TCP/IP User's Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecaccess User Guide
ECaccess User Guide User Support Operations Department Version 3.3.0 May 2009 c Copyright 2009 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United Kingdom Literary and scientific copyrights belong to ECMWF and are reserved in all countries. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. CONTENTS Contents 1 Introduction 3 2 Ecaccess concepts 4 2.1 ECaccess gateway ......................................... 4 2.2 Using an ECaccess gateway ................................... 5 2.3 Plugins ............................................... 5 3 Security authentication 7 3.1 ECaccess certificate ........................................ 7 3.2 ECcert command ......................................... 7 4 Unattended file transfers initiated from ECMWF 10 4.1 Target location ........................................... 10 4.2 ECtrans command ......................................... 11 4.2.1 Transfer to a Member State host via gateway ....................... 12 4.2.2 Transfer from a Member State host via gateway ...................... 12 5 Shell commands 14 5.1 Environment ............................................ 14 5.2 Access to Shell commands .................................... 15 5.3 General information ........................................ 15 5.4 File management ......................................... 15 5.5 Batch job management ..................................... -
Argus Research (July 2020)
EQUITY RESEARCH REPORT July 13, 2020 MOLECULAR DATA INC. (NCM: MKD) Founded in 2013, China-based Molecular Data operates an e-commerce platform that KEY STATISTICS connects and serves participants of the Chinese chemicals industry across the value chain. Key Stock Statistics COMPANY HIGHLIGHTS Recent price (7/7/20) $2.40 * MKD: Connecting China’s Chemical Industry Value Chain 52 week high/low $11.80/$0.57 ADS Outstanding (M) 115 * In our view, Molecular Data has assembled a comprehensive network that can capture value across multiple previous pain points in China’s fragmented chemicals industry. Market cap (M) $276.0 Dividend Nil * After several years of organically building platform capabilities to include financial services, warehousing, logistics and software as a service (SaaS) offerings, Molecular Yield Nil Data should now be able to diversify its revenue stream beyond its core chemical direct e-commerce sales. This should lead to enhanced profit margins and, ultimately, sustainable Sector Overview profitability. Sector Materials * At the end of 2019, Molecular Data completed an initial public offering that yielded net Sector % of S&P 500 2.5% proceeds of approximately $55 million. As a result, we view the company as well posi- tioned to invest in its integrated e-commerce platform with new higher-margin services, and to pursue the acquisition of new capabilities and services globally. Financials ($M) * Although we expect near-term financial results to be impacted by the COVID-19 outbreak, Cash & Mkt Securities 8.3 which forced many customers and suppliers to halt operations throughout the first half of Debt 2.0 2020, we are encouraged by continued robust traffic on the Molbase platform. -
Getting Started Computing at the Al Lab by Christopher C. Stacy Abstract
MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLI..IGENCE LABORATORY WORKING PAPER 235 7 September 1982 Getting Started Computing at the Al Lab by Christopher C. Stacy Abstract This document describes the computing facilities at the M.I.T. Artificial Intelligence Laboratory, and explains how to get started using them. It is intended as an orientation document for newcomers to the lab, and will be updated by the author from time to time. A.I. Laboratory Working Papers are produced for internal circulation. and may contain information that is, for example, too preliminary or too detailed for formal publication. It is not intended that they should be considered papers to which reference can be made in the literature. a MASACHUSETS INSTITUTE OF TECHNOLOGY 1982 Getting Started Table of Contents Page i Table of Contents 1. Introduction 1 1.1. Lisp Machines 2 1.2. Timesharing 3 1.3. Other Computers 3 1.3.1. Field Engineering 3 1.3.2. Vision and Robotics 3 1.3.3. Music 4 1,3.4. Altos 4 1.4. Output Peripherals 4 1.5. Other Machines 5 1.6. Terminals 5 2. Networks 7 2.1. The ARPAnet 7 2.2. The Chaosnet 7 2.3. Services 8 2.3.1. TELNET/SUPDUP 8 2.3.2. FTP 8 2.4. Mail 9 2.4.1. Processing Mail 9 2.4.2. Ettiquette 9 2.5. Mailing Lists 10 2.5.1. BBoards 11 2.6. Finger/Inquire 11 2.7. TIPs and TACs 12 2.7.1. ARPAnet TAC 12 2.7.2. Chaosnet TIP 13 3. -
Openvms: an Introduction
