Marco Delbo CNRS - Observatoire De La Cote D’Azur, Nice, France

Total Page:16

File Type:pdf, Size:1020Kb

Marco Delbo CNRS - Observatoire De La Cote D’Azur, Nice, France Interferometry of ASTEROIDS Marco Delbo CNRS - Observatoire de la Cote d’Azur, Nice, France Collaborators: A. Matter (Bonn, Germany), B. Carry (ESA), S. Ligori (Torino, Italy), P. Tanga (Nice, France), and G. Van Belle (Flagstaff, USA) ESAC - Madrid - Aug 25, 2011 Outline • Introduction: why to study asteroids and what do their physical properties tell us? • Main Belt Asteroids • Size, shape, density and internal structure • Interferometry of asteroids • Data analysis models, potential targets. • First results of VLTI-MIDI observations. • Future projects/perspectives. Asteroids of the main belt Plotted here are the positions of the first 5000 asteroids every 5 days. Asteroids of the main belt Plotted here are the positions of the first 5000 asteroids every 5 days. Near-Earth Asteroids (NEAs) Some are from the main belt Some are dead comets dynamical lifetime: 107y ∼ Size distribution of main belt asteroids Bottke et al. 2005 Assumption of spherical shapes Size distribution of main belt asteroids Bottke et al. 2005 Assumption of spherical shapes D(km) θ(mas)= 0.72 ∆(AU) 1.5 D ∼ × ∆ θ(mas) D(km) at the center∼ of the Belt Size distribution of main belt asteroids Bottke et al. 2005 Assumption of at the center of the MB spherical shapes for D=100km F (12µm) 20(Jy) ∼ D(km) F D2 θ(mas)= ∝ 0.72 ∆(AU) 1.5 D ∼ × ∆ θ(mas) D(km) at the center∼ of the Belt NEAs: size distribution Images of asteroids from spacecrafts DAWN in orbit around (4) Vesta Images of asteroids from spacecrafts Rosetta flyby of 21 Lutetia Covered with a regolith, estimated to be 600 m thick, The regolith softens the outlines of many of the larger craters. size: 132 × 101 × 76 km mass: 1.7 x 1018 kg [pre Rosetta estimate: (2.2-2.6) x 1018 kg] Images of asteroids from spacecrafts 66×48×46 km 18×10×9 km 54×24×15 km Mission NEAR, 1998 (NASA) Mission Galileo, 1993 (NASA) images from the NEAR shoemaker mission (NASA) (433) Eros: size = 23 km 2nd largest near-Earth asteroids Discovered in Nice in 1898 First detailed images of the surface of an asteroid (433 Eros) 25143 Itokawa (viewed by Hayabusa) size: 535 × 294 × 209 m mass: (3.58±0.18)×1010 kg density:1.9±0.13 g/cm³ Asteroids and the origin of our solar system • Debris of the planet formation process • Small → little alteration → conserve pristine material Asteroids and the origin of our solar system • Debris of the planet formation process • Small → little alteration → conserve pristine material • Asteroids suffered collisional evolution. • Sizes, shapes, and bulk densities tell us about their collisional histories Simulation of disruption and reaccumulation by P. Michel Britt et al.: Asteroid Density, Porosity, and Structure 487 tural weakness that break apart during impacts to form what oid 4 Vesta has a bulk density consistent with basaltic mete- become meteorites. Macroporosoity defines the internal struc- orites overlying an olivine mantle and metal-rich core. The ture of an asteroid. Those with low macroporosity are solid, primitive C-type asteroid 1 Ceres has a bulk density similar coherent objects, while high macroporosities values indicate to primitive CI meteorites (for definitions of meteorite types loosely consolidated objects that may be collections of rub- see McSween, 1999). However, the smallest of these three ble held together by gravity (see Richardson et al., 2002). asteroids is an order of magnitude more massive than the next well-characterized asteroids and these less-massive 1.2. Current Measurements of asteroids exhibit some intriguing trends. In general, S-type Asteroid Bulk Density asteroids appear to have higher bulk densities than C-type asteroids, but the range in both groups is large. The M-type Spacecraft missions and advances in asteroid optical and asteroid 