Anthranilic Acid

Total Page:16

File Type:pdf, Size:1020Kb

Anthranilic Acid J. Biochem. 84, 687-696 (1978) The Metabolism of [carboxyl-14C]Anthranilic Acid I. The Incorporation of Radioactivity into NAD+ and NADP+ 1, Takashi UEDA,, Hidetsugu OTSUKA ,1- Kiyoshi GODA,* Isao ISHIGURO,** Junko NAITO,** and Yahito KOTAKE* *Faculty of Nutrition , Kobe-Gakuin University, Arise, Ikawadani-cho, Tarumi-ku, Kobe, Hyogo 673, **Fujita Gakuen University School of Medicine, Kutsukake-cho, Toyoake, Aichi 470-11 Received for publication, February 3, 1978 A new pathway of NAD+ synthesis from anthranilic acid was found in the livers of rats. Starting from [carboxyl-14C]anthranilic acid, radioactive NAD+ and NADP+ were produced as judged by Dowex-1 x 8-formate column chromatography followed by radiochromatography. Several intermediate compounds, such as quinolinic acid, nicotinic acid mononucleotide, and nicotinic acid adenine dinucleotide were also identified with the aid of various chro matographic techniques. In the experiments with liver microsomal hydroxylation systems, anthranilic acid was converted into not only 5-hydroxyanthranilic acid but also 3-hydroxy anthranilic acid. In the early thirties, anthranilic acid and kynure found a conjugate of anthranilic acid with glycine. nine, the intermediary metabolites of tryptophan, Mitsuba and Ichihara (5) have also demonstrated were discovered by Kotake (1, 2). Kotake and another conjugate of anthranilic acid with glu Honda (3) subsequently observed that L-kynure curonic acid. These authors have proposed that nine was converted stoichiometrically to anthranilic the formation of such conjugated compounds may acid and L-alanine in rabbit liver homogenates. be attributed to the detoxication mechanism. Since then, anthranilic acid has been extensively Based on these observations, it has been generally studied by many investigators. Mason (4) has believed that anthranilic acid is a metabolically inactive and presumably blind alley in the tryp 1 Dedicated to Professor Katashi Ichihara on the occa tophan metabolism in mammals. Nevertheless, sion of his 80th birthday. Kotake and Kotake (6) in 1942 suggested the 2 This paper was presented at the 50th meeting of the hydroxylation of anthranilic acid to produce Japanese Biochemical Society on the 15th of October 5-hydroxyanthranilic acid in mammalian tissues. 1977. In fact, Kotake and Shirai (7) in 1953 isolated Abbreviations: NAD+, nicotinamide adenine dinucleo 5-hydroxyanthranilic acid in a crystalline form tide; NADP+, nicotinamide adenine dinucleotide phos from the urine of rabbits treated with anthranilic phate; NMN, nicotinamide mononucleotide; NaMN, acid. In 1964, Kashiwamata et al. (8) demon nicotinic acid mononucleotide; NaAD, nicotinic acid strated the enzymatic conversion of anthranilic adenine dinucleotide; QA, quinolinic acid; G6P, acid to 5-hydroxyanthranilic acid. Recently, glucose-6-phosphate; EDTA, ethylenediaminetetraacetic acid; DMF, N, N-dimethylformamide. Sutamihardja et al. (9) described a new metabolite Vol. 84, No. 3, 1978 687 688 T. UEDA, H. OTSUKA, K. GODA, I. ISHIGURO, J. NAITO, and Y. KOTAKE isolated in a crystalline form from the urine of nilic Acid-Radioactive anthranilic acid, 10.65 rats injected with anthranilic acid; this compound mCi/mmol was prepared as follows: K14CN was has been identified as anthranilamide. On the converted into Cu14CN by the method of Reid other hand, the metabolic conversion of anthranilic et al. (15). o-Iodoaniline and Cu14CN were acid to 3-hydroxyanthranilic acid (10) has been dissolved in DMF and kept at 160•Ž for 1.5 h considered to be questionable in spite of the under N2 gas. After this reaction, DMF was discovery of hydroxylation reactions of anthranilic evaporated off. The residue was refluxed in 1 N acid at the three and five positions in Udenfriend's NaOH for 2h. When the reaction was termi model ascorbic acid system (11). The present nated, the reaction mixture