Analysis of Extratropical Transition of Cyclones in the North Atlantic Ocean Using Geostationary Satellite Imagery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Portugal – an Atlantic Extreme Weather Lab
Portugal – an Atlantic extreme weather lab Nuno Moreira ([email protected]) 6th HIGH-LEVEL INDUSTRY-SCIENCE-GOVERNMENT DIALOGUE ON ATLANTIC INTERACTIONS ALL-ATLANTIC SUMMIT ON INNOVATION FOR SUSTAINABLE MARINE DEVELOPMENT AND THE BLUE ECONOMY: FOSTERING ECONOMIC RECOVERY IN A POST-PANDEMIC WORLD 7th October 2020 Portugal in the track of extreme extra-tropical storms Spatial distribution of positions where rapid cyclogenesis reach their minimum central pressure ECMWF ERA 40 (1958-2000) Events per DJFM season: Source: Trigo, I., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dynamics volume 26, pages127–143. Portugal in the track of extreme extra-tropical storms Spatial distribution of positions where rapid cyclogenesis reach their minimum central pressure Azores and mainland Portugal On average: 1 rapid cyclogenesis every 1 or 2 wet seasons ECMWF ERA 40 (1958-2000) Events per DJFM season: Source: Trigo, I., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dynamics volume 26, pages127–143. … affected by sting jets of extra-tropical storms… Example of a rapid cyclogenesis with a sting jet over mainland 00:00 UTC, 23 Dec 2009 Source: Pinto, P. and Belo-Pereira, M., 2020: Damaging Convective and Non-Convective Winds in Southwestern Iberia during Windstorm Xola. Atmosphere, 11(7), 692. … affected by sting jets of extra-tropical storms… Example of a rapid cyclogenesis with a sting jet over mainland Maximum wind gusts: Official station 140 km/h Private station 00:00 UTC, 23 Dec 2009 203 km/h (in the most affected area) Source: Pinto, P. -
Employing Small Unmanned Aircraft Systems to Improve Situational Awareness and Operational Physical Routines
Proposal Title: Employing Small Unmanned Aircraft Systems to Improve Situational Awareness and Operational Physical Routines Used to Predict Tropical Cyclone Structure and Intensity A Proposal Submitted to NOAA Funding Opportunity: NOAA-OAR-WPO-2021-2006592 Competition Area: Observations Principal Investigator: Dr. Jun A. Zhang University of Miami 4600 Rickenbacker Causeway, Miami, FL 33149 (305) 361-4557 [email protected] Co-Principal Investigator Dr. Joseph J. Cione Hurricane Research Division, AOML/NOAA 4301 Rickenbacker Causeway, Miami, FL 33149 (305) 213-0886 [email protected] Institutional Representative Eva Leach Sponsored Programs Specialist, Research Administration Rosenstiel School of Marine and Atmospheric Science, University of Miami 4600 Rickenbacker Causeway, Miami, FL 33149 (305) 421-4635 [email protected] Proposed period: 2 years (August 1, 2021 – July 31, 2023) Requested budget: 1st Year: $299,182; 2nd Year: $299,173; Total budget: $598,355 Year 1 Year 2 Total U. Miami $288,415 $288,176 $576,591 (including the (including the (including the indirect cost indirect cost of indirect cost of of $59,514) $59,465) $118,979) HRD/AOML/NOAA $10,767 $10,997 $21,764 (field travel) (field travel) (field travel) Total Project Cost $299,182 $299,173 $598,355 1 Proposal Title: Employing Small Unmanned Aircraft Systems to Improve Situational Awareness and Operational Physical Routines Used to Predict Tropical Cyclone Structure and Intensity A Proposal Submitted to NOAA Funding Opportunity: NOAA-OAR-WPO-2021-2006592 Competition Area: Observations Principal Investigator: Dr. Jun A. Zhang, University of Miami Co-Principal Investigator: Dr. Joseph J. Cione, HRD/AOML/NOAA NOAA Collaborators: Dr. -
Verification of National Hurricane Center Forecasts of Extratropical Transition
10C.2 Verification of National Hurricane Center Forecasts of Extratropical Transition John L. Beven II NOAA/NWS/NCEP/National Hurricane Center I. Introduction become TCs in a process known as tropical transition (Davis and Bosart 2004). More A great variety of cyclonic circulations commonly, TCs leaving the tropical environment exist in the atmosphere, each with its characteristic interact with baroclinic systems in the westerlies. structure and driving energy (Beven 1997, Figure This causes the TCs to become frontal or 1). Of particular interest is the tropical cyclone extratropical cyclones with the driving energy (TC), which has a warm-core non-frontal thermal derived from air mass contrast and the strongest structure generated by diabatic heat release from winds typically more than 100 km from the center, convective activity near the center. The strongest accompanied by significantly changed winds and heaviest