Assembly of Modern Mammal Community Structure Driven by Late Cretaceous Dental Evolution, Rise of Flowering Plants, and Dinosaur Demise
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reptile-Like Physiology in Early Jurassic Stem-Mammals
bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Reptile-like physiology in Early Jurassic stem-mammals Authors: Elis Newham1*, Pamela G. Gill2,3*, Philippa Brewer3, Michael J. Benton2, Vincent Fernandez4,5, Neil J. Gostling6, David Haberthür7, Jukka Jernvall8, Tuomas Kankanpää9, Aki 5 Kallonen10, Charles Navarro2, Alexandra Pacureanu5, Berit Zeller-Plumhoff11, Kelly Richards12, Kate Robson-Brown13, Philipp Schneider14, Heikki Suhonen10, Paul Tafforeau5, Katherine Williams14, & Ian J. Corfe8*. Affiliations: 10 1School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. 2School of Earth Sciences, University of Bristol, Bristol, UK. 3Earth Science Department, The Natural History Museum, London, UK. 4Core Research Laboratories, The Natural History Museum, London, UK. 5European Synchrotron Radiation Facility, Grenoble, France. 15 6School of Biological Sciences, University of Southampton, Southampton, UK. 7Institute of Anatomy, University of Bern, Bern, Switzerland. 8Institute of Biotechnology, University of Helsinki, Helsinki, Finland. 9Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland. 10Department of Physics, University of Helsinki, Helsinki, Finland. 20 11Helmholtz-Zentrum Geesthacht, Zentrum für Material-und Küstenforschung GmbH Germany. 12Oxford University Museum of Natural History, Oxford, OX1 3PW, UK. 1 bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 13Department of Anthropology and Archaeology, University of Bristol, Bristol, UK. 14Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK. -
A New Gobiconodontid Mammal from the Early Cretaceous of Spain and Its Palaeogeographic Implications
A new gobiconodontid mammal from the Early Cretaceous of Spain and its palaeogeographic implications Gloria Cuenca-Bescós and José I. Canudo Acta Palaeontologica Polonica 48 (4), 2003: 575-582 A new gobiconodontid from Vallipón (Teruel, Spain) represents the first record of this family in Europe. The site has a diverse fossil assemblage mainly composed of isolated bones and teeth probably accumulated by tidal action and water streams in an ancient beach of upper Barremian, in the transitional marine-continental sediments of the Artoles Formation. The new gobiconodontid consist of an isolated upper molar, smaller in size than that element in other gobiconodontids, with a robust cusp A, characterised by lateral bulges on each mesial and distal flanges of that cusp, and a discontinuous cingulum raised at the lingual side. The oclusal outline is smooth compared with Gobiconodon borissiaki, Gobiconodon hoburensis, or Gobiconodon ostromi. The Gobiconodontidae record is exclusively Laurasiatic. The oldest gobiconodontid fossil remains are Hauterivian; though their probable origin has to be found at the Late Jurassic in Central Asia (as inferred from derived character of the first gobiconodontids as well as phylogenetic relationships). At the end of the Early Cretaceous they expanded throughout Laurasia as indicated by findings in Asia, North America and Spain. Two dispersion events spread gobiconodontids: to the West (Europe) in the Barremian and to the East (North America) during the Aptian/Albian. Key words: Cretaceous, Barremian, Mammalia, Gobiconodontidae, Europe, palaeogeography. Gloria Cuenca−Bescós [[email protected]], José Ignacio Canudo [[email protected]], Area y Museo de Paleontología, Departamento de Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain. -
Dall'origine Della Vita Alla Comparsa Dell'uomo
ALFONSO BOSELLINI - I materiali della Terra solida STORIA della TERRA Oltre il libro VI Alfonso Bosellini - Le Scienze della Terra I materiali della Terra solida Dall’origine della vita alla comparsa dell’uomo Il Precambriano L’origine della vita L’esperimento di Miller Dall’atmosfera riducente all’atmosfera ossidante I fossili più antichi Il Fanerozoico Eventi geologici del Paleozoico Eventi biologici del Paleozoico Documento Il Paleozoico in Italia Eventi geologici del Mesozoico Eventi biologici del Mesozoico Documento Il Mesozoico in Italia Documento Le estinzioni di massa Eventi geologici del Cenozoico Eventi biologici del Cenozoico Documento Il Cenozoico in Italia OLTRE IL LIBRO O-LTIRV E CILo LmIBeR sOi -coVsI trDuaislcl’oonroig lien ec adretlel ag evoitgar aaflilcah ce o-mI Ctopapryalrisogah tBd ©eol2lv’0u1o2 mIlteao