Evaluation Report, Manicouagan Property 2N

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation Report, Manicouagan Property 2N GM 54952 EVALUATION REPORT, MANICOUAGAN PROPERTY 2N / MINERAUX MANIC INC. EVALUATION REPORT rri MANICOUAGAN PROPERTY MANICOUAGAN AREA, QUÉBEC NTS 22N/07 Prepared by Luciano Vendittelli, B.Sc., APGGQ MRN - GÉOINFORMATION 1997 GM 54952 June 1997 Montreal, Qc Gouvernement du Québec Ministère de l'Energle et des Ressources ® Direction générale de l'Exploration géologique et minérale CARTE MINÉRALE DU QUÉBEC, CANADA MINERAL MAP OF QUEBEC, CANADA • Cr p Amazonite An Anorthosite ® Cu A Bruche Ca Calcaire m Cu,Ni (Pt,Pd) ® Chrysotile (1) Gr Granitoides p Dolomite • Fe Quagtaq Feldspath Tourbe • Fell A Graphite O LI ® Halite (2) O Mo p Magnésite Baie d'Ungava O NI p Néphéline m NI,Cu (Pt,Pd) p Olivine O Au A Phlogopite (3) O U p Pyrite, Pyrrhotite ® Zn A Pyrochiore Pyrophyllite m Quartz (4) P Talc Baie d'Hudson p Wollastonite (1) Amiante (2) Sel gemme (3) Mica (4) Silice Baie Jamps,A lie d'Anticosti Golfe du Saint-Laurent lies de la `, Madeleine NOUVEAU- I I Roches sédimentaires BRUNSWICK L—) Intrusions telsiques et intermédiaires Roches mafiques et ultramafiques ONTARIO Intrusions et gneiss chamockitiques SFjertir• ~oélke 7-1 r Complexe gneissique ÉTATS-UNIS Métasédiments I I • I 1 Roches volcaniques (laves, tuts) Sites météoritiques 4 190 290 Kilomètres Capitale provinciale Représentation simplifiée de la carte originale é l'échelle de 1: 1 500 000 Centre de diffusion 5700, 4e Avenue ouest, local A-201 FIGURE 1 Chadesbourg (Québec) G1H 6R1 Téléphone: (418) 643.4601 Od ~ Télécopieur: (418) 644-3814 Québec (,7® Compilé par L. Avramtchev PRO 93-06 Service d'Information et de soutien è l'exploration minière (Remplace le PRO 87-01) TABLE OF CONTENTS SUMMARY 4 1.0 INTRODUCTION 5 _ 2.0 PROPERTY DESCRIPTION 6 3.0 REGIONAL GEOLOGY 9 4.0 PROPERTY GEOLOGY 11 5.0 PREVIOUS WORK 14 6.0 DISCUSSION 24 7.0 CONCLUSIONS 26 -- 8.0 RECOMMENDATIONS 28 9.0 REFERENCES 32 ANNEXES CERTIFICATE OF QUALIFICATION 34 SUPPLEMENTARY INFORMATION AND CORE LOG 35 FIGURES LOCATION MAP 2 CLAIMS MAP 8 REGIONAL GEOLOGY 10 SUMMARY This report has been commissioned by Mineraux Manic Mining Inc., Montréal, Québec, as a part of an on-going investigation into the base and precious-metal mining potential of the company's Manicouagan, Québec property. The present study involves the collection and summary of the available material on the Manicouagan structure, and also some considerations on possible models of mineralization that could explain the magnetic anomaly at the center of the crater. Authors lend credit to several orogenetic models where mineralization is related to the impact of a meteorite, combined with post-impact magmatism and hydrothermal remobilization of elements. Isotopic studies indicate that the impact occurred 2.1- 2.2 hundred million years ago. I would like to thank Dr. Richard A.F. Grieve of the Geological Survey of Canada for his useful comments and Roger Moar and Marlene MacKinnon for their help in the preparation of this report. 