16 Psyche, which is interpreted to have a mineral- radar observations have revolutionized our knowledge of ogy analogous to Fe-Ni meteorites, shows a bulk density in asteroid bulk density. Shown in Table 1 and Fig. 1 is a sum- the range of hydrated clays. This indicates either very high mary of published mass and volume measurements. The porosity or a misidentification of the mineralogy. In the case methods of mass and volume determination are discussed of 16 Psyche, in addition to spectra and albedo consistent in section 2.0, but a glance at Table 1 shows that before the with metal, radar-albedo data strongly indicate a largely 1990s bulk-density measurements were limited to a handful metallic surface. of the largest asteroids. In the past 10 years, the accuracy and breadth of these measurements has exploded and pro- 2. THE DETERMINATION OF ASTEROID duced our first picture of the density structure of the aster- MASSES, VOLUMES, AND oid belt. The largest three asteroids, Ceres, Pallas, and Vesta, BULK DENSITIES have been studied for decades and have well-constrained values. These objects make up most of the mass of the aster- Though the number of asteroid density measurements oid belt. As shown in Fig. 1 in comparison with meteorite has begun to increase rapidly in the last few years, still only grain densities, these density values seem to make miner- a tiny fraction of the known asteroids have usable density alogical sense. Because common geologic materials can measurements. A short history of the efforts to determine vary by almost a factor of 4 in their grain density, asteroid the masses of asteroids has been provided by Hilton (2002). bulk-density measurements need to be interpreted in terms Asteroid masses have been reliably determined from asteroid- of the object’s mineralogy. The differentiated V-type aster- asteroid or asteroid-spacecraft perturbations. That is, the mass Densities of asteroids & meteorite analogs 1E + 22 1 Ceres (G) 2 Pallas (B) 4 Vesta (V) 1E + 20 87 Sylvia (P) 16 Psyche (M) 22 Kalliope (M) 45 Eugenia (C) 20 Massalia (S) 762 Pulcova (F) 11 Parthenope (S) 21 Hermione (C) 1E + 18 90 Antiope (C) Average S Average C 243 Ida (S) 253 Mathilde (C) Phobos 1E + 16 Mass in Kilograms (log scale) Mass in Kilograms Ordinary Chondrite Densities Grain CI Grain Density CI Grain 433 Eros (S) Deimos Density CV Grain CM Grain Density CM Grain 1E + 14 0.5 1 1.5 2 2.5 3 3.5 4 Density (g/cm3) Britt et al. 2002 Fig. 1. Bulk densities of measured asteroids with the grain densities of common meteorites for comparison. Also included in the plot are the asteroidlike moons of Mars, Phobos and Deimos, as well as estimates for the average C- and S-type asteroids (Standish, 2001). Several asteroids in Table 1 with large error bars have been left off the plot for clarity. Densities of asteroids & meteorite analogs 1E + 22 1 Ceres (G) 2 Pallas (B) 4 Vesta (V) 1E + 20 M 87 Sylvia (P) 16 Psyche (M) ρ = 22 Kalliope (M) 45 Eugenia (C) 20 Massalia (S) 762 Pulcova (F) V 11 Parthenope (S) 21 Hermione (C) 1E + 18 90 Antiope (C) Average S Average C 2243 Ida (S) 2 253σ Mathildeρ (C) σM σD Phobos 1E + 16 = +9 Mass in Kilograms (log scale) Mass in Kilograms Ordinary Chondrite Densities Grain ρ M Density CI Grain D 433 Eros (S) Deimos Density CV Grain CM Grain Density CM Grain 1E + 14 0.5 1 1.5 2 2.5 3 3.5 4 Density (g/cm3) Britt et al. 2002 Methods of physical characterization Size Volume Shape Mass Density Methods of physical characterization 2 Size Radiometry in the thermal infrared (FIR∝D ) Stellar occultation timing Volume Visible photometry (lightcurves) Shape Mass Density Methods of physical characterization 2 Size Radiometry in the thermal infrared (FIR∝D ) Stellar occultation timing Volume Visible photometry (lightcurves) Shape Asteroid-asteroid perturbation Asteroid-planet (mars) perturbation Mass Asteroid-spacecraft perturbation Density Methods of physical characterization 2 