The Operating System Handbook or, Fake Your Way Through Minis and Mainframes by Bob DuCharme VMS Table of Contents Chapter 7 OpenVMS: An Introduction.............................................................................. 7.1 History..........................................................................................................................2 7.1.1 Today........................................................................................................................3 7.1.1.1 Popular VMS Software..........................................................................................4 7.1.2 VMS, DCL................................................................................................................4 Chapter 8 Getting Started with OpenVMS........................................................................ 8.1 Starting Up...................................................................................................................7 8.1.1 Finishing Your VMS Session...................................................................................7 8.1.1.1 Reconnecting..........................................................................................................7 8.1.2 Entering Commands..................................................................................................8 8.1.2.1 Retrieving Previous Commands............................................................................9 8.1.2.2 Aborting Screen Output.........................................................................................9 -
VMS CRA Y Station Now Available It Is Now Possible to Submit Jobs Functions Closely
VMS CRA Y Station Now Available It is now possible to submit jobs Functions closely. It is implemented as a to the CRAY-1 from UCC's VAX/VMS The VMS station provides these series of commands entered in system. functions: response to the system's $ A CRAY-1 running the cos oper prompt. The commands look like ating system requires another -It submits jobs to the CRAY-1, VMS commands: they have pa computer to act as a "front-end" and returns output as a file un rameters and /qualifiers; they fol system. You prepare jobs and der the user's VMS directory. low much the same syntax and data on the front-end system, us -It transfers files between the interpretation rules (for example, ing whatever tools that system machines using the cos AC wild cards are handled correctly); provides, then submit the files as QUIRE and DISPOSE commands. and they prompt for required a batch job to the CRAY for proc The source of an ACQUIREd file parameters not present on the essing. Output is returned to the can be disk or tape; the desti command line. You can always front-end system for viewing. nation of a DISPOSEd file can recognize a station command, The software that runs on the be disk, tape, printer, or the though, because it always begins front-end machine to provide this VMS batch input queue. with the letter C. For example, communication is called a -At your option, it sends bulle the station command to submit a "station." tins to the terminal chronicling job to the CRAY is CSUBMIT. -
Supplementary Material for Traditional Agricultural Practices and the Sex Ratio Today Alberto Alesina1,2, Paola Giuliano3,2,*, Nathan Nunn1,2
Supplementary Material for Traditional agricultural practices and the sex ratio today Alberto Alesina1,2, Paola Giuliano3,2,*, Nathan Nunn1,2 1 Harvard University. 2 NBER. 3 UCLA. *Correspondence to: [email protected] The Supplementary Material provides details on the data sources and the robustness of the analysis for the results derived in the paper. Additional details on the Ethnographic Atlas The Ethnographic Atlas was constructed by George Peter Murdock. It contains ethnographic information for 1,265 ethnic groups worldwide. The period in which the information was collected varies by ethnicity, with the earliest observation dates coming from ethnicities in the Old World (where early written evidence is available) and the most recent information dating around the 20th century, for those parts of the world without a written history and directly observed by anthropologists. All societies are observed prior to industrialization. In total, 23 ethnicities are observed during the 17th century or earlier, 16 during the 18th century, 310 during the 19th century, 876 between 1900 and 1950, and 31 after 1950. For nine ethnicities, an exact year is not provided. The variable v39 classifies each ethnic group as being in one of the following three categories: (1) the plough was absent, (2) the plough existed at the time the group was observed, but it was not aboriginal, and (3) the plough was aboriginal, having existed prior to contact. Using this information, we construct an indicator variable that equals one if the plough was ever adopted during the pre-industrial period (whether aboriginal or not) and zero otherwise. Of the 1,156 ethnicities for which information exists, for 997 the plough was absent, for 141 the plough was adopted (and aboriginal), and for 18 it was adopted, but after European contact. -
Resource Management: Linux Kernel Namespaces and Cgroups
