Polyvinylpyrrolidone Resin Dispersion'

Total Page:16

File Type:pdf, Size:1020Kb

Polyvinylpyrrolidone Resin Dispersion' May 29, 1962 R. c. MARTIN . 3,036,950 I, PROCESS FOR INCORPORATING RESINS INTO PAPER 1 Filed June 22, 1959 AQuEous SLURRY OF BEATEN CELLULOSE Fl BER POLYVINYLPYRROLIDONE ADDED AND DISPERSED INTO SLURRY \NSOLUBILIZER ADDED AND DISPERSED INTO SLURRY RESIN DISPERSION‘ ADDED AND DISPERSED INTO SLURRY OTHER ?Luzrzs AND MoDmERs ADDED AND DISPERSED lm-o SLDRRY PAPER FORMED AND DRIED if. 3,036,950 United tates Patent Patented May 29, 1962 1 2 the form of an aqueous dispersion such as a suspension, 3,036,950 PROCESS FOR INCQRPORATING RESINS colloidal solution, or true solution. When they are added INTO PAPER to the polyvinylpyrrolidone-treated pulp slurry they are Ray C. Martin, Freeport, Ill., assiguor to Burgess Cel drawn to and are caused to be deposited uniformly on the lulose Company, Freeport, 111., a corporation of Dela treated pulp. The modi?ed pulp furnish may then be ware processed in a normal manner to produce the ?nished Filed June 22, 1959, Ser. No. 821,724 paper or board end product. 12 Claims. (Cl. 162-165) The drawing contains a flow diagram of the process of the invention. This invention relates to the art of paper making, and A further improvement may be realized by adding an more particularly refers to a novel method for incorpo acidic insolubilizing agent to the slurry containing the rating resins and other additive materials into papermaking polyvinylpyrrolidone-treated pulp, and thoroughly mixing pulps at that point of the paper making process generally the slurry. The insolubilizing agent aids in setting or in termed as the “wet end,” and to the novel products pro~ solubilizing of the polyvinylpyrrolidone, and enhances the duced thereby. 15 coupling action of the polyvinylpyrrolidone between the Unmodi?ed paper and paper board made by conven pulp and the subsequently added resin. The preferred tional methods have many limitations. The products are material is the linear copolymer of methylvinylether and weak, permeable to water, oil and grease, and lack many maleic anhydride, or the half amide thereof. of the properties generally desired in a ?nished paper prod The incorporation of a resin during the paper making uct. To improve its properties, modifying or reinforc process has several attractive potentialities. Because the ing materials such as resins, pigments, ?llers and other addition is accomplished during the making of the paper, related materials are customarily added to the paper. the additional steps of coating or impregnating of the The majority of processes currently used for incorpo ?nished paper and its attendant cost is avoided. More rating these materials into paper may be characterized as over, because the resin is incorporated while the ?bers secondary operations, that is, they are methods for treat 25 are separated, an extremely uniform dispersion of the resin ing the paper after the paper itself has been fabricated. about the ?bers can result. It has been attempted in the Such secondary operations, or applications of the modify past to provide a process wherein a resin introduced in an ing materials made to the basic paper, usually from solvent aqueous media in a paper beater would be absorbed by or hot~melt systems, succeed at best only in applying .a the pulp, leaving clear Water substantially free from resin. ?lm of the modifying material on the paper surface, and However, these efforts have not been successful in view of ?lling the interstices, but do not succeed in causing the the fact that only a small portion of the resin has been ?ilers to penetrate the ?bers themselves, since the ?bers and retained in the ?nal paper, while the major proportion additives are electrically repellent to each other. As a thereof has been lost when the water is removed during result, the full bene?t of the modifying agent is not real the paper making process. ized. Moreover, the addition of a separate treating step 35 The present process is dependent upon the discovery adds to the cost of processing. Even where wet-end that when an aqueous solution of Polyvinylpyrrolidone is processes have been used, complete retention of the addi introduced into a pulp slurry which has been adequately tive by the pulp has not been achieved, with the result that beaten it becomes deposited on the cellulose ?bers and the excess additive is generally removed in the form of strongly attached thereto. The exact nature of the reac unattached particles, which, together with the “?nes” from 40 tion or mechanism responsible for this phenomenon is the process, frequently cloud the water and render it non not fully known. It is believed that the functional group reusable. of the polyvinylpyrrolidone reacts with the functional It is an object of the present invention to provide a group of the cellulose molecules to form a bond in the process for the incorporation of resins and other