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 Notes. The Shared on History of TreeboasTwo (Corallus grenadensisIntroduced) and Humans on Grenada: Populations of A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 theRESEARCH Italian ARTICLES Wall Lizard (Podarcis siculus) . The Texas Horned Lizard in Central and Western Texas ....................... Emily Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 . The Knighton Anole (Anolis Staten equestris) in Florida Island, New York .............................................Brian J. Camposano, Kenneth L. Krysko, Kevin M. Enge, Ellen M. Donlan, and Michael Granatosky 212 1,2 3 CONSERVATION ALERTRobert W. Mendyk and John Adragna 1Department of Herpetology,. World’s Mammals Smithsonian in Crisis National............................................................................................................................................................. Zoological Park, 3001 Connecticut Ave NW, Washington, D.C. 20008, USA 220 ([email protected])
    [Show full text]
  • Herpetological Review Volume 38, Number 1 — March 2007
    Herpetological Review Volume 38, Number 1 — March 2007 SSAR 50th Anniversary Year SSAR Officers (2007) HERPETOLOGICAL REVIEW President The Quarterly News-Journal of the Society for the Study of Amphibians and Reptiles ROY MCDIARMID USGS Patuxent Wildlife Research Center Editor Managing Editor National Museum of Natural History ROBERT W. HANSEN THOMAS F. TYNING Washington, DC 20560, USA 16333 Deer Path Lane Berkshire Community College Clovis, California 93619-9735, USA 1350 West Street President-elect [email protected] Pittsfield, Massachusetts 01201, USA BRIAN CROTHER [email protected] Department of Biological Sciences Southeastern Louisiana University Associate Editors Hammond, Louisiana 70402, USA ROBERT E. ESPINOZA CHRISTOPHER A. PHILLIPS DEANNA H. OLSON California State University, Northridge Illinois Natural History Survey USDA Forestry Science Lab Secretary MARION R. PREEST ROBERT N. REED MICHAEL S. GRACE R. BRENT THOMAS Joint Science Department USGS Fort Collins Science Center Florida Institute of Technology Emporia State University The Claremont Colleges Claremont, California 91711, USA EMILY N. TAYLOR GUNTHER KÖHLER California Polytechnic State University Forschungsinstitut und Naturmuseum Senckenberg Treasurer KIRSTEN E. NICHOLSON Section Editors Department of Biology, Brooks 217 Central Michigan University Book Reviews Current Research Current Research Mt. Pleasant, Michigan 48859, USA AARON M. BAUER JOSH HALE MICHELE A. JOHNSON e-mail: [email protected] Department of Biology Department of Sciences Department of Biology Villanova University MuseumVictoria, GPO Box 666 Washington University Publications Secretary Villanova, Pennsylvania 19085, USA Melbourne, Victoria 3001, Australia Campus Box 1137 BRECK BARTHOLOMEW [email protected] [email protected] St. Louis, Missouri 63130, USA P.O. Box 58517 [email protected] Salt Lake City, Utah 84158, USA Geographic Distribution Geographic Distribution Geographic Distribution e-mail: [email protected] ALAN M.
    [Show full text]
  • Aquatic Habits of Some Scincid and Lacertid Lizards in Italy
    Herpetology Notes, volume 14: 273-277 (2021) (published online on 01 February 2021) Aquatic habits of some scincid and lacertid lizards in Italy Matteo Riccardo Di Nicola1, Sergio Mezzadri2, Giacomo Bruni3, Andrea Ambrogio4, Alessia Mariacher5,*, and Thomas Zabbia6 Among European lizards, there are no strictly aquatic thermoregulation (Webb, 1980). We here report several or semi-aquatic species (Corti et al., 2011). The only remarkable observations of different behaviours in ones that regularly show familiarity with aquatic aquatic environments in non-accidental circumstances environments are Zootoca vivipara (Jacquin, 1787) and for three Italian lizard species (Chalcides chalcides, especially Z. carniolica (Mayer et al., 2000). Species of Lacerta bilineata, Podarcis muralis). the genus Zootoca can generally be found in wetlands and peat bogs (Bruno, 1986; Corti and Lo Cascio, 1999; Chalcides chalcides (Linnaeus, 1758) Lapini, 2007; Bombi, 2011; Speybroeck, 2016; Di Italian Three-toed Skink Nicola et al., 2019), swimming through the habitat from one floating site to another for feeding, or for escape First event. On 1 July 2020 at 12:11 h (sunny weather; (Bruno, 1986; Glandt, 2001; Speybroeck et al., 2016). Tmax = 32°C; Tavg = 25°C) near Poggioferro, Grosseto These lizards are apparently even capable of diving into Province, Italy (42.6962°N, 11.3693°E, elevation a body of water to reach the bottom in order to flee from 494 m), one of the authors (AM) observed an Italian predators (Bruno, 1986). three-toed skink floating in a near-vertical position in Nonetheless, aquatic habits are considered infrequent a swimming pool, with only its head above the water in other members of the family Lacertidae, including surface (Fig.
