12.2% 122,000 135M Top 1% 154 4,800
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
REPORT of the 46Th MEETING
REPORT OF THE 46th MEETING ARCADIA, CALIFORNIA NOVEMBER 27-29, 2012 2012 NAFC-FMWG Minutes Minutes of the 46th Annual Meeting of the North American Forest Commission – Fire Management Working Group Arcadia, California, USA Angeles National Forest Conference Room November 27-29, 2012 Tuesday November 27th, 2012 Hosted by the US Forest Service 1. Welcome Meeting called to order by Dale Dague of the US Forest Service, who welcomed everyone on behalf of the North American Forest Commission, thanked them for their attendance, and introduced Angeles National Forest Fire Management Officer James Hall. James Hall, Fire Management Officer, US Forest Service Angeles National Forest expressed his pleasure at having this group on the Angeles National Forest as the inaugural meeting in the newly remodeled training facility located at the Angeles National Forest Headquarters. 2. Introductions Roundtable introductions completed (see Appendix 1 for list of delegates in attendance) and Dale Dague conducted a review of the agenda and meeting logistics. 3. Meeting Overview Tuesday, November 27/13 Country Reports – Mexico, Canada, USA Review of 2011 FMWG meeting minutes CONANP Membership Proposal FMWG Charter Review Reducing Emissions from Deforestation and Forest Degradation NAFC website proposal Review FMWG Work Plan and Action Items Hurricane Sandy Report International Liaison Committee (ILC) Update 6th International Wildland Fire Conference Update Wednesday, November 28/13 Field Trip to the Station Fire, Angeles National Forest Banquet for meeting delegates Thursday, November 29/13 Texas Wildfires of 2011 Forest Fire Managers Group (FFMG Update NAFC Update Travel to San Dimas Technology and Development Center (SDTDC) Tour of SDTDC Bilateral Wildfire Agreements update ICS Glossary Update (French Translation) Page 1 of 62 2012 NAFC-FMWG Minutes 4. -
Conference Poster Production
65th Interdepartmental Hurricane Conference Miami, Florida February 28 - March 3, 2011 Hurricane Earl:September 2, 2010 Ocean and Atmospheric Influences on Tropical Cyclone Predictions: Challenges and Recent Progress S E S S Session 2 I The 2010 Tropical Cyclone Season in Review O N 2 The 2010 Atlantic Hurricane Season: Extremely Active but no U.S. Hurricane Landfalls Eric Blake and John L. Beven II ([email protected]) NOAA/NWS/National Hurricane Center The 2010 Atlantic hurricane season was quite active, with 19 named storms, 12 of which became hurricanes and 5 of which reached major hurricane intensity. These totals are well above the long-term normals of about 11 named storms, 6 hurricanes, and 2 major hurricanes. Although the 2010 season was considerably busier than normal, no hurricanes struck the United States. This was the most active season on record in the Atlantic that did not have a U.S. landfalling hurricane, and was also the second year in a row without a hurricane striking the U.S. coastline. A persistent trough along the east coast of the United States steered many of the hurricanes out to sea, while ridging over the central United States kept any hurricanes over the western part of the Caribbean Sea and Gulf of Mexico farther south over Central America and Mexico. The most significant U.S. impacts occurred with Tropical Storm Hermine, which brought hurricane-force wind gusts to south Texas along with extremely heavy rain, six fatalities, and about $240 million dollars of damage. Hurricane Earl was responsible for four deaths along the east coast of the United States due to very large swells, although the center of the hurricane stayed offshore. -
AL012016 Alex.Pdf
NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE ALEX (AL012016) 12 – 15 January 2016 Eric S. Blake National Hurricane Center 13 September 2016 NASA-MODIS VISIBLE IMAGE OF ALEX AT 1530 UTC 14 JANUARY 2016. Alex was a very unusual January hurricane in the northeastern Atlantic Ocean, making landfall on the island of Terceira in the Azores as a 55-kt tropical storm. Hurricane Alex 2 Hurricane Alex 12 – 15 JANUARY 2016 SYNOPTIC HISTORY The precursor disturbance to Alex was first noted over northwestern Cuba on 6 January as a weak low along a stationary front. A strong mid-latitude shortwave trough caused the disturbance to intensify into a well-defined