Size Radiometry in the thermal infrared (FIR∝D ) Stellar occultation timing Volume Visible photometry (lightcurves) Shape Asteroid-asteroid perturbation Asteroid-planet (mars) perturbation Mass Asteroid-spacecraft perturbation Period and semimajor axis P 2 4π2 = of asteroid satellites a3 GM Density Adaptive optics, visible photometry Optical interferometers Keck LBT ESO-VLT Optical interferometers Keck LBT ESO-VLT Interferometry and physical characterization of asteroids Size from 1 visibility Volume Shape Mass Density Interferometry and physical characterization of asteroids Size from 1 visibility Volume visibility as a function of time as the asteroid rotates Shape Mass Density PROGRAMME JEUNES Projet BACCI CHERCHEUSES ET JEUNES CHERCHEURS DOCUMENT SCIENTIFIQUE EDITION 2010 3.3. DESCRIPTION DES TRAVAUX PAR TÂCHE / DETAILED DESCRIPTION OF THE WORK ORGANISED BY TASKS Task Sub Tasks (Work Packages) Manager Participants Time 0. Organization MDB MDB, 6 PT 1 1. Astronomical 1.A Interferometric data MDB MDB 18 observations and 1.B Thermal infrared data PT 6 data treatment. 1.C Visible lightcurves MM 2.4 1.D Spectroscopic data HC 3 DH 4 SL 10 AC 3 PD 16 CDDC 8 2. Data modeling 2.A Lightcurve inversion PT MDB 12 and determination 2.B global modeling PT 8 of physical 2.C physical modeling PM 7 Interferometryquantities and physical MM 1.6 HC 2 DH 8 characterization of asteroids SL 2 AC 6 PD 8 CDDC 16 Team members: MDB=Marco Delbo; PT= Paolo Tanga; PM=Patrick Michel; MM=Michael Mueller from(post-doc@UMR6202 1 visibility Cassiopée until 08/2011); HC=Humberto Campins; Size DH=Daniel Hestroffer; SL=Sebastiano Ligori; AC=Alberto Cellino; PD=post-doc recruited with ANR funds; CDDC=Non-permanent research position (CDD chercheur) financed through ANR; The time is given in terms of person/work/months. Volume 3.3.1 TÂCHEvisibility 1 / TASK 1as ASTRONOMICAL a function OBSERVATIONS AND DATA TREATMENT Task 1 includesof time all activities as the devoted to the acquisition of the astronomical observations needed for the project: for each of our targets, we will obtain interferometric observations; photometric lightcurves in visible light; thermal infrared fluxes; spectroscopic observations in the visibleasteroid and near infrared.
Recommended publications
  • Discovery of an Extreme Mass-Ratio Satellite of (41) Daphne in a Close Orbit
    Asteroids, Comets, Meteors (2008) 8370.pdf DISCOVERY OF AN EXTREME MASS-RATIO SATELLITE OF (41) DAPHNE IN A CLOSE ORBIT. W. J. Merline1, A. R. Conrad2, J. D. Drummond3, B. Carry4, C. Dumas4, P. M. Tamblyn1, C. R. Chapman1, W. M. Owen5, D. D. Durda1, R. D. Campbell2, R. W. Goodrich2. 1Southwest Research Institute, 1050 Walnut Street, Ste 300, Boulder, CO 80302,2W.M. Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, HI, 96743, 3Starfire Optical Range, Directed Energy Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117,4ESO Very Large (VLT), European Southern Observatory, Alonso de Cordova 3107, Vitacura Casilla 19001, Santiago 19, Chile, 5Jet Propulsion Laboratory, 301-150, 4800 Oak Grove Dr, Pasadena, CA 91109 Introduction. We report the discovery of a small we have only been able to make preliminary estimates satellite to large C-type asteroid (41) Daphne, using of the system parameters. From the single arc of the adaptive optics on Keck II. The satellite appears to orbit, we had at first estimate a semi-major axis of have the most extreme mass ratio (106) of any binary about 443 km, but revised estimates put it at closer to known. It is also in a particularly close orbit for this 405 km. The orbital period estimate on our first report class of binary. We consider how difficult is such a was 1.6 days, but this may be revised downward. The detection for large asteroids in the Main Belt, and what most unsual aspect is that this object appears to have consequences it may have for the main-belt binary the most extreme size ratio of any known binary.