    [Show full text]
  • A Case of Limb Regeneration in a Wild Adult Podarcis Lilfordi Lizard
    Turkish Journal of Zoology Turk J Zool (2017) 41: 1069-1071 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1607-53 A case of limb regeneration in a wild adult Podarcis lilfordi lizard 1,2, 1 1,2,3 1 Àlex CORTADA *, Antigoni KALIONTZOPOULOU , Joana MENDES , Miguel A. CARRETERO 1 CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, University of Porto, Campus de Vairão, Vairão, Vila do Conde, Portugal 2 Department of Biology, University of Porto, Porto, Portugal 3 Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain Received: 28.07.2016 Accepted/Published Online: 01.08.2017 Final Version: 21.11.2017 Abstract: We report here a case of spontaneous limb regeneration in a wild Podarcis lilfordi lizard from the Balearic Islands. The animal had lost a hind limb, which regenerated posteriorly into a tail-like appendage. Despite not representing a functional regeneration, the growth of this structure after limb amputation suggests that survival of the individual may have been favored by the less restrictive conditions prevailing in insular environments. Nevertheless, such cases are extremely rare in lizards, with no reported cases over the last 60 years. Key words: Limb regeneration, Podarcis lilfordi, Lacertidae, islands, Balearics Regeneration refers to the ability of an adult organism Lilford’s wall lizard (Podarcis lilfordi) is a lacertid species to restore injured or completely lost tissues and organs endemic to the Balearic Islands. It is currently restricted to (Alibardi, 2010). In reptiles, successful regeneration is the Cabrera archipelago and the offshore islets of Mallorca usually restricted to the replacement of the tail, mainly and Menorca, as it has become extinct in the main islands in lizards that perform tail autotomy (self-amputation) as (Salvador, 2014), likely due to the Neolithic introduction a defensive strategy (Clause and Capaldi, 2006; Alibardi, of allochthonous predators (Pinya and Carretero, 2011).
    [Show full text]
  • Podarcis Siculus Latastei (Bedriaga, 1879) of the Western Pontine Islands (Italy) Raised to the Species Rank, and a Brief Taxonomic Overview of Podarcis Lizards
    Acta Herpetologica 14(2): 71-80, 2019 DOI: 10.13128/a_h-7744 Podarcis siculus latastei (Bedriaga, 1879) of the Western Pontine Islands (Italy) raised to the species rank, and a brief taxonomic overview of Podarcis lizards Gabriele Senczuk1,2,*, Riccardo Castiglia2, Wolfgang Böhme3, Claudia Corti1 1 Museo di Storia Naturale dell’Università di Firenze, Sede “La Specola”, Via Romana 17, 50125 Firenze, Italy. *Corresponding author. E-mail: [email protected] 2 Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Università di Roma La Sapienza, via A. Borelli 50, 00161 Roma, Italy 3 Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D53113, Bonn, Germany Submitted on: 2019, 12th March; revised on: 2019, 29th August; accepted on: 2019, 20th September Editor: Aaron M. Bauer Abstract. In recent years, great attention has been paid to many Podarcis species for which the observed intra-specific variability often revealed species complexes still characterized by an unresolved relationship. When compared to oth- er species, P. siculus underwent fewer revisions and the number of species hidden within this taxon may have been, therefore, underestimated. However, recent studies based on genetic and morphological data highlighted a marked differentiation of the populations inhabiting the Western Pontine Archipelago. In the present work we used published genetic data (three mitochondrial and three nuclear gene fragments) from 25 Podarcis species to provide a multilocus phylogeny of the genus in order to understand the degree of differentiation of the Western Pontine populations. In addition, we analyzed new morphometric traits (scale counts) of 151 specimens from the main islands of the Pontine Archipelago. The phylogenetic analysis revealed five principal Podarcis groups with biogeographic consistency.