frontal wave near the northwestern Bahamas by 0000 UTC 7 January. The extratropical low then moved northeastward, passing about 75 n mi north of Bermuda late on 8 January. Steered under an anomalous blocking pattern over the east-central Atlantic Ocean, the system turned east-southeastward by 10 January, and strengthened to a hurricane-force extratropical low. The change in track caused the system to move over warmer (and anomalously warm) waters, and moderate convection near the center on that day helped initiate the system’s transition to a tropical cyclone. The low began to weaken as it lost its associated fronts, diving to the south-southeast late on 11 January around a mid-latitude trough over the eastern Atlantic. Significant changes were noted the next day, with the large area of gale-force winds shrinking and becoming more symmetric about the cyclone’s center. Convection also increased near the low, and by 1800 UTC 12 January, frontal boundaries appeared to no longer be associated with the cyclone. -
Portugal – an Atlantic Extreme Weather Lab
Portugal – an Atlantic extreme weather lab Nuno Moreira ([email protected]) 6th HIGH-LEVEL INDUSTRY-SCIENCE-GOVERNMENT DIALOGUE ON ATLANTIC INTERACTIONS ALL-ATLANTIC SUMMIT ON INNOVATION FOR SUSTAINABLE MARINE DEVELOPMENT AND THE BLUE ECONOMY: FOSTERING ECONOMIC RECOVERY IN A POST-PANDEMIC WORLD 7th October 2020 Portugal in the track of extreme extra-tropical storms Spatial distribution of positions where rapid cyclogenesis reach their minimum central pressure ECMWF ERA 40 (1958-2000) Events per DJFM season: Source: Trigo, I., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dynamics volume 26, pages127–143. Portugal in the track of extreme extra-tropical storms Spatial distribution of positions where rapid cyclogenesis reach their minimum central pressure Azores and mainland Portugal On average: 1 rapid cyclogenesis every 1 or 2 wet seasons ECMWF ERA 40 (1958-2000) Events per DJFM season: Source: Trigo, I., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dynamics volume 26, pages127–143. … affected by sting jets of extra-tropical storms… Example of a rapid cyclogenesis with a sting jet over mainland 00:00 UTC, 23 Dec 2009 Source: Pinto, P. and Belo-Pereira, M., 2020: Damaging Convective and Non-Convective Winds in Southwestern Iberia during Windstorm Xola. Atmosphere, 11(7), 692. … affected by sting jets of extra-tropical storms… Example of a rapid cyclogenesis with a sting jet over mainland Maximum wind gusts: Official station 140 km/h Private station 00:00 UTC, 23 Dec 2009 203 km/h (in the most affected area) Source: Pinto, P. -
2021 Rio Grande Valley/Deep S. Texas Hurricane Guide
The Official Rio Grande Valley/Deep South Texas HURRICANE GUIDE 2021 IT ONLY TAKES ONE STORM! weather.gov/rgv A Letter to Residents After more than a decade of near-misses, 2020 reminded the Rio Grande Valley and Deep South Texas that hurricanes are still a force to be reckoned with. Hurricane Hanna cut a swath from Padre Island National Seashore in Kenedy County through much of the Rio Grande Valley in late July, leaving nearly $1 billion in agricultural and property damage it its wake. While many may now think that we’ve paid our dues, that sentiment couldn’t be further from the truth! The combination of atmospheric and oceanic patterns favorable for a landfalling hurricane in the Rio Grande Valley/Deep South Texas region can occur in any season, including this one. Residents can use the experience of Hurricane Hanna in 2020 as a great reminder to be prepared in 2021. Hurricanes bring a multitude of hazards including flooding rain, damaging winds, deadly storm surge, and tornadoes. These destructive forces can displace you from your home for months or years, and there are many recent cases in the United States and territories where this has occurred. Hurricane Harvey (2017), Michael (2018, Florida Panhandle), and Laura (2020, southwest Louisiana) are just three such devastating events. This guide can help you and your family get prepared. Learn what to do before, during and after a storm. Your plan should include preparations for your home or business, gathering supplies, ensuring your insurance is up to date, and planning with your family for an evacuation. -
The Rio Grande River Floods the National Butterfly Center