1.0 INTRODUCTION The Manicouagan structure is located in the central part of the Province of Québec at 51°25' N and 68°45' W (Fig. 1). Access to the property is possible by the all-season highway 389 to a small air base near the Manic Five power dam; or to the Relais Gabriel on the east side of the crater followed by a fifteen minutes float plane or helicopter flight to the base camp at Lac des Isles. SOUTH-WEST MANICOUAGAN PROPERTY INTRODUCTION 5 ~ ~ ,© : ~;. ,, 2.0 PROPERTY DESCRIPTION Minéraux Manic holds 216 claims in the geographic center of Ile René-Levasseur in the Manicouagan crater, approximately 300 kilometers North of Baie-Comeau. The claims are grouped in two blocks, one of 54 contiguous claims and another block of 162 contiguous claims. Each claim covers 16 hectares for a total of 4,391 Ha. The two blocks of claims are 2,400 meters apart. Expiry Date: 04 OCT 1997 Claim Numbers: TOTAL: 216 5037519 5037520 5037521 5037522 5037523 5037524 5037525 5037526 5037527 5037528 5037529 5037530 5037531 5037532 5037533 5037534 5037535 5037536 5037537 5037538 5037539 5037540 5037541 5037542 5037543 5037544 5037545 5037546 5037547 5037548 5037549 5037550 5037551 5037552 5037553 5037554 5037555 5037556 5037557 5037558 5037559 5037560 5037561 5037562 5037563 5037564 5037565 5037566 5037567 5037568 5037569 5037570 5037571 5037572 5037573 5037574 5037575 5037576 5037577 5037578 5037579 5037580 5037581 5037582 5037583 5037584 5037585 5037586 5037587 5037588 5037589 5037590 5037591 5037592 5037593 5037594 5037595 5037596 5037597 5037598 5037599 5037600 5037601 5037602 5037603 5037604 5037605 5037606 5037607 5037608 5037609 5037610 5037611 5037612 5037613 5037614 5037615 5037616 5037617 5037618 5037619 MANICOUAGAN PROPERTY PROPERTY DESCRIPTION 6 5037620 5037621 5037622 5037623 5037624 5037625 5037626 5037627 5037628 5037629 5037630 5037631 5037632 5037633 5037634 5037635 5037636 5037637 5037638 5037639 5037640 5037641 5037642 5037643 5037644 5037645 5037646 5037647 5037648 5037649 5037650 5037651 5037652 5037653 5037654 5037655 5037656 5037657 5037658 5037659 5037660 5037661 5037662 5037663 5037664 5037665 5037666 5037667 5037668 5037669 5037670 5037671 5037672 5037673 5037674 5037675 5037676 5037677 5037678 5037679 5037680 5037681 5037682 5037683 5037684 5037685 5037686 5037687 5037688 5037689 5037690 5037691 5037692 5037693 5037694 5037695 5037696 5037697 5037698 5037699 5037700 5037701 5037702 5037703 5037704 5037705 5037706 5037707 5037708 5037709 5037710 5037711 5037712 5037713 5037714 5037715 5037716 5037717 5037718 5037719 5037720 5037721 5037722 5037723 5037724 5037725 5037726 5037727 5037728 5037729 5037730 5037731 5037732 5037733 5037734 MANICOUAGAN PROPERTY PROPERTY DESCRIPTION 7 . ,. .# r ~ ;I --,~, ~! j I „ç I 1l ~`- ~ % ~ i F ~ ~~ ~~,, } ~~~ ~+ ,~~at;~` â~. .~,~~ ~~~~~~t 5~~ ~ :41::4 ~ $~,~ s~ t' ~ I~~~~~~~~~f~ ~, 1~1~1~~~~1+ ~ ç~ I . ~T ~ — P '. ~ " r y ~ ° ~ d~,~il l Ib 1 ~s11y ~5 t ~~,~t~~Slg1, ~"t ~{ #~g I•'} 1 ..~f ~ L â,~~~ -,-*----1---~ , ~~q~ \ -n.1 ~t.5.1:4 4,- -~tr 1 p f r" ' '' ~ I !r~~ 1~;~t ~ y~~l {~l,~~Ia~â~~Ir°I~ ~bt t~. _,~..~f ~;`14~~~ ~ ~ 15'O' t4~ ~,~ :. ►' ~ ~* .~ ~s ~~-, ~1~ ~ ~.~,~ t~~p~ ti11 1 tr~~'I ~ e ltt/ ~ , 1 i~~ 1~~ fi - ;f~l•l ~~ fr ii ill i ~'~.~~~ ~ ~ ~ÿ'I~~ ,~~,~~~~,~ ~¢ ,~~~~~, ~~~,, b yj ~~.tt i7~1` ~ ~`~ -1~ 11ÿs ~~~ ' ~*~-~t6'''' t'.~~ t 5b~1~ , ~'— O,1 - ` ~1 , r°I ,s,(,, 1-i~;âT 0 ~ .