    [Show full text]
  • Food Habits of the Ruin Lizard, Podarcis Sicula (Rafinesque- Schmaltz, 1810) from a Coastal Dune in Central Italy (Squamata: Sauria: Lacertidae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 1994 Band/Volume: 7_1_2 Autor(en)/Author(s): Rugiero Lorenzo Artikel/Article: Food habits of the Ruin Lizard, Podarcis sicula (Rafinesque- Schmaltz, 1810) from a coastal dune in Central Italy (Squamata: Sauria: Lacertidae). 71-73 ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA 7 (1/2): 71 - 73 SHORT NOTE / KURZE MITTEILUNG Wien, 30. Juni 1994 Food habits of the Ruin Lizard, Podarcis sicula (RAFINESQUE-SCHMALTZ, 1810), from a coastal dune in Central Italy (Squamata: Sauria: Lacertidae) Die Nahrungsgewohnheiten der Ruineneidechse, Podarcis sicula (RAFINESQUE-SCHMALTZ, 1810), von einer Küstendüne in Mittelitalien (Squamata: Sauria: Lacertidae) LORENZO RUGIERO KURZFASSUNG Die Zusammensetzung der Nahrung von Ruineneidechsen, Podarcis sicula (RAFINESQUE- SCHMALTZ, 1810), einer Küstendüne in Mittelitalien wurde untersucht. Die Analyse der Kotpillen von 31 im Februar und März gefangenen Individuen (7 Weibchen, 24 Männchen) ergab: Anzahl Beutetiere pro Eidechse (x = 3,13 ± 2,71 SD); Breite der trophischen Nische nach SIMPSON (3,15); Nahrungsanteil in % Anzahl Futtertiere (Gastropoda 8, Arachnida 9, Isopoda 48, Insecta 23, andere 12; davon flugunfähige Formen 90). ABSTRACT Composition of the prey in Ruin Lizards, Podarcis sicula (RAFINESQUE-SCHMALTZ, 1810), from a coastal dune in Central Italy was studied. Analysis of the fecal pellets of 31 lizards (7 females, 24 males) captured in February and March revealed: number of prey items per lizard (x = 3,13 + 2,71 SD); trophic niche breadth according to SIMPSON (3,15); proportional number of prey items (Gastropoda 8%, Arachnida 9%, Isopoda 48%, Insecta 23%, others 12%; 90% of them all being flightless forms).
    [Show full text]
  • Extreme Feeding Behaviours in the Italian Wall Lizard, Podarcis Siculus
    Acta Herpetologica 6(1): 11-14, 2011 Extreme feeding behaviours in the Italian wall lizard, Podarcis siculus Massimo Capula1, Gaetano Aloise2 1 Museo Civico di Zoologia, Via U. Aldrovandi 18, 00197 Roma, Italy. Corresponding author. E-mail: [email protected] 2 Museo di Storia Naturale della Calabria e Orto Botanico, Università della Calabria, Via P. Bucci sn, 87036 Rende (Cosenza), Italy. E-mail: [email protected] Submitted on: 2010, 10th September; revised on: 2011, 1st February; accepted on: 2011, 2nd February. Abstract. In the present paper the occurrence of cannibalism, unusual predation on small reptiles [Hemidactylus turcicus (Reptilia, Gekkonidae)], and foraging on small mammal carrion [Suncus etruscus (Mammalia, Soricidae)] by P. siculus is reported. Keywords. Podarcis siculus, feeding behaviour, predation, Italy. Podarcis siculus (Rafinesque-Schmaltz, 1810) is a lacertid lizard occurring in Italy and in the northwestern Balkan Peninsula (Corti and Lo Cascio, 2002; Corti, 2006). This lizard is an opportunistic species characterized by broad ecological tolerance and high spreading capacity (Nevo et al., 1972; Gorman et al., 1975). Podarcis siculus can be considered as an active forager and a generalist predator (Kabisch and Engelmann, 1969; Pérez-Mellado and Corti, 1993). It preys upon a wide variety of invertebrates, mainly on arthropods (Arachni- dae, Insects larvae, Diptera, Coleoptera, Heteroptera, Hymenoptera, Orthoptera, Gastrop- oda; see e.g. Capula et al., 1993; Rugiero, 1994; Corti and Lo Cascio, 2002; Bonacci et al., 2008; Corti et al., in press), but occasionally small vertebrates can be also preyed (Sorci, 1990; Sicilia et al., 2001). Its feeding behaviour seems to be opportunistic, as indicated by the consumption of different preys in different habitats and/or geographic areas: e.g.
    [Show full text]