was neutralized with paper describes the enzymatic formation of 3-hy 1 N HCl. [carboxyl-14C]Anthranilic acid obtained droxyanthranilic acid from anthranilic acid in rat was purified by column chromatography. Silica liver microsomes; this reaction participates in the gel G 60 (70-230 mesh) chromatography was relationship between anthranilic acid and NAD+ performed on a 2.5 x 20 cm column, eluting with and NADP+ The biological significance of this chloroform : 96 % acetic acid (95 : 5). The anthra metabolic pathway is under investigation. The nilic acid fraction was concentrated with a rotary biosynthetic pathway of NAD+ from tryptophan evaporator. The concentrated product was applied by way of 3-hydroxykynurenine and 3-hydroxy to the same column and eluted with methyl acetate : anthranilic acid has been established in mammalian isopropanol :25% ammonia (45 :35 :20). The liver (12, 13). purity of radioactive anthranilic acid was deter- mined by means of radiochromatograms of silica MATERIALS AND METHODS gel G 60 thin-layer plates developed with the following solvent systems; chloroform : 96% acetic Animals-Male albino rats of the Wistar acid (95 : 5), methyl acetate : isopropanol : 25 JCL? strain, weighing 150 g, were fed on rat chow ammonia (45 : 35 : 20), and benzene : methyl OA-2 (Clea Japan, Inc.). The rats were housed acetate : acetic acid (60 : 40 : 1). The radiochro in a room at a constant temperature of 22•Ž with matograms showed only one major peak in each a 12 hour light and dark cycle. The humidity was case. The radiopurity of [carboxyl-14C]anthranilic controlled at 54% saturation. acid was determined to be 98.97% by dilution Chemicals-All chemicals were of the best analysis. analytical grade obtainable from Nakarai Chemi Procedures for Isotope Study In Vivo-The cals, Ltd. Potassium [14C]cyanide (specific activity specific activity of [carboxyl-14C]anthranilic acid 53.25 mCi/mmol) was supplied by New England was 10.65 mCi/mmol. Each rat was given [car Nuclear. No significant impurity was detected. boxyl-14C]anthranilic acid (7.16 ƒÊCi/100 g body 2,5-Diphenyloxazole (PPO) and 1,4-bis[2-(5- weight) by injection into the tail vein. The rats phenyloxazolyl)]-benzene (POPOP) were purchased were sacrificed by decapitation 3 h later. Their from Packard, Co. Dowex-1 x 8-chloride (200- livers were excised as quickly as possible, weighed, 400 mesh) was purchased from Dow Chemicals frozen, and stored at -20•Ž until analyzed. Their Co. and Dowex-1 x 8-chloride was converted into urine was also stored at -20•Ž. Expired carbon the formate form according to the method of dioxide was trapped by 15 ml of a mixture of Hurbert (14). NAD+, NADP+, G6P, and G6P 2-aminoethanol and 2-methoxyethanol (1 : 2 v/v). dehydrogenase were obtained from Sigma Chemi Radioactive carbon dioxide was assayed with a cal Co. NMN and NaMN were obtained from Packard liquid scintillation spectrometer. Kyowa Hakko Kogyo Co. Quinolinic acid, 3- Extraction of Nucleotides-The liver was hydroxyanthranilic acid, and o-iodoaniline were homogenized in 4 volumes of 5 % perchloric acid. purchased from Nakarai Chemicals, Ltd., Tokyo The homogenate was centrifuged at 10,000 x g for Kasei Kogyo Co. and Wako Pure Chemical 15 min. The precipitate was washed twice with Industries, Ltd., respectively. Anthranilic acid and small amounts of 5 % perchloric acid. The super- 5-hydroxyanthranilic acid were generous gifts from natant fluid and washings were combined and Sonybod Pharmaceutical Co. adjusted to pH 7 with 4 M KOH. Potassium Chemical Synthesis of [carboxyl-14C]Anthra perchlorate was removed by centrifugation, then J. Biochem. BIOSYNTHESIS OF NADI AND NADP+ FROM ANTHRANILATE 689 the precipitate was washed again and centrifuged in situ with ice-cold 0.15 m NaCl and homogenized at 10,000 x g. The supernatant and washing were in 0.25 m sucrose (4 ml/g of liver). All subsequent combined and used for further analysis . manipulations were carried out