lon- BCtoavpoy lreignhdtat i©Etdio2to0r1e e2 Italo Bovolenta Editore Copyright © 2012 Italo Bovolenta editore s.r.l. Ferrara Questo documento è tratto dal volume «Alfonso Bosellini - LA TERRA DINAMICA E STORIA GEOLOGICA DELL ’I TALIA , Italo Bovolenta editore, Ferra - ra, 2009» e è strettamente riservato ai docenti che adottano l’opera «Alfonso Bosellini - I MATERIALI DELLA TERRA SOLIDA , Italo Bovolenta editore, Ferrara, 2012». Disegni: Andrea Pizzirani Stesura degli esercizi: Gino Bianchi, Annarosa Baglioni, Anna Ravazzi. Copertina: – Progetto grafico: Chialab, Bologna – Realizzazione: Christian Magagni La riproduzione, la copia e la diffusione dell’intero documento, o di sue parti, è autorizzata ai soli fini dell’utilizzo nell’attività didat - tica degli studenti delle classi che hanno adottato il testo. Per segnalazioni o suggerimenti scrivere all’indirizzo: Italo Bovolenta editore Via Della Ginestra, 227/1 44020 Ferrara tel. -
Enamel Ultrastructure of Multituberculate Mammals: an Investigation of Variability
CO?JTRIBI!TIONS FROM THE MUSEUM OF PALEOK.1-OLOCiY THE UNIVERSITY OF MICHIGAN VOL. 27. NO. 1, p. 1-50 April I, 1985 ENAMEL ULTRASTRUCTURE OF MULTITUBERCULATE MAMMALS: AN INVESTIGATION OF VARIABILITY BY SANDRA J. CARLSON and DAVID W. KRAUSE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRlBUTlONS FROM THE MUSEUM OF PALEON I OLOGY Philip D. Gingerich, Director Gerald R. Smith. Editor This series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan, 48109. VOLS. 11-XXVI. Parts of volumes may be obtained if available. Price lists available upon inquiry. CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN Vol . 27, no. 1, p. 1-50, pub1 ished April 1, 1985, Sandra J. Carlson and David W. Krause (Authors) ERRATA Page 11, Figure 4 caption, first line, should read "(1050X)," not "(750X)." ENAMEL ULTRASTRUCTURE OF MULTITUBERCULATE MAMMALS: AN INVESTIGATION OF VARIABILITY BY Sandra J. Carlsonl and David W. Krause' Abstract.-The nature and extent of enamel ultrastructural variation in mammals has not been thoroughly investigated. In this study we attempt to identify and evaluate the sources of variability in enamel ultrastructural patterns at a number of hierarchic levels within the extinct order Multituberculata. -
AMERICAN MUSEUM NOVITATES Published by Number 267 Tnz AMERICAN Musumof Natural History April 30, 1927
AMERICAN MUSEUM NOVITATES Published by Number 267 Tnz AMERICAN MUsuMOF NATuRAL HIsTORY April 30, 1927 56.9(117:78.6) MAMMALIAN FAUNA OF THE HELL CREEK FORMATION OF MONTANA BY GEORGE GAYLORD SIMPSON In 1907, Barnum Brown' announced the discovery, in the Hell Creek beds of Montana, of a small number of mammalian teeth. He then listed only Ptilodus sp., Meniscoessus conquistus Cope and Menisco8ssus sp., without description. In connection with recent work on the mammals of the Paskapoo formation of Alberta, this collection was referred to the writer for further study through the kindness of Mr. Brown and of Dr. W. D. Matthew, and a brief consideration of it is here presented. The material now available consists of two lots, one collected in 1906 by Brown and Kaisen, the other part of the Cameron Collection. The latter has no definite data as to locality save "the vicinity of Forsyth, Montana, and Snow Creek," and is thus from a region intermediate between the locality of the other Hell Creek specimens and that of the Niobrara County, Wyoming, Lance, but much nearer the former. Brown's collection is from near the head of Crooked Creek, in Dawson County, about eleven miles south of the Missouri River, Crooked Creek joining the latter about four miles northeast of the mouth of Hell Creek, along which are the type exposures of the formation. The mammals agree with the other palaeontological data in being of Lance age, although slightly different in detail from the Wyoming Lance fauna. The only localities now known for mammals of Lance age are the present ones, the classical Niobrara County Lance outcrops whence came all of Marsh's specimens, and an unknown point or points in South Dakota where Wortman found the types of Meniscoessus conquistus Cope and Thlzeodon padanicus Cope. -
The Ontogeny and Distribution of Countershading in Colonies of the Naked Mole-Rat (Heterocephalus Glaber)