~~~~a~ a~ - ► 1,11:~ ~~y~~l ~10 f# ~~f ~ '~~ ~,~~m ~~~~ ~ :I, ~rt x~ ,, t 1~J ly..,. tit" ~~r~ -~ ~ I, 1 H~T ij4~ y+ j ~ ,~ 1 1~4 I ~ . l~ If~~~~~~Ï4,I 1~~ ~ Y ~ — : `~ ~t 4to _ ~ ,~ 4 ~~~$l~~1 ~+ 9~1 i> ~ N4é I i~~~ f r 4 : ~ ~ i. 4~,AI ~1~ * 64 4t ~ I ~ 1 ~~i'1 ~~t )„~ b ~~ I )2,1 Np-- t~ ~1~b~4- L~.114k-11 ..., _.,_,.yi~ 1 ~~~y~ r ~ Lf~ y i !~ I;P ~' ,l~t 'i+~\ bS 4' A~~k4~1 6i ~3 ~ i ~~1 ~~if " - ~_ ~ t ~ ,~.,~~o_~ ,~ --,1 k: ~~ ;1~2 ~~ -~¢ I:'R '~~ 441 i ,~ s`~~ ij•i_~r~-+i~~;i 5, j 6 ~ b y~~xl ~i~f~ ~g~~ 16 ' t ~,I~,~r 0;~$6~ l' ~ ~,I¢,11 I~qht► ~ylb t~ +t 15à'~ ~~ . ~). J., ~ . tc ” ~ - ~''~ # ~f. "~ i' ~4~ ~ 'i'1.-6#~,k4:'k I. ~ ~~l ~ ',$,I.7" 4 !~ I ~+j4I ,~I, ~I ~1 4Ir a$i.6 .~,_.8 ~K~ ~ lil~M rit3~r14 1 k t_t, A 1ij t1_ ~ le.,7_,Ii..?, ),. k MINERAUX MANIC INC. ~ 4 3~1~ f ~,,y \ LANICOUGAN PROPERTY ` e le 1 b~ 40i~ r ' ~~ ~ ~ _.~ ,e CLAIMS MAP 4- ,~ i •~ N'I-S 22N/07 ~~Î ~r 4 \ PI'.. L. CIWI)I'ILGI _I I ~ï>.a.',+,~;~%:•.~.~.~i~.i.~`t:•` : 3.0 REGIONAL GEOLOGY The property is located within the Grenville structural province of the Canadian shield. On a regional scale the rocks are metamorphosed to upper amphibolite and locally granulite facies trending northeast-southwest. This structural fabric is interrupted by the Cretaceous-Tertiary meteor impact structure which created a unique suite of rocks. Physically, the impact structure is a 100 km circular basin with a central uplift of anorthositic composition (Mont de Babel) believed to be due to lithostatic rebound. The structure is evident on Landsat photographs (Fig. 2). These anorthosites are surrounded by melt rock, rimmed by a margin of latite and suevite (fall back breccia). The ring of water was formed when two narrow crescent shaped rivers, Manicouagan and Mouchalagane, and surrounding incised lands were flooded in 1974 by Hydro-Québec dam Manic 5, to form the Manicouagan Reservoir. MANICOUAGAN PROPERTY REGIONAL GEOLOGY 9 N „ +-. 1 ♦ a , /• Melt rocks' Anorthcsite Mafic gneiss Grey gneiss complex ~%~ Mixed gneiss _ , Undif f erentiated granitic gneiss' F , _ ' ~~ -Gabbro Approximate center of structure km ;p l ////'/.////////, Fie. 2. Simplified geolocic map of the Manicouagan structure. Modified from Grieve and Horan (1978). .. .,,.. ., ~. ~.=r ~. • .. ... ~.~ .. ::~~.... ..,.~ ~.. .MAINE 4.0 PROPERTY GEOLOGY The circular structure is considered to be the product of an hypervelocity-meteorite impact with the Earth (astrobleme). Outcrop is controlled by topography. The main lithology of the Manicouagan structure is a flat-lying sheet of clast bearing impact melt (Manicouagan melt rock) some 100 to 200 meters thick and 55 kilometers in diameter which is found within the central part of the structure (Fig. 3). The original thickness of this sheet may have been up to 400 meters. Plagioclase, sanidine and augite are the main minerals present in the matrix of the melted rocks while hypersthene, quartz, iron oxides and smectite are minor components. The Manicouagan melt rocks have been petrologically subdivided by Floran et al. (1978) into a lower, middle and upper unit. 4.1 MANICOUAGAN MELT ROCKS The lower unit has a pseudoporphyritic texture in which abundant clasts of plagioclase, quartz and anorthosite reside in a very fine-grained matrix. At the base this unit is in unconformable contact with an undulating basement of Precambrian Grenville rocks. Here clasts/blocks up to 50 meters in size are noted.