at 4°C. The Chromatographic Methods-Dowex-1 x 8-for homogenate was centrifuged at 9,000 x g for 20 mate (200-400 mesh) chromatography was per- min. The resulting supernatant was centrifuged formed on a 2.5 x 25 cm column. Stepwise elution at 105,000 x g for 60 min. The microsomal frac was carried out with 200 ml of distilled water and tion was washed three times with 0.14 m KCl. 150 ml of increasing concentrations of formic acid , such as 0.05 m, 0.1 m, 0.25 M, 0.5 M, 1.0 m, 2.0 m, RESULTS and 4 M ammonium formate in 4 M formic acid . The flow rate of this column was 1.66 ml/min. The metabolic conversion of radioactive anthranilic Fractions of 10 ml were collected. The radio- acid was assayed in exhaled carbon dioxide, urine activity in each fraction was measured by counting and liver. Rats were injected with [carboxyl-14C]- a 0.2 ml aliquot with a Packard liquid scintillation anthranilic acid (10.65 mCi/mmol) into the tail spectrometer. vein and kept in a metabolic cage for three hours. Paper Chromatographic Procedures-Paper The rats were then sacrificed and the distribution chromatography was carried out on Whatman No. 1 filter paper in an ascending fashion with the following solvent systems. 1: 1 M ammonium acetate :95% ethanol (3 :7) 2: isobutyric acid : ammonia : water (66 :1.7 33) pH 3.9 3: upper layer n-butanol : acetone : water (45 : 5 50) 4: pyridine : water (2 : 1) Electrophoresis-The concentrated solution of radioactive compounds was examined by paper electrophoresis, which was conducted at 320 V for 1 h in 0.2 M triethanolamine containing 0.002 M EDTA (pH 7.7) buffer. Whatman No. I filter paper was used in all experiments. Fig. 1. Production of 14CO2 from [carboxyl-14C]an Preparation of Microsome-Rats were fasted thranilic acid in rats. The experimental conditions for 18 h prior to sacrifice. The liver was perfused are described in " MATERIALS AND METHODS." Fig. 2. Dowex-1 x8-formate column chromatography of 5% perchroric acid extract from rat livers.
Recommended publications
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Utilization of Anthranilic and Nitrobenzoic Acids by Nocardia Opaca and a Flavobacteriurn
    J. gen. Microbial. (1966),42, 219-235 Printed in Great Britain Utilization of Anthranilic and Nitrobenzoic Acids by Nocardia opaca and a Flavobacteriurn BY R. B. CAIN Depadnaent of Microbiology, OkEahoma State University, Stillwater, Oklahoma, U.S.A. and Department of Botany, University of Newcastle upon Tyne” (Received 11 May 1965, accepted 16 September 1965) SUMMARY Anthranilic and o-nitrobenzoic acids act as mutual inhibitors of both growth and substrate oxidation for Nocardia opaca and a flavobacterium which can utilize either substance as sole source of carbon, nitrogen and energy, Growth of the former bacterium on anthranilate induced, appar- ently simultaneously, both the transport system for anthranilate uptake and the enzymic mechanism necessary for its complete oxidation to CO, and NH3. Among the enzymes induced by anthranilate was the complete sequence that oxidizes catechol to /3-oxoadipate; this was absent from organisms grown in fumarate or glucose media. The properties of the first enzyme in this sequence, a catechol-l,2-oxygenase, differ in several features from those of the same enzyme induced in this bacterium by growth on o-nitrobenzoic acid. INTRODUCTION Anthranilic (o-aminobenzoic) acid is an important intermediary metabolite in both biosynthetic and catabolic pathways in micro-organisms. It serves for in- stance as a precursor for tryptophan in Aerobacter aerogews and Escherichia coli (Doy & Gibson, 1961), in Nmrospora CT~SSQ(Yanofsky, 1956; Yanofsky & Rach- meler, 1958) and in saccharomyces mutants (Lingens, Hildinger & Hellman, 1958). Hydroxylation of anthranilic acid, in the 3-position, has been observed with rat liver preparations (Wiss & Hellman, 1953) but no hydroxylation of anthranilic acid has been conclusively demonstrated in micro-organisms.