modify nature of that of an addition compound. In actual prac ing materials in an aqueous mediinn into papermaking 45 tice, the Polyvinylpyrrolidone migrates to the cellulose pulp in the wet-end stage of the paper making process. ?bers and becomes ?rmly attached thereon. When an It is a further object to provide such a process wherein additive material such as a phenolic resin in aqueous dis the resins and other additives are removed from the aque persion is subsequently introduced into the slurry, it is ous medium in which they are applied, and are tenacious believed that a similar reaction takes place between a ly deposit-ed upon the individual pulp ?bers. 50 functional group of the resin molecule and a functional It is still further an object to provide such a process group of the polyvinylpyrrolidone. The polyvinylpyrro wherein modi?ed papers are produced in which the mod lidone in effect becomes a cross-linking or coupling agent ifying substance is uniformly dispersed throughout the for the cellulose-resin system. This phenomenon can be paper. easily observed, since, immediately after the addition of It is a further object to provide modi?ed paper mate— 55 the aqueous resin dispersion or other modifying agent in rials which, while having the same modifying agent or to the polyvinylpyrrolidone-treated pulp slurry, substan additive content, exhibit greatly enhanced properties over tially all of it is removed from the aqueous solution and products made by other methods. deposited on the pulp ?bers, leaving the water clear. In It is a further object to provide various useful modi?ed fact, so pure is the water that it may be reused in the paper products produced by the methods of the present paper making process without further puri?cation. invention. Polyvinylpyrrolidone is an acetylene derivative manu Other objects and advantages of the present invention factured by the so-called “Reppe” high pressure and tem will become apparent from the description which follows, perature technique. It is a water-soluble homopolymer and from the appended claims. of N~vinylpyrrolidone, having the following structure: According to the present invention, polvinylpyrrolidone 65 in aqueous solution is added and thoroughly mixed into an aqueous slurry of papermaking pulp which has been ?rst beaten in the usual manner. The Polyvinylpyrro lidone is adsorbed on the surface of the pulp ?ber and functions as a coupling agent for the attachment of mod ifying resins and other additaments. The modifying ma terials are of such nature that they may be provided in Polyvinylpyrrolidone is a white, free-?owing powder 3,036,950 3 A. having in?nite solubility in water. It is presently com ing the lower viscosity is preferred. The chemical struc mercially available in molecular weights of 40,000, 160, ture of the half-amide form is as follows: 000 and 360,000. The polymers having the lowest molec ular weight are preferred since they require less water for dilution. In the interests of convenience, polyvinyl pyrrolidone will hereafter in the speci?cation be referred to as PVP, its customary abbreviation. In ‘the present process, the ?ber treating or coupling PVP acts somewhat like a complexing agent and will ' agents and the modifying materials, comprising resins, are combine with various materials which are used as modi added to the pulp slurry from aqueous systems. Conse fying agents for the pulp, resulting in the formation of 10 quently, they must be water-dispersible. Since the cou homogeneous mixtures. The most important of these are pling agents themselves are in?nitely soluble in water, resins. In addition to resins, other additive materials may be incorporated such as pigments or ?llers, synthetic ?bers they are introduced in the form of an aqueous solution. such as acrylic, polyester, and polyamide ?bers, and in .Where the modifying materials are themselves dispersible 15 in water, as in the case of water-dispersible phenolic resins organic ?bers and flakes such as glass, mica, silica, as the dispersion may be added to the pulp slurry. Where bestos, metallic powder, and other related materials. .they are not directly water-dispersible, they must be ?rst The copolymer of vinylmethylether and maleic an hydride, which will hereafter in the speci?cation in the conditioned, such as by forming into an aqueous emulsion, . suspension or colloidal solution, or other suitable form. interests of convenience be designated by its customary In carrying out the present process, the pulp is ?rst abbreviation as PVM/ MA, is a linear copolymer consist 20 ing of alternating vinylmethylether and maleic anhydride beaten to the desired freeness according to prior art meth ods and standards. During the beating operation, the units, and has the following general structure: rolling, shearing and cutting action to which the pulp is ‘subjected, exposes large surface areas of the ?bers, and 25 produces many ?brillae to which the coupling agents sub .