Resource management: Linux kernel Namespaces and cgroups Rami Rosen [email protected] Haifux, May 2013 www.haifux.org 1/121 http://ramirose.wix.com/ramirosen TOC Network Namespace PID namespaces UTS namespace Mount namespace user namespaces cgroups Mounting cgroups links Note: All code examples are from for_3_10 branch of cgroup git tree (3.9.0-rc1, April 2013) 2/121 http://ramirose.wix.com/ramirosen General The presentation deals with two Linux process resource management solutions: namespaces and cgroups. We will look at: ● Kernel Implementation details. ●what was added/changed in brief. ● User space interface. ● Some working examples. ● Usage of namespaces and cgroups in other projects. ● Is process virtualization indeed lightweight comparing to Os virtualization ? ●Comparing to VMWare/qemu/scaleMP or even to Xen/KVM. 3/121 http://ramirose.wix.com/ramirosen Namespaces ● Namespaces - lightweight process virtualization. – Isolation: Enable a process (or several processes) to have different views of the system than other processes. – 1992: “The Use of Name Spaces in Plan 9” – http://www.cs.bell-labs.com/sys/doc/names.html ● Rob Pike et al, ACM SIGOPS European Workshop 1992. – Much like Zones in Solaris. – No hypervisor layer (as in OS virtualization like KVM, Xen) – Only one system call was added (setns()) – Used in Checkpoint/Restart ● Developers: Eric W. biederman, Pavel Emelyanov, Al Viro, Cyrill Gorcunov, more. – 4/121 http://ramirose.wix.com/ramirosen Namespaces - contd There are currently 6 namespaces: ● mnt (mount points, filesystems) ● pid (processes) ● net (network stack) ● ipc (System V IPC) ● uts (hostname) ● user (UIDs) 5/121 http://ramirose.wix.com/ramirosen Namespaces - contd It was intended that there will be 10 namespaces: the following 4 namespaces are not implemented (yet): ● security namespace ● security keys namespace ● device namespace ● time namespace. -
Storage Organization and Management in TENEX I. Introduction
Storage Organization and Management in TENEX http://www.linique.com/dlm/tenex/fjcc72/ Storage Organization and Management in TENEX by Daniel L. Murphy Presented at the Fall Joint Computer Conference, 1972. Originally published in AFIPS Conference Proceedings Volume 41. I. Introduction In early 1969, BBN began an effort aimed at developing a new time-shared operating system. It was felt at the time that none of the commercially available systems could meet the needs of the research planned and in progress at BBN. The foremost requirement of the desired operating system was that it support a directly addressed process memory in which large list-processing computations could be performed. The cost of core storage prohibited the acquisition of sufficient memory for even one such process, and the problems of swapping such very large processes in a time-sharing environment made that solution technically infeasible as well. Paging was therefore the logical alternative, and our study and experience with list processing systems(1,2) led us to believe that using a demand-paged virtual memory system for such computations was a feasible approach. With demand paged process virtual memory added to our requirements, we found no existing system which could adequately meet our needs. Our approach was to take an existing system which was otherwise appropriate and add the necesary hardware to support paging. The system chosen was the DEC PDP-10 (3), which, although not paged, was available with a time-shared operating system and substantial support software. Consideration was given to modifying the existing PDP-10 operating system to support demand paging, but that approach was rejected because of the substantial amount of work which would be required, because of the inherent constraints imbedded in the architecture of any large system, and because development of a new operating system would allow the inclusion of a great many other features and facilities which were judged desirable. -
NWG/RFC# 752 MRC 2-Jan-79 01:22 Nnnnn a Universal Host Table
NWG/RFC# 752 MRC 2-Jan-79 01:22 nnnnn A Universal Host Table Network Working Group Mark Crispin Request for Comments 752 SU-AI NIC nnnnn 2 January 1979 A Universal Host Table ABSTRACT: The network host table in use at MIT and Stanford is described. This host table is superior to the NIC and Tenex host tables in several ways. A binary file, compiled from this host table, is also described. This file is used by subsystems on MIT's ITS and Stanford's WAITS timesharing systems for efficiency in host and network lookups. HISTORY: As with many other sites on the Arpanet, we found the NIC's host table unsuited to our needs. Part of the problem was because the NIC host table was often inaccurate and all too often failed to include several nicknames in common usage in our communities. In addition, the NIC host table's format was awkward for user programs to use, especially those which wanted to have the host table mapped into memory in some sort of structured binary form for efficient lookups. Finally, the NIC host table neglects to include some essential information. The ITS host table was originally designed to be compiled along with a network handling program (MIDAS, the PDP-10 assembler used, has a pseudo-op to insert a file into an assembly). In order to make the host table palatable to the assembler, every comment line began with a semicolon, and every actual data line began with the word HOST. Each program which used the host table defined HOST as an assembly macro before inserting the host table into the assembly. -
Engineering Strategy Overview Preliminary