J. Zool., Lond. (2001) 253, 351±357 # 2001 The Zoological Society of London Printed in the United Kingdom The ontogeny and distribution of countershading in colonies of the naked mole-rat (Heterocephalus glaber) Stanton Braude1*, Deborah Ciszek2, Nancy E. Berg3 and Nancy Shefferly4 1 International Center for Tropical Ecology at UMSL and Washington University, St Louis, MO 63130, U.S.A. 2 University of Michigan, Ann Arbor, MI 48109-1079, U.S.A. 3 Washington University, St Louis, MO 63130, U.S.A. 4 Oakland Community College, Farmington Hills, MI 48334, U.S.A. (Accepted 22 February 2000) Abstract Most naked mole-rats Heterocephalus glaber are countershaded, with purple-grey dorsal but pale pink ventral skin. The exceptions to this coloration pattern are uniformly pink, and include newborn pups, most queens and breeding males, and very old animals. Countershading begins to appear at 2±3 weeks of age and begins to disappear at c. 7 years of age. Countershading may provide camou¯age when young naked mole-rats are above ground attempting to disperse. Therefore, reproductives and older workers may lose this coloration once they are unlikely to leave the burrow. Alternative hypotheses for pigmentation that we considered include: thermoregulation, and protection from abrasion or from damaging ultraviolet radiation. These hypotheses are not necessarily mutually exclusive, but do lead to different predictions regarding the development of pigmentation and which colony members should be countershaded. Key words: Heterocephalus glaber, naked mole-rat, countershading, adaptive coloration INTRODUCTION and tail, rows of brushes between the toes, and scattered bristles (Thigpen, 1940; Daly & Buffenstein, 1998). -
Using Dental Enamel Wrinkling to Define Sauropod Tooth Morphotypes from the Cañadón Asfalto Formation, Patagonia, Argentina
RESEARCH ARTICLE Using Dental Enamel Wrinkling to Define Sauropod Tooth Morphotypes from the Cañadón Asfalto Formation, Patagonia, Argentina Femke M. Holwerda1,2,3*, Diego Pol4,5, Oliver W. M. Rauhut1,3 1 Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB), Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany, 2 GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, Caparica, Portugal, 3 Department of Earth and Environmental Sciences and GeoBioCenter, Ludwig Maximilians Universität, München, Germany, 4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina, 5 Museo Paleontológico Egidio Feruglio, Trelew, Argentina * [email protected] Abstract OPEN ACCESS The early Middle Jurassic is regarded as the period when sauropods diversified and be- Citation: Holwerda FM, Pol D, Rauhut OWM (2015) came major components of the terrestrial ecosystems. Not many sites yield sauropod mate- Using Dental Enamel Wrinkling to Define Sauropod Tooth Morphotypes from the Cañadón Asfalto rial of this time; however, both cranial and postcranial material of eusauropods have been Formation, Patagonia, Argentina. PLoS ONE 10(2): found in the Cañadón Asfalto Formation (latest Early Jurassic–early Middle Jurassic) in e0118100. doi:10.1371/journal.pone.0118100 Central Patagonia (Argentina), which may help to shed light on the early evolution of Academic Editor: Peter Dodson, University of eusauropods. These eusauropod remains include teeth associated with cranial and man- Pennsylvania, UNITED STATES dibular material as well as isolated teeth found at different localities. In this study, an assem- Received: September 1, 2014 blage of sauropod teeth from the Cañadón Asfalto Formation found in four different Accepted: January 7, 2015 localities in the area of Cerro Condor (Chubut, Argentina) is used as a mean of assessing sauropod species diversity at these sites. -
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
Mammalian Origins Major Groups of Synapsida
Mammalogy 4764 9/16/2009 Chapter 4 “Reptile” Mammalian Origins Early mammal Carnivore Amniota Herbivore Feldhamer Table 4.1 Savage and Long 1986 Major Fig. 3.2, Vaughn, Fig. 4.1, Feldhamer groups Mammalian Origins of Dimetrodon Overview Synapsida Synapsids Pelycosaurs and Therapsids First Mammals Mesozoic Era appear Feldhamer Fig. 4.2 Cenozoic Era radiate Savage and Long 1986 Pelycosaur Skull, jaw musculature, and teeth Cynodontia -- Advanced, predaceous therapsids Pelycosaur Scymnognathus Cynognathus Therapsid Early Cynodont Derived Therapsid/Mammal Primitive Late Cynodont Fig. 3.2, Vaughn Thrinaxodon Fig 4.3 & 4, Feldhamer 1 Mammalogy 4764 9/16/2009 Skeletal transition Extinction of Cynodonts Possibly competition from dinosaurs Pelycosaur Early Cynodonts were dog-size, last surviving were squirrel sized Fig. 4.15 Mammals that survived while Cynodonts went extinct (contemporary) were mouse-sized. Cynodont Thrinaxodon Modern Mammal Fig. 3.5, Vaughn Fig. 4.16c, Early Cynodont Early mammals Changes in land