Jeffrey Glassberg Jeffrey The Rio Grande River Floods the National Butterfly Center by Pat Wogan 24 American Butterflies,Fall 2010 25 Left: An interpretive kiosk on the south side of the National Butterfly Center, just south of the levy, was destroyed by the Above left: The storm track of flooding. July 19, Hurricane Alex. Color shows 2010. storm intensity with blue indicating a tropical depression, cream a category 1 hurricane and yellow a Jeffrey Glassberg Jeffrey category 2 hurricane. Above right: A satellite photo of Left: Volunteers Hurricane Alex as it made landfall. constructing the same interpretive Right: A map of the Rio Grande kiosk in 2009. Watershed in extreme southern One can estimate Texas and northeastern Mexico. the depth of the flooding water Overleaf: A view of the southern at this point by portion of the National Butterfly comparing the two Center on July 19, 2010. photos. It looks to be about five and one-half feet. In late June, 2010, Tropical Depression Although the hurricane’s high winds Alex formed in the Atlantic. Moving into and heavy rainfall led to immediate damage, the Gulf of Mexico, Alex moved rapidly including flooding on South Padre Island, it toward northeastern Mexico and became was the later effects of the hurricane’s rainfall Hurricane Alex on June 30. Intensifying as that caused more serious problems in south it approached land, the storm made landfall Texas. rise. Then came Alex. On July 15, 2010, Within a few days, it became clear that the near Soto la Marina in the state of Tamaulipas, The Rio Grande River Watershed, the life water levels at Falcon Reservoir, about 50 capacity of the floodway was less than was Mexico with sustained winds of more than 100 blood of extreme south Texas, drains only miles northwest of the National Butterfly needed. -
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
LBJ Off on Peace Mission; Promises No 'Magic Wand'
Average Daily Net Press Run The Weather For the Week Ended October IK, 1966 Fair, much cooler Umlgntt low 35^0; aunny and a little milder tomorrow, high aow 4^ 1 4 ,9 3 3 Manche»ter~—A City of VMage-Charm (OlMMlltod Advertlalnc on Page U); PRICE SEVEN C E N H VOL. LXXXVIi NO. 14 (TWENTY-FOUR PAGES—TWO SECTIONS) MANCHESTER, CONN., MONDAY, OCTOBER l7 , 1966 i * <' •'fy ' ^ f * r JW. h r ; LBJ Off on Peace Mission; ( ' ■ y - ■ Promises No ‘Magic Wand’ * ( • y ' -' '* « ' ,% i, r -i <■ Honolulu First ’I K I- ■- I ■ -> ‘ . On 25,000-Mile Trip KB. t ■take A tha n it WASHINGTON (AP)—President Johnson departed Oakta. i Rick* on a momentous, 25,000-mile mission to the Far East '« ? , today with a vow to “do my best to advance the cause 'I L of peace and of human progress.” > I- Johnson tempered this pledge -------------------------- — ------- over M with word that “ I know that I corps along the way. A wife or can wave no wand” or offer any g<,t h presidential kiss on a date 1: ' promises to work magic on his u,e ©heek. i S i W i SiMW aerial expedition to at least six on the observation deck far Asian and Pacific nations. above the field, spectators held SittlUL «« he aad Yet, he said, he was undertak- aloft unanimously friendly post i j : « ing “a hopeful mission.” ©i-s bearing such inscriptions as a t aad 1 It was 9:26 a.m. when John- “ All 4 U,” “ U.S.A. -
Ex-Hurricane Ophelia 16 October 2017
Ex-Hurricane Ophelia 16 October 2017 On 16 October 2017 ex-hurricane Ophelia brought very strong winds to western parts of the UK and Ireland. This date fell on the exact 30th anniversary of the Great Storm of 16 October 1987. Ex-hurricane Ophelia (named by the US National Hurricane Center) was the second storm of the 2017-2018 winter season, following Storm Aileen on 12 to 13 September. The strongest winds were around Irish Sea coasts, particularly west Wales, with gusts of 60 to 70 Kt or higher in exposed coastal locations. Impacts The most severe impacts were across the Republic of Ireland, where three people died from falling trees (still mostly in full leaf at this time of year). There was also significant disruption across western parts of the UK, with power cuts affecting thousands of homes and businesses in Wales and Northern Ireland, and damage reported to a stadium roof in Barrow, Cumbria. Flights from Manchester and Edinburgh to the Republic of Ireland and Northern Ireland were cancelled, and in Wales some roads and railway lines were closed. Ferry services between Wales and Ireland were also disrupted. Storm Ophelia brought heavy rain and very mild temperatures caused by a southerly airflow drawing air from the Iberian Peninsula. Weather data Ex-hurricane Ophelia moved on a northerly track to the west of Spain and then north along the west coast of Ireland, before sweeping north-eastwards across Scotland. The sequence of analysis charts from 12 UTC 15 to 12 UTC 17 October shows Ophelia approaching and tracking across Ireland and Scotland. -