Recommended publications
  • Multiple Fluvial Reworking of Impact Ejecta—A Case Study from the Ries Crater, Southern Germany
    Multiple fluvial reworking of impact ejecta--A case study from the Ries crater, southern Germany Item Type Article; text Authors Buchner, E.; Schmieder, M. Citation Buchner, E., & Schmieder, M. (2009). Multiple fluvial reworking of impact ejecta—A case study from the Ries crater, southern Germany. Meteoritics & Planetary Science, 44(7), 1051-1060. DOI 10.1111/j.1945-5100.2009.tb00787.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 06/10/2021 20:56:07 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656594 Meteoritics & Planetary Science 44, Nr 7, 1051–1060 (2009) Abstract available online at http://meteoritics.org Multiple fluvial reworking of impact ejecta—A case study from the Ries crater, southern Germany Elmar BUCHNER* and Martin SCHMIEDER Institut für Planetologie, Universität Stuttgart, 70174 Stuttgart, Germany *Corresponding author. E-mail: [email protected] (Received 21 July 2008; revision accepted 12 May 2009) Abstract–Impact ejecta eroded and transported by gravity flows, tsunamis, or glaciers have been reported from a number of impact structures on Earth. Impact ejecta reworked by fluvial processes, however, are sparsely mentioned in the literature. This suggests that shocked mineral grains and impact glasses are unstable when eroded and transported in a fluvial system. As a case study, we here present a report of impact ejecta affected by multiple fluvial reworking including rounded quartz grains with planar deformation features and diaplectic quartz and feldspar glass in pebbles of fluvial sandstones from the “Monheimer Höhensande” ~10 km east of the Ries crater in southern Germany.
    [Show full text]
  • Studie Van De Chronologie Van Genesis En Exodus
    Chronologie van Genesis en Exodus 5285 v.Chr. Schepping 5285-4335 Adam 5055-4143 Set (Seth) 4850-3945 Enos 4660-3750 Kenan (Kainan) 4490-3595 Mahalalel (Mahalaleël) 4325-3363 Jered 4163-3798 Henoch 3998-3029 Metuselach (Methusalem) 3811-3058 Lamech 3623-2673 Noach 3123 Geboorte van Jafet 3121-2521 Sem 3028-3024 Bouw van de ark 3023 v.Chr. Zondvloed 3021-2456 Arpachsad 2886-2426 Kenan (Kainan) 2756-2296 Selach (Selah) 2673 Verhuizing naar de vlakte van Sinear 2626-2222 Eber (Heber) 2492 v.Chr. Spraakverwarring 2492-2153 Peleg 2465 Bewoning van het land Kanaän in een grot bij Tel Aviv 2362-2123 Reü (Rehu) 2230-2000 Serug 2201 Stad met 2.000 à 3.000 inwoners bij Jeruzalem 2100-1952 Nachor (Nahor) 2021-1876 Terach 1951 Geboorte van Abram 1941 Geboorte van Saraï 1876 v.Chr. Abram en Saraï naar Kanaän 1851 Geboorte van Isaak 1814 Overlijden van Sara 1811 Huwelijk van Isaak en Rebekka 1791 Geboorte van Esau en Jakob 1776 Overlijden van Abraham 1751 Huwelijk van Esau met Kanaänitische vrouwen 1714 Jakob naar Haran 1704 Geboorte van Levi 1700 Geboorte van Jozef 1694 Jakob terug in Kanaän 1683 Jozef naar Egypte verkocht 1671 Overlijden van Isaak 1670 Jozef onderkoning van Egypte 1669-1663 De zeven jaren van overvloed 1662-1656 De zeven jaren van hongersnood 1661 v.Chr. Jakob met zijn elf zonen naar Egypte 1644 Overlijden van Jakob 1590 Overlijden van Jozef 1567 Overlijden van Levi 1526 Geboorte van Mozes 1446 v.Chr. Uittocht uit Egypte 1406 Intocht in Kanaän Afkortingen LXX = Septuaginta LXX A = Septuaginta volgens de Codex Alexandrinus LXX B = Septuaginta volgens de Codex Vaticanus MT = Masoretische Tekst SamP = Samaritaanse Pentateuch Gebed Geest van God, leer mij te gaan over de golven, in vertrouwen U te volgen, te gaan waar U mij heen leidt.
    [Show full text]
  • Logan Medallist 4. Large-Scale Impact and Earth History Richard A.F
    Document generated on 09/28/2021 12:10 p.m. Geoscience Canada Journal of the Geological Association of Canada Journal de l’Association Géologique du Canada Logan Medallist 4. Large-Scale Impact and Earth History Richard A.F. Grieve Volume 44, Number 1, 2017 Article abstract The current record of large-scale impact on Earth consists of close to 200 URI: https://id.erudit.org/iderudit/1039604ar impact structures and some 30 impact events recorded in the stratigraphic record, only some of which are related to known structures. It is a preservation See table of contents sample of a much larger production population, with the impact rate on Earth being higher than that of the moon. This is due to the Earth's larger physical and gravitational cross-sections, with respect to asteroidal and cometary Publisher(s) bodies entering the inner solar system. While terrestrial impact structures have been studied as the only source of ground-truth data on impact as a The Geological Association of Canada planetary process, it is becoming increasingly acknowledged that large-scale impact has had its effects on the geologic history of the Earth, itself. As ISSN extremely high energy events, impacts redistribute, disrupt and reprocess target lithologies, resulting in topographic, structural and thermal anomalies in 0315-0941 (print) the upper crust. This has resulted in many impact structures being the source 1911-4850 (digital) of natural resources, including some world-class examples, such as gold and uranium at Vredefort, South Africa, Ni–Cu–PGE sulphides at Sudbury, Canada Explore this journal and hydrocarbons from the Campeche Bank, Mexico.