Recommended publications
  • Activity of Povidone in Recent Biomedical Applications with Emphasis on Micro- and Nano Drug Delivery Systems
    pharmaceutics Review Activity of Povidone in Recent Biomedical Applications with Emphasis on Micro- and Nano Drug Delivery Systems Ewelina Waleka 1,2 , Zbigniew Stojek 1 and Marcin Karbarz 1,* 1 Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Zwirki˙ i Wigury Av., PL 02-089 Warsaw, Poland; [email protected] (E.W.); [email protected] (Z.S.) 2 Faculty of Chemistry, Warsaw University of Technology, 1 Pl. Politechniki Av., PL 00-661 Warsaw, Poland * Correspondence: [email protected] Abstract: Due to the unwanted toxic properties of some drugs, new efficient methods of protection of the organisms against that toxicity are required. New materials are synthesized to effectively disseminate the active substance without affecting the healthy cells. Thus far, a number of poly- mers have been applied to build novel drug delivery systems. One of interesting polymers for this purpose is povidone, pVP. Contrary to other polymeric materials, the synthesis of povidone nanoparticles can take place under various condition, due to good solubility of this polymer in several organic and inorganic solvents. Moreover, povidone is known as nontoxic, non-carcinogenic, and temperature-insensitive substance. Its flexible design and the presence of various functional groups allow connection with the hydrophobic and hydrophilic drugs. It is worth noting, that pVP is regarded as an ecofriendly substance. Despite wide application of pVP in medicine, it was not often selected for the production of drug carriers. This review article is focused on recent reports on the role povidone can play in micro- and nano drug delivery systems.
    [Show full text]
  • Polyvinylpyrrolidone
    POLYVINYLPYRROLIDONE Prepared at the 30th JECFA (1986), published in FNP 37 (1986) and in FNP 52 (1992). Metals and arsenic specifications revised at the 63rd JECFA (2004). An ADI of 0-50 mg/kg bw was established at the 30th JECFA (1986) SYNONYMS Povidone, PVP; INS No. 1201 DEFINITION Chemical names Polyvinylpyrrolidone, poly-[1-(2-oxo-1-pyrrolidinyl)- ethylene] C.A.S. number 9003-39-8 Chemical formula (C6H9NO)n Structural formula Formula weight Lower molecular weight range product: about 40 000 Higher molecular weight range product: about 360 000 Assay Not less than 12.2% and not more than 13.0% of Nitrogen (N) on the anhydrous basis DESCRIPTION White to tan powder; supplied in two molecular weight forms; the molecular weight value is an average molecular weight for the two forms FUNCTIONAL USES Clarifying agent, stabilizer, bodying agent, tableting adjunct, dispersing agent CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Soluble in water, in ethanol and in chloroform; insoluble in ether pH (Vol. 4) 3.0 - 7.0 (5% soln) Precipitate formation To 5 ml of a 1 in 50 solution of the sample add 5 ml of dilute hydrochloric acid TS, 5 ml of water and 2 ml of 1 in 10 solution of potassium dichromate. A yellow precipitate forms. Add 5 ml of a 1 in 50 solution of the sample to 75 mg of cobalt nitrate and 0.3 g of ammonium thiocyanate dissolved in 2 ml of water, mix and acidify with dilute hydrochloric acid TS. A pale blue precipitate forms. To 5 ml of a 1 in 50 solution of the sample add 1 ml of 25% hydrochloric acid and 5 ml of 5% barium chloride solution and 1 ml of 5% phosphomolybdotungstic acid solution.
    [Show full text]
  • Agrimer™ Polyvinylpyyrolidone (PVP)
    agrimer ™ polyvinylpyyrolidone (PVP) binder, dispersant rheology, modifier, film former, complexing agent Agrimer™ polyvinylpyrrolidone (PVP) this brochure is divided into two main segments suggested applications General properties and uses 2-10 ¢ complexing agent Agricultural case studies 10 ¢ stabilizers / co-dispersants These case studies highlight the uses of Agrimer™ ¢ binders in dry / wet granulation and extrusion (dry compaction / fluidized-bed spray drying process) polymers in seed coatings, granule and tablet binders and as dispersants. ¢ film-forming agents / binders in seed coatings, dips and pour-ons general properties and uses ¢ biological stabilization ¢ water binding / anti-transpiration properties Agrimer™ PVP products are linear, non-ionic polymers that are soluble in water and many organic solvents. ¢ solubility enhancers via co-precipitation or They are pH stable, and have adhesive, cohesive thermal extrusion and binding properties. The unique ability to adsorb ¢ dye-binding agent on a host of active ingredients makes Agrimer™ PVP regulatory status homopolymers preferred co-dispersants in many The Agrimer™ PVP products listed in this brochure are formulations. Agrimer™ homopolymers have a high exempt from the requirement of a tolerance under glass transition temperature. 40 CFR 180.960. Lower molecular weight (Mw) Agrimer™ polymers (Agrimer™ 15 and Agrimer™ 30) are suitable for physical and chemical properties applications where dusting is a concern, such as The Agrimer™ polymers, a family of homopolymers of seed coatings and agglomeration. Higher Mw polyvinylpyrrolidone, are available in different viscosity Agrimer™ polymers (Agrimer™ 90 and Agrimer™ 120) can grades, ranging from very low to very high molecular build formulation viscosity faster and provide excellent weight. This range, coupled with their solubility in binding and film forming properties.