The Operational Challenges of Forecasting TC Intensity Change in the Presence of Dry Air and Strong Vertical Shear
The Operational Challenges of Forecasting TC Intensity Change in the Presence of Dry Air and Strong Vertical Shear Jamie R. Rhome,* and Richard D. Knabb NOAA/NWS/NCEP/Tropical Prediction Center/National Hurricane Center, Miami, FL 1. INTRODUCTION to an incomplete specification of the initial moisture conditions, dynamical model forecasts of middle- to Tropical cyclone (TC) intensity changes involve upper-tropospheric humidity often have large errors. complex interactions between many environmental Beyond the problems with observing and forecasting factors, including vertical wind shear and the humidity, TC intensity forecasts become particularly thermodynamic properties of the ambient atmosphere challenging when dry air is accompanied by moderate to and ocean. While the effects of each factor are not strong vertical shear. completely understood, even less is known about the Much of the current understanding on the response effects of these factors working in tandem. Emanuel et of a TC to vertical shear comes from idealized studies. It al. (2004) proposed that “storm intensity in a sheared has been shown that strong vertical shear typically results environment is sensitive to the ambient humidity” and in the convective pattern of the TC becoming cautioned “against considering the various environmental increasingly asymmetric followed by a downshear tilt of influences on storm intensity as operating independently the vortex (Frank and Ritchie 2001, Bender 1997). To from each other.” Along these lines, Dunion and Velden keep the tilted TC vortex quasi-balanced, the (2004) have examined the combined effects of vertical diabatically-driven secondary circulation aligns itself to shear and dry air on TCs during interactions with the produce an asymmetry in vertical motion that favors Saharan Air Layer (SAL). -
P6.3 Using ERA40 in Cyclone Phase Space to Refine the Classification
P6.3 Using ERA40 in Cyclone Phase Space to Refine the Classification of Historical Tropical Storms Danielle Manning* and Robert Hart The Florida State University *Corresponding author email: [email protected] I. INTRODUCTION The goal of this study is to, when feasible Understanding of cyclone structural evolution within the ERA40 data, extend and refine the structural both during and beyond the tropical stage has increased characteristics of existing best-track cyclones. These tremendously over the past fifty years through various refinements may include the tropical or extratropical satellite-based, model-based, and analysis-based transition points in the lifecycle or the genesis point of classifications. This new knowledge has brought tropical cyclones that formed from cold-core origins. forward the reanalysis of historical storms in the context Finally, through a detailed examination of the full 45 of present understanding (Landsea et al. 2004) in order years, several cyclones were found of warm-core or to extend and revise the National Hurricane Center’s hybrid structure that may qualify for subtropical or (NHC) North Atlantic hurricane database (HURDAT; tropical status, but were not documented within the Neumann et al. 1993). This reanalysis is vital for the existing best-track archive. Case examples of all these filling of gaps within, and further improvement overall events are presented below, along with an evaluation of of the track and structural evolution of tropical cyclones. CPS intensity bias evolution over the ERA40 period. II. DATA AND METHODOLOGY Using ECMWF Reanalysis dataset (ERA40; Uppala et al. 2005), three parameters that classify a cyclone within a continuum of structure (warm to cold core, shallow to deep, and frontal to nonfrontal) can be calculated (Hart 2003). -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.