    [Show full text]
  • Manicouagan: Asteroid Circuit by Kayak Rob Rutten
    Manicouagan: asteroid circuit by kayak Rob Rutten Photographs: https://webspace.science.uu.nl/˜rutte101/travel-albums/manicouagan/album.html Website: https://webspace.science.uu.nl/˜rutte101/Kayak_Manicouagan.html During August 2006 my wife Rietje and I fulfilled an old dream: to kayak the annular Manicouagan impact crater lake in Quebec. We paddled the full 200-km circuit, a pure wilderness voyage in magnificent scenery. Manicouagan Reservoir: the lake is the combined product of one of the largest known impacts on Earth, the subsequent ice ages, and a gigantic retention dam. It is shaped as a 10 km wide annulus around a nearly circular island of 56 km diameter. Both the lake and the island measure 2000 km2. Together, they appear as the beautiful “Eye of Quebec” on photographs from space. It is one of the most striking structures on the face of the Earth and the most obvious impact scar. Impact: a 5-km bolide (asteroid or a yet larger comet) hit this area, then part of Panagaea, 214 million years ago. It caused a fireball as far as present-day New York, a melting pot boiling the local bedrock over 50 km extent and 9 km depth, and a crater wall of about 100 km diameter. This event occurred during the Mesozoical Triassic, a warm era in which therapsids including pre-mammals throve, halfway between the previous and present cold episodes. Surprisingly, the massive extinction at the Triassic-Jurassic transition, starting the age of the dinosaurs and as bad as the K-T extinction ending it, is dated 13 My after the impact (the even worse Permian-Triassic 1 “great dying” event took place 37 My before it).
    [Show full text]
  • Triassic–Jurassic Extinction Event
    Triassic–Jurassic extinction event The Triassic–Jurassic extinction event marks the boundary between the Triassic and Jurassic % Marine extinction intensity during the Phanerozoic periods, 201.3 million years ago,[1] and is one of the major extinction events of the Phanerozoic P–Tr eon, profoundly affecting life on land and in the oceans. In the seas, a whole class (conodonts)[2] Cap K–Pg and 23–34% of marine genera disappeared.[3][4] O–S Tr–J Late D On land, all archosaurs other than (H) crocodylomorphs (Sphenosuchia and Crocodyliformes) and Avemetatarsalia (pterosaurs and dinosaurs), some remaining therapsids, and many of the large amphibians Millions of years ago became extinct. Statistical analysis of marine losses at this time suggests that the decrease in The blue graph shows the apparent percentage (not the absolute number) of marine animal genera becoming diversity was caused more by a decrease in extinct during any given time interval. It does not [5] speciation than by an increase in extinctions. represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised End- Capitanian extinction event are clickable hyperlinks; see Contents Extinction event for more details. (source and image info) Effects Marine invertebrates Marine vertebrates Terrestrial vertebrates Current theories Gradual processes Extraterrestrial impact Volcanic eruptions References Literature External links Effects This event vacated terrestrial ecological niches, allowing the dinosaurs to assume the dominant roles in the Jurassic period. This event happened in less than 10,000 years and occurred just before Pangaea started to break apart.
    [Show full text]
  • The Geological Record of Meteorite Impacts
    THE GEOLOGICAL RECORD OF METEORITE IMPACTS Gordon R. Osinski Canadian Space Agency, 6767 Route de l'Aeroport, St-Hubert, QC J3Y 8Y9 Canada, Email: [email protected] ABSTRACT 2. FORMATION OF METEORITE IMPACT STRUCTURES Meteorite impact structures are found on all planetary bodies in the Solar System with a solid The formation of hypervelocity impact craters has surface. On the Moon, Mercury, and much of Mars, been divided, somewhat arbitrarily, into three main impact craters are the dominant landform. On Earth, stages [3] (Fig. 2): (1) contact and compression, (2) 174 impact sites have been recognized, with several excavation, and (3) modification. A further stage of more new craters being discovered each year. The “hydrothermal and chemical alteration” is also terrestrial impact cratering record is critical for our considered as a separate, final stage in the cratering understanding of impacts as it currently provides the process (e.g., [4]), and is also described below. only ground-truth data on which to base interpretations of the cratering record of other planets and moons. In this contribution, I summarize the processes and products of impact cratering and provide and an up-to-date assessment of the geological record of meteorite impacts. 1. INTRODUCTION It is now widely recognized that impact cratering is a ubiquitous geological process that affects all planetary objects with a solid surface (e.g., [1]). One only has to look up on a clear night to see that impact structures are the dominant landform on the Moon. The same can be said of all the rocky and icy bodies in the solar system that have retained portions of their earliest crust.