    [Show full text]
  • Investigation of Poly(Vinyl Pyrrolidone) in Methanol by Dynamic Light Scattering and Viscosity Techniques
    http://www.e-polymers.org e-Polymers 2007, no. 020 ISSN 1618-7229 Investigation of Poly(vinyl pyrrolidone) in methanol by dynamic light scattering and viscosity techniques Adel Aschi*, Mohamed Mondher Jebari and Abdelhafidh Gharbi Laboratoire de Physique de la Matière Molle, Faculté des Sciences de Tunis, Campus Universitaire, 1060, Tunisia; Fax +216.71.885.073; email : aschi13@ yahoo.fr (Received: 17 November, 2006; published: 16 February, 2007) Abstract: The behavior of poly(vinyl pyrrolidone) (PVP) in methanol was examined using several independent methods. The hydrodynamic radius (Rh) of individual samples, over a range of molecular weights (10,000–360,000), was determined using dynamic light scattering (DLS) measurements. Dynamic Light Scattering (DLS) techniques directly probe such dynamics by monitoring and analyzing the pattern of fluctuations of the light scattered from polymer molecules. Some viscosity measurements were also performed to complete the DLS measurements and to provide more information on the particle structure. The results obtained with PVP–methanol system showed that plotting the variation of intrinsic viscosity versus the logarithm of the molecular mass of this polymer, we observe one crossover point. This crossover point appears when we reach the Θ-solvent behavior and delimit two molecular mass regions. The second order least-squares regression was used as an approach and was in excellent agreement with viscometric experimental results. Keywords: DLS, Hydrodynamic radius, intrinsic viscosity. Introduction Polymers are frequently employed in many industrial and pharmaceutical applications. As a result, this has prompted a large volume of fundamental studies to understand the kinetic equilibrium, structural, and rheological properties of many different systems.
    [Show full text]
  • Trade Names and Manufacturers
    Appendix I Trade names and manufacturers In this appendix, some trade names of various polymeric materials are listed. The list is intended to cover the better known names but it is by no means exhaustive. It should be noted that the names given may or may not be registered. Trade name Polymer Manufacturer Abson ABS polymers B.F. Goodrich Chemical Co. Acrilan Polyacrylonitrile Chemstrand Corp. Acrylite Poly(methyl methacrylate) American Cyanamid Co. Adiprene Polyurethanes E.I. du Pont de Nemours & Co. Afcoryl ABS polymers Pechiney-Saint-Gobain Alathon Polyethylene E.I. du Pont de Nemours & Co. Alkathene Polyethylene Imperial Chemical Industries Ltd. Alloprene Chlorinated natural rubber Imperial Chemical Industries Ltd. Ameripol cis-1 ,4-Polyisoprene B.F. Goodrich Chemical Co. Araldite Epoxy resins Ciba (A.R.L.) Ltd. Arnel Cellulose triacetate Celanese Corp. Arnite Poly(ethylene terephthalate) Algemene Kunstzijde Unie N.Y. Baypren Polychloroprene Farbenfabriken Bayer AG Beetle Urea-formaldehyde resins British Industrial Plastics Ltd. Ben vic Poly(vinyl chloride) Solvay & Cie S.A. Bexphane Polypropylene Bakelite Xylonite Ltd. Butacite Poly( vinyl butyral) E.I. du Pont de Nemours & Co. Butakon Butadiene copolymers Imperial Chemical Industries Ltd. Butaprene Styrene-butadiene copolymers Firestone Tire and Rubber Co. Butvar Poly(vinyl butyral) Shawinigan Resins Corp. Cap ran Nylon 6 Allied Chemical Corp. Carbowax Poly(ethylene oxide) Union Carbide Corp. Cariflex I cis-1 ,4-Polyisoprene Shell Chemical Co. Ltd. Carina Poly(vinyl chloride) Shell Chemical Co. Ltd. TRADE NAMES AND MANUFACTURERS 457 Trade name Polymer Manufacturer Carin ex Polystyrene Shell Chemical Co. Ltd. Celcon Formaldehyde copolymer Celanese Plastics Co. Cellosize Hydroxyethylcellulose Union Carbide Corp.