    [Show full text]
  • Chemicals Required for the Illicit Manufacture of Drugs Table 1 SUBSTANCES in TABLES I and II of the 1988 CONVENTION
    Chemicals Required 1. A variety of chemicals are used in the illicit manufacture of for the Illicit drugs. The United Nations Convention against Illicit Traffic in Manufacture of Drugs Narcotic Drugs and Psychotropic Substances of 1988 (1988 Convention) refers to “substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances”. Twenty-two such substances are listed in Tables I and II of the 1988 Convention as in force on 1st May, 1998. (See Table1) Table 1 Table I Table II SUBSTANCES IN N-Acetylanthranilic acid. Acetic anhydride TABLES I AND II OF Ephedrine Acetone THE 1988 Ergometrine Anthranilic acid CONVENTION Ergotamine Ethyl ether Isosafrole Hydrochloric acid* Lysergic acid Methyl ethyl ketone 3,4-methylenedioxyphenyl-2-propanone Phenylacetic acid 1-phenyl-2-propanone Piperidine Piperonal Potassium permanganate Pseudoephedrine Sulphuric acid* Safrole Toluene The salts of the substances in this Table The salts of the substances whenever the existence of such salts is in this Table whenever the possible. existence of such salts is possible. * The salts of hydrochloric acid and sulphuric acid are specifically excluded from Table II. U N D C P 11 The term “precursor” is used to indicate any of these substances in the two Tables. Chemicals used in the illicit manufacture of narcotic drugs and psychotropic substances are often described as precursors or essential chemicals, and these include true precursors, solvents, oxidising agents and other Chemicals used in the illicit manufacture of narcotic substances. Although the term is not drugs and psychotropic substances are often technically correct, it has become common described as precursors or essential chemicals, and practice to refer to all such substances as these include true precursors, solvents, oxidising “precursors”.
    [Show full text]
  • PEREGRINO-THESIS-2017.Pdf (6.329Mb)
    Biochemical studies in the elucidation of genes involved in tropane alkaloid production in Erythroxylum coca and Erythroxylum novogranatense by Olga P. Estrada, B. S. A Thesis In Chemical Biology Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCES Approved Dr. John C. D’Auria Chair of Committee Dr. David W. Nes Co-chair of Committee Mark Sheridan Dean of the Graduate School May, 2017 Copyright 2017, Olga P. Estrada Texas Tech University, Olga P. Estrada, May 2017 AKNOWLEDGMENTS I would like to thank my mentor and advisor Dr. John C. D’Auria, for providing me with the tools to become a scientist, and offering me his unconditional support. Thanks to the members of the D’Auria lab, especially Neill Kim and Benjamin Chavez for their aid during my experimental studies. And of course, thank you to my family for always giving me the strength to pursue my goals. ii Texas Tech University, Olga P. Estrada, May 2017 TABLE OF CONTENTS AKNOWLEDGMENTS ........................................................................................................... ii ABSTRACT ........................................................................................................................... v LIST OF TABLES ................................................................................................................. vi LIST OF FIGURES ............................................................................................................... vii CHAPTER I .........................................................................................................................
    [Show full text]
  • Free-Amino Acid Metabolic Profiling of Visceral Adipose Tissue from Obese
    Amino Acids (2020) 52:1125–1137 https://doi.org/10.1007/s00726-020-02877-6 ORIGINAL ARTICLE Free‑amino acid metabolic profling of visceral adipose tissue from obese subjects M. C. Piro1 · M. Tesauro2 · A. M. Lena1 · P. Gentileschi3 · G. Sica3 · G. Rodia2 · M. Annicchiarico‑Petruzzelli4 · V. Rovella2 · C. Cardillo5 · G. Melino1,6 · E. Candi1,4 · N. Di Daniele2 Received: 14 October 2019 / Accepted: 26 July 2020 / Published online: 5 August 2020 © Springer-Verlag GmbH Austria, part of Springer Nature 2020 Abstract Interest in adipose tissue pathophysiology and biochemistry have expanded considerably in the past two decades due to the ever increasing and alarming rates of global obesity and its critical outcome defned as metabolic syndrome (MS). This obesity-linked systemic dysfunction generates high risk factors of developing perilous diseases like type 2 diabetes, cardio- vascular disease or cancer. Amino acids could play a crucial role in the pathophysiology of the MS onset. Focus of this study was to fully characterize amino acids metabolome modulations in visceral adipose tissues (VAT) from three adult cohorts: (i) obese patients (BMI 43–48) with metabolic syndrome (PO), (ii) obese subjects metabolically well (O), and (iii) non obese individuals (H). 128 metabolites identifed as 20 protein amino acids, 85 related compounds and 13 dipeptides were measured by ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) and gas chromatography-/ mass spectrometry GC/MS, in visceral fat samples from a total of 53 patients. Our analysis indicates a probable enhanced BCAA (leucine, isoleucine, valine) degradation in both VAT from O and PO subjects, while levels of their oxidation prod- ucts are increased.