    [Show full text]
  • Asteroid Shape and Spin Statistics from Convex Models J
    Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • ESO's VLT Sphere and DAMIT
    ESO’s VLT Sphere and DAMIT ESO’s VLT SPHERE (using adaptive optics) and Joseph Durech (DAMIT) have a program to observe asteroids and collect light curve data to develop rotating 3D models with respect to time. Up till now, due to the limitations of modelling software, only convex profiles were produced. The aim is to reconstruct reliable nonconvex models of about 40 asteroids. Below is a list of targets that will be observed by SPHERE, for which detailed nonconvex shapes will be constructed. Special request by Joseph Durech: “If some of these asteroids have in next let's say two years some favourable occultations, it would be nice to combine the occultation chords with AO and light curves to improve the models.” 2 Pallas, 7 Iris, 8 Flora, 10 Hygiea, 11 Parthenope, 13 Egeria, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 20 Massalia, 22 Kalliope, 24 Themis, 29 Amphitrite, 31 Euphrosyne, 40 Harmonia, 41 Daphne, 51 Nemausa, 52 Europa, 59 Elpis, 65 Cybele, 87 Sylvia, 88 Thisbe, 89 Julia, 96 Aegle, 105 Artemis, 128 Nemesis, 145 Adeona, 187 Lamberta, 211 Isolda, 324 Bamberga, 354 Eleonora, 451 Patientia, 476 Hedwig, 511 Davida, 532 Herculina, 596 Scheila, 704 Interamnia Occultation Event: Asteroid 10 Hygiea – Sun 26th Feb 16h37m UT The magnitude 11 asteroid 10 Hygiea is expected to occult the magnitude 12.5 star 2UCAC 21608371 on Sunday 26th Feb 16h37m UT (= Mon 3:37am). Magnitude drop of 0.24 will require video. DAMIT asteroid model of 10 Hygiea - Astronomy Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Hygiea is the fourth-largest asteroid (largest is Ceres ~ 945kms) in the Solar System by volume and mass, and it is located in the asteroid belt about 400 million kms away.
    [Show full text]
  • Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations*
    Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations* F. Marchisa,g, J.E. Enriqueza, J. P. Emeryb, M. Muellerc, M. Baeka, J. Pollockd, M. Assafine, R. Vieira Martinsf, J. Berthierg, F. Vachierg, D. P. Cruikshankh, L. Limi, D. Reichartj, K. Ivarsenj, J. Haislipj, A. LaCluyzej a. Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA. b. Earth and Planetary Sciences, University of Tennessee 306 Earth and Planetary Sciences Building Knoxville, TN 37996-1410 c. SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d. Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e. Observatorio do Valongo/UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f. Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil. g. Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h. NASA Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i. NASA/Goddard Space Flight Center, Greenbelt, MD 20771, United States j. Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, U.S.A * Based in part on observations collected at the European Southern Observatory, Chile Programs Numbers 70.C-0543 and ID 72.C-0753 Corresponding author: Franck Marchis Carl Sagan Center SETI Institute 189 Bernardo Ave. Mountain View CA 94043 USA [email protected] Abstract: We collected mid-IR spectra from 5.2 to 38 µm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups.