    [Show full text]
  • NURAZLIN ABDULLAH.Pdf
    KAJIAN TERHADAP MINERAL POLIMORF SEBAGAI BUKTI IMPAK METEORIT DAN KAITANNYA DENGAN BAHAN ASAS INDUSTRI LITIK DI BUKIT BUNUH, LENGGONG, PERAK, MALAYSIA NURAZLIN BT ABDULLAH UNIVERSITI SAINS MALAYSIA 2017 KAJIAN TERHADAP MINERAL POLIMORF SEBAGAI BUKTI IMPAK METEORIT DAN KAITANNYA DENGAN BAHAN ASAS INDUSTRI LITIK DI BUKIT BUNUH, LENGGONG, PERAK, MALAYSIA. oleh NURAZLIN BT ABDULLAH Tesis yang diserahkan untuk memenuhi keperluan bagi Ijazah Sarjana Sastera JULAI 2017 PENGHARGAAN Syukur Alhamdulillah dengan limpah rahmat dan kesyukuran yang tidak terhingga ke hadrat Ilahi kerana dengan izin dan kekuasaanNya dapat saya menyempurnakan penulisan tesis ini. Setinggi-tinggi penghargaan dan jutaan terima kasih dirakamkan kepada Prof. Dato’ Dr. Mokhtar Saidin, Pengarah Pusat Penyelidikan Arkeologi Global (PPAG), Universiti Sains Malaysia dan selaku penyelia saya atas segala nasihat, dorongan, bantuan dan keprihatinan semasa menyempurnakan tesis ini. Pada kesempatan ini juga saya ingin merakamkan ribuan terima kasih kepada Prof. Hamzah Mohamad yang sedia memberi bimbingan dan tunjuk ajar semasa menganalisis data kajian untuk tesis ini. Sanjungan budi juga kepada semua pensyarah-pensyarah, pegawai dan staf serta rakan-rakan saya di Pusat Peyelidikan Arkeologi Global atas sokongan dan dorongan dalam menyiapkan tesis ini. Kajian ini telah disokong daripada segi kewangan terutamanya oleh Geran Penyelidikan Universiti, USM dan biasiswa Mybrain oleh Kementerian Pengajian Tinggi yang telah banyak memudahkan kajian ini. Ucapan terima kasih juga ditujukan kepada Jabatan Warisan Malaysia atas keizinan bagi memasuki kawasan kajian Bukit Bunuh. Pada masa yang sama, penghargaan dan terima kasih yang tidak terhingga ditujukan kepada keluarga tercinta. Akhir sekali, saya ingin tujukan ucapan terima kasih kepada semua yang terlibat secara langsung atau tidak langsung dalam menghasilkan disertasi ini dan diharapkan disertasi ini dapat memberikan maklumat yang berguna.
    [Show full text]
  • A Tale of Clusters: No Resolvable Periodicity in the Terrestrial Impact Cratering Record
    Meier & Holm-Alwmark, 2017 – A tale of clusters (accepted for publication in MNRAS) A tale of clusters: No resolvable periodicity in the terrestrial impact cratering record Matthias M. M. Meier1* and Sanna Holm-Alwmark2 1ETH Zurich, Institute of Geochemistry & Petrology, Clausiusstrasse 25, 8092 Zurich, Switzerland 2Department of Geology, Lund University, S olvegatan 12, 22362 Lund, Sweden * E-Mail: [email protected] Accepted 2017 January 23. Received 2017 January 18; in original form 2016 July 09. This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available at: dx.doi.org/10.1093/mnras/stx211 ABSTRACT Rampino & Caldeira (2015) carry out a circular spectral analysis (CSA) of the ter- restrial impact cratering record over the past 260 million years (Ma), and suggest a ~26 Ma periodicity of impact events. For some of the impacts in that analysis, new accurate and high-precision (“robust”; 2SE<2%) 40Ar-39Ar ages have recently been published, resulting in significant age shifts. In a CSA of the updated impact age list, the periodicity is strongly reduced. In a CSA of a list containing only im- pacts with robust ages, we find no significant periodicity for the last 500 Ma. We show that if we relax the assumption of a fully periodic impact record, assuming it to be a mix of a periodic and a random component instead, we should have found a periodic component if it contributes more than ~80% of the impacts in the last 260 Ma.