rains in a tropical cyclone are precipitation patterns. This process is known as typically within 100 km of the center with extratropical transition (ET). maximum sustained winds sometimes as high as 90 ms-1. There are several studies of ET which highlight the many ways a TC can interact with a baroclinic environment and the variety of resulting structures. These include the Thorncroft and Jones (2000) study of Hurricane Iris which became a powerful baroclinic cyclone with a warm-core structure, the Abraham et al. (2004) study of Hurricane Michael, and the Beven (2002) study of interrupted and failed transitions. These studies show the complexity of the process, which can pose a significant challenge to TC forecasters trying to predict ET. -
Ex-Hurricane Ophelia 16 October 2017
Ex-Hurricane Ophelia 16 October 2017 On 16 October 2017 ex-hurricane Ophelia brought very strong winds to western parts of the UK and Ireland. This date fell on the exact 30th anniversary of the Great Storm of 16 October 1987. Ex-hurricane Ophelia (named by the US National Hurricane Center) was the second storm of the 2017-2018 winter season, following Storm Aileen on 12 to 13 September. The strongest winds were around Irish Sea coasts, particularly west Wales, with gusts of 60 to 70 Kt or higher in exposed coastal locations. Impacts The most severe impacts were across the Republic of Ireland, where three people died from falling trees (still mostly in full leaf at this time of year). There was also significant disruption across western parts of the UK, with power cuts affecting thousands of homes and businesses in Wales and Northern Ireland, and damage reported to a stadium roof in Barrow, Cumbria. Flights from Manchester and Edinburgh to the Republic of Ireland and Northern Ireland were cancelled, and in Wales some roads and railway lines were closed. Ferry services between Wales and Ireland were also disrupted. Storm Ophelia brought heavy rain and very mild temperatures caused by a southerly airflow drawing air from the Iberian Peninsula. Weather data Ex-hurricane Ophelia moved on a northerly track to the west of Spain and then north along the west coast of Ireland, before sweeping north-eastwards across Scotland. The sequence of analysis charts from 12 UTC 15 to 12 UTC 17 October shows Ophelia approaching and tracking across Ireland and Scotland. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Downloaded 10/01/21 04:51 PM UTC JULY 2003 ANNUAL SUMMARY 1455
1454 MONTHLY WEATHER REVIEW VOLUME 131 ANNUAL SUMMARY Atlantic Hurricane Season of 2001 JOHN L. BEVEN II, STACY R. STEWART,MILES B. LAWRENCE,LIXION A. AVILA,JAMES L. FRANKLIN, AND RICHARD J. PASCH NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 19 July 2002, in ®nal form 9 December 2002) ABSTRACT Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 258N. The overall ``lateness'' of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean. 1. Overview of the 2001 season cycleÐsimultaneously exhibiting characteristics of both tropical and extratropical cyclones (Hebert 1973). The National Hurricane Center (NHC) tracked 15 No hurricanes struck the United States during 2001. tropical cyclones (TCs) that achieved tropical storm or The season thus joins the 2000, 1990, and 1951 seasons hurricane strength in the Atlantic basin during 2001 as years in which eight or more hurricanes occurred (Table 1). Nine of these became hurricanes and four without a U.S. -
Nasa and Noaa Flew Unmanned Aircraft Into Hurricane Noel
NASA News National Aeronautics and Space Administration Wallops Flight Facility Wallops Island, VA 23337-5099 _______________________________________________________________________________________ For Release: November 5, 2007 Rebecca Powell/Elizabeth Flowers NASA Wallops Flight Facility, Wallops Island, Va. (Phone: 757-824-1139/1584) Erica Rule/Jana Goldman NOAA, Atlantic Oceanographic and Meteorological Laboratory, Miami, Fla. (Phone: 305-361-4541/301-734-1123)) RELEASE NO: 07 - 09 NASA AND NOAA FLEW UNMANNED AIRCRAFT INTO HURRICANE NOEL NASA and the National Oceanic Atmospheric Administration (NOAA) opened a new chapter in the world of hurricane observation in making the first unmanned flight into Hurricane Noel. An unmanned aerial system, or UAS, flew into the eye wall of the hurricane at altitudes as low as 300 feet. Using the small, remotely piloted aircraft, scientists were able to make detailed observations of areas of hurricanes that are too dangerous for manned aircraft closing an important gap in obtaining real-time near-surface meteorological and oceanographic data. “NASA is pleased to partner with NOAA in achieving this long-time goal of boundary layer observations into an active hurricane.” said Randy Albertson, deputy manager of the Suborbital Science Program for the Science Mission Directorate at NASA Headquarters, Washington. “The Aerosonde Hurricane Boundary Layer Mission, combined with data from recent NASA and NOAA field missions using conventional aircraft and satellites, will provide a valuable new set of observations for air-sea interaction and tropical cyclone research.” The UAS was launched from NASA’s Wallops Flight Facility, Wallops Island, Va., at 2:08 p.m.