    [Show full text]
  • Synthesis of Heterocycles from Anthranilic Acid and Its Derivatives
    Synthesis of Heterocycles from Anthranilic acid and its Derivatives Per Wiklund All previously published papers were reproduced with permission from the publisher. Published and printed by Karolinska University Press Box 200, SE-171 77 Stockholm, Sweden © Per Wiklund, 2004 ISBN 91-7349-913-7 Abstract Anthranilic acid (2-aminobenzoic acid, Aa) is the biochemical precursor to the amino acid tryptophan, as well as a catabolic product of tryptophan in animals. It is also integrated into many alkaloids isolated from plants. Aa is produced industrially for production of dyestuffs and pharmaceuticals. The dissertation gives a historical background and a short review on the reactivity of Aa. The synthesis of several types of nitrogen heterocycles from Aa is discussed. Treatment of anthranilonitrile (2-aminobenzonitrile, a derivative of Aa) with organomagnesium compounds gave deprotonation and addition to the nitrile triple bond to form amine-imine complexed dianions. Capture of these intermediate with acyl halides normally gave aromatic quinazolines, a type of heterocyclic compounds that is considered to be highly interesting as scaffolds for development of new drugs. When the acyl halide was a tertiary 2-haloacyl halide, the reaction instead gave 1,4- benzodiazepine-3-ones via rearrangement. These compounds are isomeric to the common benzodiazepine drugs (such as diazepam, Valium®) which are 1,4- benzodiazepine-2-ones. Capture of the dianions with aldehydes or ketones, led to 1,2- dihydroquinazolines. Unsubstituted imine anions could be formed by treatment of anthranilonitrile with diisobutylaluminium hydride. Also in this case capture with aldehydes gave 1,2-dihydroquinazolines. Several different dicarboxylic acid derivatives of Aa were treated with dehydrating reagents, and the resulting products were more or less complex 1,3-benzoxazinones, one of which required X-ray crystallography confirm its structure.
    [Show full text]
  • On the Effect of Anthranilic Acid. (2)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Studies on the Biosynthesis of Pyocyanine. (VIII) : On the Title Effect of Anthranilic Acid. (2) Author(s) Kurachi, Mamoru Bulletin of the Institute for Chemical Research, Kyoto Citation University (1959), 37(2): 101-111 Issue Date 1959-07-10 URL http://hdl.handle.net/2433/75698 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Studies on the Biosynthesis of Pyocyanine. (VIII) On the Effect of Anthranilic Acid. (2) MamoruKURACHI* (KatagiriLaboratory) ReceivedFebruary 4, 1959 As an evidencesupporting the possibilityof anthranilic acid to bean intermediatein pyocyaninesynthesis, it was foundthat anthranilicacid was accumulatedin the medium of bacteriumPseudomonas aeruginosa, cultured in the presenceof inhibitoryagent, and that pyocyanine could be synthesizedfrom anthranilicacid in resting system,by ad- ministeringglutamic acid or glycine.It has beenresulted that theinhibitory agent such as aniline,o-phenylenediamine and p-aminobenzoicacid shouldbe a metaboliteanalogue of anthranilicacid. On the other hand,anthranilic acid has been demonstratedto be formedthrough bothanabolic and catabolicpathways, and postulatedto be, in part, deriveddirectly from indoleby oxidativecleavage of its nucleusas a reversereaction of the conversion of anthranilicacid to indole. INTRODUCTION In the precedingwork'' designed according to the conceptthat the aromatic compoundrevealing an inhibitoryaction
    [Show full text]
  • Manipulating Posttranslational Modification in Natural Product Biosynthesis
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Manipulating posttranslational modification in natural product biosynthesis Permalink https://escholarship.org/uc/item/0sn8v44w Author Foley, Timothy Leyden Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Manipulating Posttranslational Modification in Natural Product Biosynthesis A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Timothy Leyden Foley Committee in charge: Professor Michael D. Burkart, Chair Professor Stuart Brody Professor Elizabeth A. Komives Professor Emmanuel Theodorakis Professor Jerry Yang 2010 Copyright Timothy Leyden Foley, 2010 All rights reserved. The dissertation of Timothy Leyden Foley is approved, and it is acceptable in quality and form for publication on microfilm and electronically _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2010 iii DEDICATION This dissertation is dedicated to my family and friends. Most of all, to my mother, whose constant support and unwaivering acceptance of my decisions has been