March 1982 Engineering Preliminary Strategy Company Overview Confidential If.-t8···· L..4L ~ \:')' j.~.! / .;.' ' 1985 1990 1995 2000 - P,O S SIB L E DEC PRO Due T S - $lJOO cellular radio net discontinouous.100 word ~ lim! ted context HANDHELD speaker independent speaker independent $1.0K speech recogn. • sketchpad , interpretation Glata structures , ' & relat~onsh~ps object filing natural languaqe (invisible, protected structures) $40K I CAB I NET I ,4 (dedicated fixture) ~~~n limited context [:~~~~e~ ~~~:~~i:ti~n ~ ak rind pendent • voice ~tuate~ retrieval spe ~ e _ .. • te1econferenc1ng center cont1nued speechlrecogn~tion " ;., encryption associa tiveJparallel a;;;'e'los (, ..j." .---~ provide CAtt= ASSISTANT -------...--- .. • LIBRARlj\N ~ ?ertified "best match" retrieval ~ (secure) os (holographic? ) $650K BD 1/15/81 PRELIMINARY ENGINEERING STRATEGY OVERVIEW MARCH lYtil SECONIJ IJRAFT PRELIMINARY ENGINEERING STRATEGY OVERVIEW TABLE OF CONTENTS ,Preface Chapter I fhe Product Strategy and Transitioning to the Fifth Generation - Product Strategy Overview - The Transitions - Personal Computer Clusters, PCC, Are An Alternative to Timeshared Computers - The Product Strategy - Fifth and Sixth Computer Technology Generations - Uistributed Processing and Limits to Its Growth Chapter II Essays on the Criteria for Allocation of Engineering Resources - Overview, - Heuristics for Building Great Products, - Proposed Resource Allocation Criteria - UEC's Position in the VAN - Buyout Philosophy/Process/Criteria - Example of a "Make vs Buy" Analysis - Engineering Investment Sieve Chapter III Essays on Strategic Threats and Opportunities - Uverview, - Strategic Threats - Getting Organized in Engineering and Manufacturing to Face Our Future Competitors p - View of Competitors ---~,.~".~.-~ l f;t-1) IPrT Co?"! v. 7U/L, / IJ ...J - Te-Iecommunications Environment ) ;2f e-c.. - Competitive TeChnology Exercise, ltv • Chapter IV TeChnology Managers Committee Report ,MC- . -
Ascii, Baudot, and the Radio Amateur
ASCII, BAUDOT AND THE RADIO AMATEUR George W. Henry, Jr. K9GWT Copyright © 1980by Hal Communications Corp., Urbana, Illinois HAL COMMUNICATIONS CORP. BOX365 ASCII, BAUDOT, AND THE RADIO AMATEUR The 1970's have brought a revolution to amateur radio RTTY equipment separate wire to and from the terminal device. Such codes are found in com and techniques, the latest being the addition of the ASCII computer code. mon use with computer and line printer devices. Radio amateurs in the Effective March 17, 1980, radio amateurs in the United States have been United States are currently authorized to use either the Baudot or ASCII authorized by the FCC to use the American Standard Code for Information serial asynchronous TTY codes. Interchange(ASCII) as well as the older "Baudot" code for RTTY com munications. This paper discusses the differences between the two codes, The Baudot TTY Code provides some definitions for RTTY terms, and examines the various inter facing standards used with ASCII and Baudot terminals. One of the first data codes used with mechanical printing machines uses a total of five data pulses to represent the alphabet, numerals, and symbols. Constructio11 of RTTY Codes This code is commonly called the Baudot or Murray telegraph code after the work done by these two pioneers. Although commonly called the Baudot Mark Ull s,.ce: code in the United States, a similar code is usually called the Murray code in other parts of the world and is formally defined as the International Newcomers to amateur radio RTTY soon discover a whole new set of terms, Telegraphic Alphabet No. -
Lisp: Program Is Data
LISP: PROGRAM IS DATA A HISTORICAL PERSPECTIVE ON MACLISP Jon L White Laboratory for Computer Science, M.I.T.* ABSTRACT For over 10 years, MACLISP has supported a variety of projects at M.I.T.'s Artificial Intelligence Laboratory, and the Laboratory for Computer Science (formerly Project MAC). During this time, there has been a continuing development of the MACLISP system, spurred in great measure by the needs of MACSYMAdevelopment. Herein are reported, in amosiac, historical style, the major features of the system. For each feature discussed, an attempt will be made to mention the year of initial development, andthe names of persons or projectsprimarily responsible for requiring, needing, or suggestingsuch features. INTRODUCTION In 1964,Greenblatt and others participated in thecheck-out phase of DigitalEquipment Corporation's new computer, the PDP-6. This machine had a number of innovative features that were thought to be ideal for the development of a list processing system, and thus it was very appropriate that thefirst working program actually run on thePDP-6 was anancestor of thecurrent MACLISP. This earlyLISP was patterned after the existing PDP-1 LISP (see reference l), and was produced by using the text editor and a mini-assembler on the PDP-1. That first PDP-6 finally found its way into M.I.T.'s ProjectMAC for use by theArtificial lntelligence group (the A.1. grouplater became the M.I.T. Artificial Intelligence Laboratory, and Project MAC became the Laboratory for Computer Science). By 1968, the PDP-6 wasrunning the Incompatible Time-sharing system, and was soon supplanted by the PDP-IO.Today, the KL-I 0, anadvanced version of thePDP-10, supports a variety of time sharing systems, most of which are capable of running a MACLISP.