(EDT), Friday, November 2. Detailed observations of the near-surface hurricane environment have been elusive because of the severe safety risks associated with low level manned flight missions. -
1 Tropical Cyclone Report Hurricane Gordon
Tropical Cyclone Report Hurricane Gordon (AL082012) 15-20 August 2012 Lixion A. Avila National Hurricane Center 16 January 2013 Gordon reached category 2 status (on the Saffir-Simpson Hurricane Wind Scale) in the north Atlantic. It weakened to a category 1 hurricane before it moved over Santa Maria Island in the Azores. a. Synoptic History Gordon developed from a tropical wave that moved off the west coast of Africa on 9 August. The wave was accompanied by a large area of disturbed weather, and surface observations from western Africa and the Cape Verde Islands indicated significant 24-h surface pressure falls ( 3 to 5 mb) as the wave moved nearby. However, the convection dissipated once the wave moved over cooler waters west of the Cape Verde Islands. Low-cloud tracers indicated that a circulation separated from the wave and moved west-northwestward and northwestward for a few days while the parent wave continued westward across the tropical Atlantic. The circulation reached an area of warmer waters, and organized convection developed. It is estimated that a tropical depression formed at 1200 UTC 15 August about 600 n mi southeast of Bermuda. The “best track” chart of the tropical cyclone’s path is given in Fig. 1, with the wind and pressure histories shown in Figs. 2 and 3, respectively. The best track positions and intensities are listed in Table 11. The depression moved northwestward and then northward and became a tropical storm at 0000 UTC 16 August. Gordon reached the base of the mid-latitude westerlies and made a sharp turn toward the northeast and then east with some additional increase in forward speed. -
Natural Disasters in Latin America and the Caribbean
NATURAL DISASTERS IN LATIN AMERICA AND THE CARIBBEAN 2000 - 2019 1 Latin America and the Caribbean (LAC) is the second most disaster-prone region in the world 152 million affected by 1,205 disasters (2000-2019)* Floods are the most common disaster in the region. Brazil ranks among the 15 548 On 12 occasions since 2000, floods in the region have caused more than FLOODS S1 in total damages. An average of 17 23 C 5 (2000-2019). The 2017 hurricane season is the thir ecord in terms of number of disasters and countries affected as well as the magnitude of damage. 330 In 2019, Hurricane Dorian became the str A on STORMS record to directly impact a landmass. 25 per cent of earthquakes magnitude 8.0 or higher hav S America Since 2000, there have been 20 -70 thquakes 75 in the region The 2010 Haiti earthquake ranks among the top 10 EARTHQUAKES earthquak ory. Drought is the disaster which affects the highest number of people in the region. Crop yield reductions of 50-75 per cent in central and eastern Guatemala, southern Honduras, eastern El Salvador and parts of Nicaragua. 74 In these countries (known as the Dry Corridor), 8 10 in the DROUGHTS communities most affected by drought resort to crisis coping mechanisms. 66 50 38 24 EXTREME VOLCANIC LANDSLIDES TEMPERATURE EVENTS WILDFIRES * All data on number of occurrences of natural disasters, people affected, injuries and total damages are from CRED ME-DAT, unless otherwise specified. 2 Cyclical Nature of Disasters Although many hazards are cyclical in nature, the hazards most likely to trigger a major humanitarian response in the region are sudden onset hazards such as earthquakes, hurricanes and flash floods. -
1- Tropical Cyclone Report Hurricane Noel 4