masses Feldhamer 4.11 200 - 250 million years ago Derived characters: Dentary/squamosal jaw articulation Diphyodont dentition 200 MYA 180 MYA Mammary glands Secondary palate Early Mid- Viviparity (loss of eggshell) When? Jurassic Jurassic 65 MYA 135 MYA Early Early Cretaceous Cenozoic Feldhamer 4.5, 4.9 Skull and teeth of mammals 2 Mammalogy 4764 9/16/2009 Teeth and Dentition of Mammals Teeth Heterodont teeth with different functions Differentiated on the basis of function, resulting in increased One of the major keys efficiency acquiring and digesting food. to success of mammals Teeth occur in 3 bones of skull: Teeth of mammals are premaxilla, maxilla, dentary extremely variable with different diets -- more than other taxa Feldhamer et al. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
Morphology and Burrowing Energetics of Semi-Fossorial Skinks (Liopholis Spp.) Nicholas C
© 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 2416-2426 doi:10.1242/jeb.113803 RESEARCH ARTICLE Morphology and burrowing energetics of semi-fossorial skinks (Liopholis spp.) Nicholas C. Wu1,*, Lesley A. Alton1, Christofer J. Clemente1, Michael R. Kearney2 and Craig R. White1 ABSTRACT mouse (Notomys alexis), can expend 5000 times more energy −1 −1 Burrowing is an important form of locomotion in reptiles, but no study burrowing than running (7.1 kJ m compared with 1.2 J m ; has examined the energetic cost of burrowing for reptiles. This is White et al., 2006b). Despite the considerable energetic cost, significant because burrowing is the most energetically expensive burrowing has many benefits. These include food storage, access to mode of locomotion undertaken by animals and many burrowing underground food, a secure micro-environment free from predators species therefore show specialisations for their subterranean lifestyle. and extreme environmental gradients (Robinson and Seely, 1980), We examined the effect of temperature and substrate characteristics nesting (Seymour and Ackerman, 1980), hibernation (Moberly, (coarse sand or fine sand) on the net energetic cost of burrowing 1963) and enhanced acoustics to facilitate communication (Bennet- (NCOB) and burrowing rate in two species of the Egernia group of Clark, 1987). skinks (Liopholis striata and Liopholis inornata) compared with other Animals utilise a range of methods to burrow through soil, burrowing animals. We further tested for morphological specialisations depending on soil characteristics (density, particle size and moisture among burrowing species by comparing the relationship between content) and body morphology (limbed or limbless). -
The Oldest Platypus and Its Bearing on Divergence Timing of the Platypus and Echidna Clades
The oldest platypus and its bearing on divergence timing of the platypus and echidna clades Timothy Rowe*†, Thomas H. Rich‡§, Patricia Vickers-Rich§, Mark Springer¶, and Michael O. Woodburneʈ *Jackson School of Geosciences, University of Texas, C1100, Austin, TX 78712; ‡Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia; §School of Geosciences, PO Box 28E, Monash University, Victoria 3800, Australia; ¶Department of Biology, University of California, Riverside, CA 92521; and ʈDepartment of Geology, Museum of Northern Arizona, Flagstaff, AZ 86001 Edited by David B. Wake, University of California, Berkeley, CA, and approved October 31, 2007 (received for review July 7, 2007) Monotremes have left a poor fossil record, and paleontology has broadly affect our understanding of early mammalian history, been virtually mute during two decades of discussion about with special implications for molecular clock estimates of basal molecular clock estimates of the timing of divergence between the divergence times. platypus and echidna clades. We describe evidence from high- Monotremata today comprises five species that form two resolution x-ray computed tomography indicating that Teinolo- distinct clades (16). The echidna clade includes one short-beaked phos, an Early Cretaceous fossil from Australia’s Flat Rocks locality species (Tachyglossus aculeatus; Australia and surrounding is- (121–112.5 Ma), lies within the crown clade Monotremata, as a lands) and three long-beaked species (Zaglossus bruijni, Z. basal platypus. Strict molecular clock estimates of the divergence bartoni, and Z. attenboroughi, all from New Guinea). The between platypus and echidnas range from 17 to 80 Ma, but platypus clade includes only Ornithorhynchus anatinus (Austra- Teinolophos suggests that the two monotreme clades were al- lia, Tasmania).