    [Show full text]
  • Exfoliation of Graphite with Deep Eutectic Solvents
    (19) TZZ¥ZZ_T (11) EP 3 050 844 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 03.08.2016 Bulletin 2016/31 C01B 31/00 (2006.01) B82Y 30/00 (2011.01) (21) Application number: 14849900.7 (86) International application number: PCT/ES2014/070652 (22) Date of filing: 12.08.2014 (87) International publication number: WO 2015/044478 (02.04.2015 Gazette 2015/13) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • DE MIGUEL TURULLOIS, Irene GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 28006 Madrid (ES) PL PT RO RS SE SI SK SM TR • HERRADÓN GARCÍA, Bernardo Designated Extension States: 28006 Madrid (ES) BA ME • MANN MORALES, Enrique Alejandro 28006 Madrid (ES) (30) Priority: 24.09.2013 ES 201331382 • MORALES BERGAS, Enrique 28006 Madrid (ES) (71) Applicant: Consejo Superior de Investigaciones Cientificas (74) Representative: Cueto, Sénida (CSIC) SP3 Patents S.L. 28006 Madrid (ES) Los Madroños, 23 28891 Velilla de San Antonio (ES) (54) EXFOLIATION OF GRAPHITE WITH DEEP EUTECTIC SOLVENTS (57) The invention relate to graphite materials, and more specifically to the exfoliation of graphite using deep eutectic solvents, to methods related thereto, to polymer- ic composite materials containing graphene and the methodsfor the production thereof, andto graphene/met- al, exfoliated graphite/metal, graphene/metal oxide and exfoliated graphite/metal oxide composite materials and the methods for the production thereof. EP 3 050 844 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 050 844 A1 Description Field of the Invention 5 [0001] The present invention relates to graphitic materials, and more specifically to exfoliation of graphite using deep eutectic solvents, methods related to it, polymeric composites with exfoliated graphite/graphene, composites graph- ene/metal, exfoliated graphite/metal, graphene/metal oxide and exfoliated graphite/metal oxide, and methods for their preparation.
    [Show full text]
  • Preparation of Polyvinylpyrrolidone Or Vinyl-Pyrrolidone/Vinyl Acetate Copolymers of Various Molecular Weights Using a Single Initiator System
    European Patent Office iy Publication number: 0 104 042 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION © Application number: 83305356.4 © Int. CI.3: C 08 F 26/10 © Date of filing: 13.09.83 © Priority: 20.09.82 US 419869 © Applicant: GAF CORPORATION 20.09.82 US 419870 140 West 51st Street New York New York 10020(US) © Date of publication of application: © Inventor: Barabas, Eugene S. 28.03.84 Bulletin 84/13 41 Stanie Brae Drive Watchung New Jersey 07060{US) @ Designated Contracting States: CH DE FR GB LI © Inventor: Cho, James R. 50 Powder Mill Lane Oakland New Jersey 07436(US) © Representative: Ford, Michael Frederick et al, MEWBURN ELUS & CO. 213 Cursitor Street London EC4A1BQIGB) © Preparation of polyvinylpyrrolidone or vinyl-pyrrolidone/vinyl acetate copolymers of various molecular weights using a single initiator system. @\sj) Vinylpyrrolidone or vinylpyrrolidone and vinyl acetate monomers are polymerized using free radical initiator con- sisting of t-Butylperoxypivalate and preferably in solvent consisting essentially of water, isopropyl alcohol, sec. butyl alcohol or mixtures thereof to produce polyvinylpyrrolidone or vinylpyrrolidone/vinyl acetate copolymer. CM < CM O o o 0. UJ Croydon Priming Company Ltd Background of the Invention Polymerization of N-vinyl-2-pyrrolidone (vinylpyrrolidone) and vinyl acetate by free radical mechanisms to form vinylpyrrolidone/vinyl acetate copolymer (PVP/VA) is well known and is described for instance in U. S. patent 2,667,473. Polymerization of N-vinyl-2-pyrrolidone (vinylpyrrolidone) by free radical mechanisms to form polyvinylpyrrolidone (PVP) is also well known and is described for instance in U. S. patents 4,058,655, 4,053,696 and 3,862,915.