Tropical Cyclone Report Hurricane Noel 4-6 November 2001 James L. Franklin National Hurricane Center 14 November 2001 Hurricane Noel was a short-lived hurricane of subtropical origin. a. Synoptic History Noel developed from a non-tropical occluded low that gradually lost its frontal structure. The first appearance of the frontal low in surface synoptic maps was at 0000 UTC 2 November, when a 1002-mb low was analyzed near 32°N, 42°W. The low deepened and occluded while it moved slowly west-northwestward over the next 48 h. The official “best track” of Noel begins at 0000 UTC 4 November when the system, then 775 n mi south of Cape Race, Newfoundland, was being classified as a subtropical cyclone by both the Tropical Analysis and Forecast Branch (TAFB) and the Satellite Analysis Branch (SAB). The best track chart of the tropical cyclone’s path is given in Fig. 1, with the wind and pressure histories shown in Figs. 2 and 3, respectively. The best track positions and intensities are listed in Table 1. The subtropical cyclone drifted northward initially, its speed increasing to about 10 kt by late on 4 November. Convection, which had been limited to the northern semicircle, became more symmetric as it formed a ring around the center with a radius of about 60 n mi. The system developed a weak mid-level warm core early on 5 November, strengthened and became a hurricane with 65 kt winds at 1200 UTC that day, about 535 n mi south-southeast of Cape Race. By 0000 UTC 6 November, westerly wind shear began to displace and limit convection near the center, and Noel weakened to a tropical storm. -
OCHA - CDEMA Joint Interoperability Manual
OCHA - CDEMA Joint Interoperability Manual Interoperability in Action Lessons Learned What you Need to Know Case Studies Gender Matters Remember Disclaimer: This is a first version of the OCHA-CDEMA Joint Interoperability Manual. It is a working draft which is to be finalized after the After Action Review from Hurricane Dorian as well as the Review of the Regional Response Mechanism (RRM) have been completed, and following the approval of the document by both CDEMA and OCHA. A second version of the manual will be produced after the 2020 hurricane season. The information in this Manual has been sourced from existing CDEMA, OCHA and IASC documents. All external sources used have been appropriately cited. This document covers humanitarian aid activities implemented through the project “Strengthen integrated and cohesive preparedness capacity at a regional, national and community level in the Caribbean”. This project is a joint initiative with the Office for Coordination of Humanitarian Affairs (OCHA), the United Nations Develop- ment Programme (UNDP), the Caribbean Disaster Emergency Management Agency (CDEMA) and the Interna- tional Federation of Red Cross and Red Crescent Societies (IFRC). Financial assistance was provided by the European Civil Protection and Humanitarian Aid Operations (ECHO). This document has been produced with the financial assistance of the European Union (EU). The views expressed herein should not be taken, in any way, to reflect the official opinion of any of the partners involved in this project, nor the EU. Neither the partners, nor the EU are responsible for any use that may be made of the information contained in this document. -
HURRICANE ISAAC (AL092018) 7–15 September 2018
NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE ISAAC (AL092018) 7–15 September 2018 David A. Zelinsky National Hurricane Center 30 January 2019 SUOMI-NPP/VIIRS 1625 UTC 10 SEPTEMBER 2018 TRUE COLOR IMAGE OF ISAAC WHILE IT WAS A HURRICANE. IMAGE COURTESY OF NASA WORLDVIEW. Isaac was a category 1 hurricane (on the Saffir-Simpson Hurricane Wind Scale) that formed over the east-central tropical Atlantic and moved westward. The cyclone weakened and passed through the Lesser Antilles as a tropical storm, causing locally heavy rain and flooding. Hurricane Isaac 2 Hurricane Isaac 7–15 SEPTEMBER 2018 SYNOPTIC HISTORY Isaac developed from a tropical wave that moved off the west coast of Africa on 2 September. A broad area of low pressure was already present when the convectively active wave moved over the eastern Atlantic, and the low gradually consolidated over the next several days while the wave moved steadily westward. A concentrated burst of deep convection initiated late on 6 September and led to the formation of a well-defined center, marking the development of a tropical depression by 1200 UTC 7 September a little more than 600 n mi west of the Cabo Verde Islands. Weak steering flow caused the depression to move very little while moderate easterly wind shear prevented it from strengthening for the first 24 h following formation. The shear decreased the next morning, and the cyclone reached tropical-storm strength by 1200 UTC 8 September. The “best track” chart of Isaac’s path is given in Fig. 1, with the wind and pressure histories shown in Figs.