    [Show full text]
  • LIST of ASTROBLEMS/IMPATC STRUCTURES IDENTIFIED on EARTH SURFACE Third Edition of the Geological Map of the World, Sheet 1 Physi
    LIST OF ASTROBLEMS/IMPATC STRUCTURES IDENTIFIED ON EARTH SURFACE Third edition of the Geological Map of the World, sheet 1 Physiography, volcanoes, astroblemes, at 1:50 000 000 - Compilator: Philippe Bouysse, 2006 Sources: 1. (Roman type) Site: <http://www.unb.ca/passc/ImpactDatabase>, April 2006 By John Spray & Jason Hines, Planetary And Space Science Centre (PASSC) University of New Brunswick, Canada (174 structures: number 1 to 174), 2. (Italics) Site: <http://www.somerikko.net/old/geo/imp/impacts.htm>, April 2006 By Jarmo Moilanen (Finland): Impact Structures of the World (since Nov. 1996) (21 structures: a to u) 3. (Bold) In addition: Velingara (Master, Diallo, Kande, Wade, 1999, South Africa/Senegal), Iturralde (T. J. Killeen, Missouri Botanical Garden, Saint Louis, 1995-2006) astroblems and Gilf Kebir impact crater field (Paillou et al., C. R. Géoscience, Paris, vol. 335, 2003). (3 structures) 4. (In red) Tunguska airblast TOTAL: 198 IMPACT STRUCTURES Nota: * = approximate central position DIAMETER N° CRATER NAME LOCATION LATITUDE LONGITUDE Age (Ma)* EXPOSED DRILLED (km) South Australia, 1 Acraman Australia S 32° 1' E 135° 27' 90 ~ 590 Y N a Alamo USA N 37°30' W 116°30' 190 367 - - 2 Ames Oklahoma, U.S.A. N 36° 15' W 98° 12' 16 470 ± 30 N Y 3 Amelia Creek Australia S 20° 55' E 134 ° 50' ~20 1640 - 600 Y N 4 Amguid Algeria N 26° 5' E 4° 23' 0.45 < 0.1 Y N 5 Aorounga Chad, Africa N 19° 6' E 19° 15' 12.6 < 345 Y N 6 Aouelloul Mauritania N 20° 15' W 12° 41' 0.39 3.0 ± 0.3 Y N 7 Araguainha Brazil S 16° 47' W 52° 59' 40 244.40 ± 3.25 Y N 8 Arkenu 1 Libya N 22° 4' E 23° 45' 6.8 < 140 Y N 9 Arkenu 2 Libya N 22° 4' E 23° 45' 10,3 < 140 Y N 10 Avak Alaska, U.S.A.
    [Show full text]
  • Impact Crater Data in .Pdf
    StructureName Diameter(km) Age(Ma)* Acraman 90 590 AmeliaCreek 20 1640 Ames 16 470 Amguid 0.45 0.1 Aorounga 12.6 345 Aouelloul 0.39 3.0 Araguainha 40 254.7 Avak 12 95 B.P.Structure 2 120 Barringer 1.19 0.049 Beaverhead 60 600 Beyenchime- 8 40 Salaatin Bigach 8 5 Boltysh 24 65.17 Bosumtwi 10.5 1.07 Boxhole 0.17 0.0054 Brent 3.8 453 Calvin 8.5 450 CampoDelCielo 0.05 0.004 Caracas 0.0135 0.000007 Carswell 39 115 Charlevoix 54 342 ChesapeakeBay 40 35.3 Chicxulub 150 64.98 Chiyli 5.5 46 Chukcha 6 70 ClearwaterEas 26 460 t ClearwaterWes 36 290 t CloudCreek 7 190 !1 StructureName Diameter(km) Age(Ma)* Colônia 3.6 5 ConnollyBasin 9 60 Couture 8 430 Crawford 8.5 35 CrookedCreek 7 320 Dalgaranga 0.024 0.27 Decaturville 6 300 DeepBay 13 99 Dellen 19 89.0 DesPlaines 8 280 Dhala 11 1700 Dobele 4.5 290 EagleButte 10 65 El'gygytgyn 18 3.5 Elbow 8 395 Flaxman 10 35 FlynnCreek 3.8 360 Foelsche 6 545 Gardnos 5 500 Glasford 4 430 Glikson 19 508 GloverBluff 8 500 GoatPaddock 5.1 50 GossesBluff 22 142.5 Gow 5 250 Goyder 3 1400 Granby 3 470 Gusev 3 49.0 Gweni-Fada 14 345 Haughton 23 39 !2 StructureName Diameter(km) Age(Ma)* Haviland 0.015 0.001 Henbury 0.157 0.0042 Holleford 2.35 550 IleRouleau 4 300 Ilumetsä 0.08 0.0066 Ilyinets 8.5 378 Iso-Naakkima 3 1000 Jänisjärvi 14 700 JebelWaqfAsSu 5.5 56 wwan Kaalijärv 0.11 0.004 Kalkkop 0.64 0.250 Kaluga 15 380 Kamensk 25 49.0 Kamil 0.045 ? Kara 65 70.3 Kara-Kul 52 5 Kärdla 4 455 Karikkoselkä 1.5 230 Karla 10 5 KellyWest 10 550 Kentland 13 97 Keurusselkä 30 1800 Kgagodi 3.5 180 Kursk 6 250 LaMoinerie 8 400 Lappajärvi
    [Show full text]
  • Assessing the Causes of the End-Triassic Biotic Crisis, a Review