    [Show full text]
  • Anaphylaxis to Polyvinylpyrrolidone in Eye Drops Administered To
    263 Practitioner's Corner 11. Fedorowski A, Li H, Yu X, Koelsch KA, Harris VM, Liles C, et al. Antiadrenergic autoimmunity in postural tachycardia Anaphylaxis to Polyvinylpyrrolidone in Eye Drops syndrome. Europace. 2017;19:1211-9. Administered to an Adolescent 12. Blitshteyn S, Brook J. Postural tachycardia syndrome (POTS) with anti-NMDA receptor antibodies after human Liccioli G, Mori F, Barni S, Pucci N, Novembre E papillomavirus vaccination. Immunol Res. 2016;65:1-3. Allergy Unit, Department of Pediatrics, University of Florence, 13. Gibbons CH, Vernino S a, Freeman R. Combined Anna Meyer Children’s University Hospital, Florence, Italy immunomodulatory therapy in autoimmune autonomic ganglionopathy. Arch Neurol. 2008;65:213-7. doi:10.1001/ J Investig Allergol Clin Immunol 2018; Vol. 28(4): 263-265 archneurol.2007.60. doi: 10.18176/jiaci.0252 Key words: Anaphylaxis. Polyvinylpyrrolidone. Adolescent. Palabras clave: Anafilaxia. Polivinilpirrolidona. Adolescente. Manuscript received December 5, 2017; accepted for publication March 5, 2018. Sinisa Savic Department of Clinical Immunology and Allergy Polyvinylpyrrolidone (PVP) is a polymer derived from St James University the monomer N-vinylpyrrolidone, an organic compound Beckett Street consisting of a 5-membered lactam linked to a vinyl group. It is Leeds, UK widely used in medical products as an excipient, especially in Email: [email protected] tablet formulations, and in ophthalmic solutions as a lubricant. When linked to iodine, it is called povidone-iodine, which is used as an antiseptic agent. Even though PVP has been considered safe to date, cases of adverse reactions have been reported. While skin reactions to PVP from cutaneous exposure, such as contact dermatitis, are frequent, only a few cases of anaphylaxis from various administration routes have been described in the literature [1-5].
    [Show full text]
  • Deep Eutectic Solvents As Versatile Media for the Synthesis of Noble Metal Nanomaterials
    Nanotechnol Rev 2017; 6(3): 271–278 Future of nanotechnology contribution Jae-Seung Lee* Deep eutectic solvents as versatile media for the synthesis of noble metal nanomaterials DOI 10.1515/ntrev-2016-0106 because of their low vapor pressure, low cost, non-flam- Received December 8, 2016; accepted February 6, 2017; previously mability, and easy preparation. The global electroplating published online March 20, 2017 market was estimated to be approximately 14.5 billion US$ in 2016 and is expected to continue expanding, indicating Abstract: Deep eutectic solvents (DESs) were developed the potential importance of DESs in industry [5]. In addi- 15 years ago and have been used for various purposes tion to metal processing, there is also a growing interest based on their unique chemical and physical properties. in utilizing DESs as tunable media for organic chemical Recently, they have been highlighted as versatile media syntheses, polymerization, and organic extraction and for the synthesis of noble metal nanomaterials. Although separation [6, 7]. Theoretically, an unlimited number of there are a few limitations, their vast chemical library of possible combinations of halide salts and HBDs (Figure 1) hydrogen bond donors and excellent solubility show great could be used to design a DES, resulting in a large number potential for their future applications for the synthesis of of suitable media for such inorganic and organic reactions. noble metal nanoparticles. It has also been demonstrated that DESs play a sig- Keywords: deep eutectic solvent; gold; nanomaterial; nificant role in the synthesis and fabrication of various nanoparticle; silver. nanomaterials, such as zeolite analogs [8], carbon nano- materials [9, 10], micro- and nanostructured semicon- ductors [11–13], and DNA nanostructures [14].