    [Show full text]
  • New Cases of Unusual Polarimetric Behavior in Asteroids
    A&A 482, 309–314 (2008) Astronomy DOI: 10.1051/0004-6361:20078965 & c ESO 2008 Astrophysics New cases of unusual polarimetric behavior in asteroids R. Gil-Hutton1,2, V. Mesa2, A. Cellino3, P. Bendjoya4, L. Peñaloza2,andF.Lovos2 1 Complejo Astronómico El Leoncito – CONICET, Av. España 1512 sur, J5402DSP San Juan, Argentina e-mail: [email protected] 2 Universidad Nacional de San Juan, J. I. de la Roza 590 oeste, 5400 Rivadavia, San Juan, Argentina 3 INAF, Osservatorio Astronomico di Torino, 10025 Pino Torinese (TO), Italy 4 Laboratoire Fizeau, UMR 6525 Université Nice Sophia Antipolis , Observatoire de la Côte d’Azur, CNRS, 06108 Nice Cedex 2, France Received 30 October 2007 / Accepted 5 February 2008 ABSTRACT Aims. Results of different polarimetric campaigns at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina are presented. The aim of these campaigns was to search for objects exhibiting anomalous polarimetric properties, similar to those shown by the Ld-class asteroid (234) Barbara, among members of the same or similar taxonomic classes. Methods. The data have been obtained with Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results. The campaigns began in 2005, and we found four new asteroids with Barbara-like polarimetric properties: the L-class objects (172) Baucis, (236) Honoria and (980) Anacostia, and the K-class asteroid (679) Pax. The polarimetric properties of the phase-polarization curves of these objects may be produced by a mixture of high- and low-albedo particles in their regolith as a result of the fragmentation of a substrate that is spectrally analog to the CO3/CV3 chondrites.
    [Show full text]
  • Dynamical Evolution of the Cybele Asteroids
    MNRAS 451, 244–256 (2015) doi:10.1093/mnras/stv997 Dynamical evolution of the Cybele asteroids Downloaded from https://academic.oup.com/mnras/article-abstract/451/1/244/1381346 by Universidade Estadual Paulista J�lio de Mesquita Filho user on 22 April 2019 V. Carruba,1‹ D. Nesvorny,´ 2 S. Aljbaae1 andM.E.Huaman1 1UNESP, Univ. Estadual Paulista, Grupo de dinamicaˆ Orbital e Planetologia, 12516-410 Guaratingueta,´ SP, Brazil 2Department of Space Studies, Southwest Research Institute, Boulder, CO 80302, USA Accepted 2015 May 1. Received 2015 May 1; in original form 2015 April 1 ABSTRACT The Cybele region, located between the 2J:-1A and 5J:-3A mean-motion resonances, is ad- jacent and exterior to the asteroid main belt. An increasing density of three-body resonances makes the region between the Cybele and Hilda populations dynamically unstable, so that the Cybele zone could be considered the last outpost of an extended main belt. The presence of binary asteroids with large primaries and small secondaries suggested that asteroid families should be found in this region, but only relatively recently the first dynamical groups were identified in this area. Among these, the Sylvia group has been proposed to be one of the oldest families in the extended main belt. In this work we identify families in the Cybele region in the context of the local dynamics and non-gravitational forces such as the Yarkovsky and stochastic Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effects. We confirm the detec- tion of the new Helga group at 3.65 au, which could extend the outer boundary of the Cybele region up to the 5J:-3A mean-motion resonance.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Instrumental Methods for Professional and Amateur
    Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A.
    [Show full text]
  • The British Astronomical Association Handbook 2017
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association.
    [Show full text]
  • Comet Hitchhiker
    Comet Hitchhiker NIAC Phase I Final Report June 30, 2015 Masahiro Ono, Marco Quadrelli, Gregory Lantoine, Paul Backes, Alejandro Lopez Ortega, H˚avard Grip, Chen-Wan Yen Jet Propulsion Laboratory, California Institute of Technology David Jewitt University of California, Los Angeles Copyright 2015. All rights reserved. Mission Concept - Pre-decisional - for Planning and Discussion Purposes Only. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and in part at University of California, Los Angeles. Comet Hitchhiker NASA Innovative Advanced Concepts Preface Yes, of course the Hitchhiker’s Guide to the Galaxy was in my mind when I came up with a concept of a tethered spacecraft hitching rides on small bodies, which I named Comet Hitchhiker. Well, this NASA-funded study is not exactly about traveling through the Galaxy; it is rather about exploring our own Solar System, which may sound a bit less exciting than visiting extraterrestrial civilizations, building a hyperspace bypass, or dining in the Restaurant at the End of the Universe. However, for the “primitive ape-descended life forms that have just begun exploring the universe merely a half century or so ago, our Solar System is still full of intellectually inspiring mysteries. So far the majority of manned and unmanned Solar System travelers solely depend on a fire breathing device called rocket, which is known to have terrible fuel efficiency. You might think there is no way other than using the gas-guzzler to accelerate or decelerate in an empty vacuum space.