    Versão online: http://www.lneg.pt/iedt/unidades/16/paginas/26/30/185 Comunicações Geológicas (2014) 101, Especial III, 1473-1476 IX CNG/2º CoGePLiP, Porto 2014 ISSN: 0873-948X; e-ISSN: 1647-581X Assessing the causes of the End-Triassic biotic crisis, a review Avaliando as causas da crise biótica fini-triássica, uma revisão N. Youbi1,2*, A. Marzoli3, H. Bertrand4, E. Font5, J. Dal Corso3, L. Martins2, J. Madeira5, J. Mata2, G. Bellieni3, S. Callegaro3, M. Kh. Bensalah1,2, M. Bahir1 Artigo Curto . Short Article © 2014 LNEG – Laboratório Nacional de Geologia e Energia IP Abstract: The end-Triassic biotic crisis marks one of the major mass 4Université Lyon 1 et Ecole Normale Supérieure de Lyon, Laboratoire de extinction events in the history of life. Several explanations for this Géologie de Lyon, UMR CNRS 5276, Lyon Cedex 7, France event have been suggested, but all present unanswered challenges: (i) 5Instituto Dom Luiz (LA), Universidade de Lisboa, Faculdade de Ciências, sea-level fluctuations during the Late Triassic, does not explain the Departamento de Geologia, Lisboa, Portugal. suddenness of the extinctions in the marine realm; (ii) no impact *Corresponding author / Autor correspondente: [email protected] crater has been dated to coincide with the Triassic–Jurassic boundary (the impact responsible for the annular Manicouagan Reservoir occurred about 12 million years before the extinction event and the Rochechouart impact predates the Tr-J boundary by 1-2 Ma); (iii) 1. Introduction massive volcanic eruptions, specifically the flood basalts of the Central Atlantic Magmatic Province (CAMP), would have released The end-Triassic biotic crisis is one of the so called “big carbon dioxide or sulfur dioxide and aerosols, which would cause five” Phanerozoic mass extinctions (e.g., Raup & either intense global warming (from the former) or cooling (from the Sepkoski, 1982), when ca.
    [Show full text]
  • LARGE METEORITE IMPACTS and Planetary EVOLUTION September 1-3,1997 Sudbury, Ontario CONFERENCE on LARGE METEORITE IMPACTS and PLANETARY EVOLUTION (SUDBURY1997)
    NASA/CR- - 207991 BURY 1997 LARGE METEORITE IMPACTS AND PlANETARY EVOLUTION September 1-3,1997 Sudbury, Ontario CONFERENCE ON LARGE METEORITE IMPACTS AND PLANETARY EVOLUTION (SUDBURY1997) Hosted by Ontario Geological Survey Sponsored by Inco Limited Falconbridge Limited The Bamnger Crater Company Geological Survey of Canada Ontario Ministry of Northern Development and Mines Quebec Ministere des Ressources naturelles Lunar and Planetary Institute Scientific Organizing Committee A. Deutsch University ofMunster, Germany B. O. Dressier, Chair Lunar and Planetary Institute, Houston, Texas B. M. French Smithsonian Institution, Washington, DC R. A. F. Grieve Geological Survey of Canada, Ottawa, Ontario G. W. Johns Ontario Geological Survey, Sudbury, Ontario V. L. Sharpton Lunar and Planetary Institute, Houston, Texas LPI Contribution No. 922 Compiled in 1997 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes, however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (1997) Title of abstract. In Conference on Large Meteorite Impacts and Planetary Evolution (Sudbury 1997), p. XX, LPI Contribution No. 922, Lunar and Planetary Institute, Houston. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Mail order requestors will be invoiced for the cost of shipping and handling. LPI Contribution No 922 ill Contents BP and Oasis Impact Structures, Libya, and Their Relation to Libyan Desert Glass: Petrography, Geochemistry, and Geochronology B.
    [Show full text]