    [Show full text]
  • Glycerol Hydrogen-Bonding Network Dominates Structure and Collective Dynamics in a Deep Eutectic Solvent † ‡ ‡ § ⊥ # # A
    Article Cite This: J. Phys. Chem. B 2018, 122, 1261−1267 pubs.acs.org/JPCB Glycerol Hydrogen-Bonding Network Dominates Structure and Collective Dynamics in a Deep Eutectic Solvent † ‡ ‡ § ⊥ # # A. Faraone,*, D. V. Wagle, G. A. Baker,*, E. C. Novak, M. Ohl, D. Reuter, P. Lunkenheimer, # ∥ A. Loidl, and E. Mamontov*, † NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg, Gaithersburg, Maryland 20899, United States ‡ Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States § Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States ∥ Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States ⊥ Jülich Center for Neutron Science, Forschungszentrum Jülich GmbH, Jülich 52425, Germany # Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, Augsburg 86159, Germany *S Supporting Information ABSTRACT: The deep eutectic solvent glyceline formed by choline chloride and glycerol in 1:2 molar ratio is much less viscous compared to glycerol, which facilitates its use in many applications where high viscosity is undesirable. Despite the large difference in viscosity, we have found that the structural network of glyceline is completely defined by its glycerol constituent, which exhibits complex microscopic dynamic behavior, as expected from a highly correlated hydrogen- bonding network. Choline ions occupy interstitial voids in the glycerol network and show little structural or dynamic correlations with glycerol molecules. Despite the known higher long-range diffusivity of the smaller glycerol species in glyceline, in applications where localized dynamics is essential (e.g., in microporous media), the local transport and dynamic properties must be dominated by the relatively loosely bound choline ions.
    [Show full text]
  • Assisted Pulsed Laser Evaporation Roger Sachan1, Panupong Jaipan2, Jennifer Y
    RESEARCH ARTICLE Printing amphotericin B on microneedles using matrix- assisted pulsed laser evaporation Roger Sachan1, Panupong Jaipan2, Jennifer Y. Zhang3, Simone Degan3, Detlev Erdmann4, Jonathan Tedesco5, Lyndsi Vanderwal6, Shane J. Stafslien6, Irina Negut7, Anita Visan7, Gabriela Dorcioman7, Gabriel Socol7, Rodica Cristescu7, Douglas B. Chrisey8 and Roger J. Narayan2* 1 Wake Early College of Health and Sciences, Raleigh, North Carolina, USA 2 Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA 3 Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA 4 Department of Surgery, Division of Plastic, Reconstructive, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, North Carolina, USA 5 Keyence Corporation of America, Elmwood Park, New Jersey, USA 6 Office of Research and Creativity Activity, North Dakota State University, 1715 Research Park Drive, Fargo ND, USA 7 National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania 8 Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, USA Abstract: Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentration- dependent activity against the yeast Candida albicans.
    [Show full text]
  • New Uses of Choline Chloride in Agrochemical Formulations
    (19) TZZ¥ZZ¥ _T (11) EP 3 090 632 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 09.11.2016 Bulletin 2016/45 A01N 39/04 (2006.01) A01N 25/00 (2006.01) (21) Application number: 16170996.9 (22) Date of filing: 22.02.2012 (84) Designated Contracting States: • BRAMATI, Valerio AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 20020 Arese Milano (IT) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • ERBA, Ambrogio PL PT RO RS SE SI SK SM TR 20873 Brianza (IT) (30) Priority: 22.02.2011 US 201161445144 P (74) Representative: Cardon, Flavie 30.03.2011 EP 11305356 Rhodia Operations Direction Propriété Industrielle (62) Document number(s) of the earlier application(s) in 40, rue de la Haie-Coq accordance with Art. 76 EPC: 93306 Aubervilliers Cedex (FR) 12705663.8 / 2 677 866 Remarks: (71) Applicant: Rhodia Operations This application was filed on 24-05-2016 as a 75009 Paris (FR) divisional application to the application mentioned under INID code 62. (72) Inventors: • SCLAPARI, Thierry Saint-Jean de Thurigneux, NJ New Jersey 08558 (US) (54) NEW USES OF CHOLINE CHLORIDE IN AGROCHEMICAL FORMULATIONS (57) The present invention relates to the use of choline chloride in a formulation comprising at least one agrochemical active ingredient selected from 2,4-D or MCPA, as a bio-activator to increase the penetration of said agrochemical active ingredient in a plant. EP 3 090 632 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 090 632 A1 Description [0001] The present invention relates to new uses of choline chloride in agrochemical formulations.
    [Show full text]