    [Show full text]
  • Zákryt Jasné Hvězdy Saturnem
    Zákrytová a astrometrická sekce ČAS leden 2006 (1) Zajímavosti: NENECHTE SI UJÍT Zákryt jasné hv ězdy Saturnem 25. ledna 2006 ve čer mimo jiné i Evropu čeká velice zajímavá ř ě Č podívaná. Planeta Saturn okrášlená prstencem p řejde p řes relativn ě Situace, jak vypadá p i pohledu z hv zdy. asy udávané v malé vložené ě ě č jasnou hv ězdu a ze Zem ě budeme mít možnost sledovat nejen zákryt tabulce jsou platné pro Mainz (N mecko). Pro jiná místa v Evrop jsou asy v tabulce za článkem. stálice vlastní planetou, ale i její poblikávání za jednotlivými prstenci. Velice zajímavé bude jist ě pokusit se celý úkaz nahrát speciálními videokamerami v ohnisku dlouhofokálních teleobjektiv ů či dalekohled ů. Zajímavá a nevšední podívaná však čeká jist ě i na ty, kdo se na úkaz budou chtít pouze vizuáln ě podívat. Lednový zákryt hv ězdy Saturnem je jist ě zajímavou údálostí, ale nemá p říliš velkou publicitu. Úkaz bude viditelný z Evropy, Afriky a Asie. P řičemž z jižní Afriky bude možno sledovat pouze zákryty hv ězdy prstenci a zákryt vlastní planetou tuto oblast již mine. U nás, ve st řední Evrop ě, by úkaz m ěl za čít v 18:45 UT, kdy se hv ězda dostane k vn ějšímu okraji soustavy prstenc ů. V tom čase bude planeta již dostate čně vysoko nad východním obzorem (h=26°; A=92°). Zákryt Pr ůchod hv ězdy oblastí systému satelit ů planety Saturn p ři pohledu ze Země kotou čkem planety pak nastane v intervalu 20:08 UT (D – vstup) až 20:49 (R – (geocentrický pohled).
    [Show full text]
  • A Low Density of 0.8 G Cm-3 for the Trojan Binary Asteroid 617 Patroclus
    Publisher: NPG; Journal: Nature:Nature; Article Type: Physics letter DOI: 10.1038/nature04350 A low density of 0.8 g cm−3 for the Trojan binary asteroid 617 Patroclus Franck Marchis1, Daniel Hestroffer2, Pascal Descamps2, Jérôme Berthier2, Antonin H. Bouchez3, Randall D. Campbell3, Jason C. Y. Chin3, Marcos A. van Dam3, Scott K. Hartman3, Erik M. Johansson3, Robert E. Lafon3, David Le Mignant3, Imke de Pater1, Paul J. Stomski3, Doug M. Summers3, Frederic Vachier2, Peter L. Wizinovich3 & Michael H. Wong1 1Department of Astronomy, University of California, 601 Campbell Hall, Berkeley, California 94720, USA. 2Institut de Mécanique Céleste et de Calculs des Éphémérides, UMR CNRS 8028, Observatoire de Paris, 77 Avenue Denfert-Rochereau, F-75014 Paris, France. 3W. M. Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, Hawaii 96743, USA. The Trojan population consists of two swarms of asteroids following the same orbit as Jupiter and located at the L4 and L5 stable Lagrange points of the Jupiter–Sun system (leading and following Jupiter by 60°). The asteroid 617 Patroclus is the only known binary Trojan1. The orbit of this double system was hitherto unknown. Here we report that the components, separated by 680 km, move around the system’s centre of mass, describing a roughly circular orbit. Using this orbital information, combined with thermal measurements to estimate +0.2 −3 the size of the components, we derive a very low density of 0.8 −0.1 g cm . The components of 617 Patroclus are therefore very porous or composed mostly of water ice, suggesting that they could have been formed in the outer part of the Solar System2.
    [Show full text]