    [Show full text]
  • Phenotype Microarrays™
    Phenotype MicroArrays™ PM1 MicroPlate™ Carbon Sources A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Negative Control L-Arabinose N-Acetyl -D- D-Saccharic Acid Succinic Acid D-Galactose L-Aspartic Acid L-Proline D-Alanine D-Trehalose D-Mannose Dulcitol Glucosamine B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 D-Serine D-Sorbitol Glycerol L-Fucose D-Glucuronic D-Gluconic Acid D,L -α-Glycerol- D-Xylose L-Lactic Acid Formic Acid D-Mannitol L-Glutamic Acid Acid Phosphate C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 D-Glucose-6- D-Galactonic D,L-Malic Acid D-Ribose Tween 20 L-Rhamnose D-Fructose Acetic Acid -D-Glucose Maltose D-Melibiose Thymidine α Phosphate Acid- -Lactone γ D-1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 L-Asparagine D-Aspartic Acid D-Glucosaminic 1,2-Propanediol Tween 40 -Keto-Glutaric -Keto-Butyric -Methyl-D- -D-Lactose Lactulose Sucrose Uridine α α α α Acid Acid Acid Galactoside E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 L-Glutamine m-Tartaric Acid D-Glucose-1- D-Fructose-6- Tween 80 -Hydroxy -Hydroxy -Methyl-D- Adonitol Maltotriose 2-Deoxy Adenosine α α ß Phosphate Phosphate Glutaric Acid- Butyric Acid Glucoside Adenosine γ- Lactone F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Glycyl -L-Aspartic Citric Acid myo-Inositol D-Threonine Fumaric Acid Bromo Succinic Propionic Acid Mucic Acid Glycolic Acid Glyoxylic Acid D-Cellobiose Inosine Acid Acid G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Glycyl-L- Tricarballylic L-Serine L-Threonine L-Alanine L-Alanyl-Glycine Acetoacetic Acid N-Acetyl- -D- Mono Methyl Methyl Pyruvate D-Malic Acid L-Malic Acid ß Glutamic Acid Acid
    [Show full text]
  • Amine6 and Its Multiple Aromatic and Dehydroshikimic Acid (DHS)
    SYNTHESIS OF AROMATIC COMPOUNDS BY NE UROSPORA * BY E. L. TATUM, S. R. GROSSt G. EHRENSVaRD, AND L. GARNJOBST DEPARTMENT OF BIOLOGICAL SCIENCES, STANFORD UNIVERSITY (Comnmunicated by E. L. Tatum, March 19, 1954 Increasing insight into the biosynthesis of aromatic substances has been obtained during the past few years primarily through the study of mutant strains of micro- organisms,1 and by the use of isotopic carbon.2 Shikimic acid, reported to be in- volved in the biosynthesis of the aromatic amino acids and of p-aminobenzoic acid by Neurospora3 and Escherichia coli, has been shown to be derived in E. coli from dehydroquinic acid by way of dehydroshikimic acid.5 This paper reports further genetic and biochemical studies of a mutant of Neurospora crassa which requires for growth phenylalanine, tyrosine, tryptophan, and p-aminobenzoic acid (PAB). The mutant strain Y7655a (arom) was isolated following treatment of Neurospora macroconidia with methyl-bis(f3-chloroethyl)amine6 and its multiple aromatic requirements identified by S. E. Reaume. Detailed genetic analysis based on ex- amination of 145 asci from five crosses7 has shown the arom locus to be in the right arm of linkage group II, distal to pe and proximal to ac, with an uncorrected centro- mere distance of 21.7. The multiple requirement was retained in all cultures iso- lated from these various crosses. There is some evidence, however, that the PAB requirement may be altered by modifying genes. The qualitative and quantitative growth responses reported here were obtained with the arom strain (Y7655a), and a double mutant arom, tryp-1 (Y7655, 10575), was used for the isotope experiment.
    [Show full text]
  • The Synthesis of Anthranilic Acid, Tryptophan, and Sulfenyl Chloride Analogues, and Enzymatic Studies
    THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES By Phanneth Som (Under the Direction of ROBERT S. PHILLIPS) Abstract This dissertation includes four chapters. Chapter 1 includes the introduction and literature review. Chapter 2 covers the enzymatic synthesis of tryptophan via anthranilic acid analogues. Chapter 3 covers the nitration and resolution of tryptophan and synthesis of tryptophan derivatives. Chapter 4 covers the synthesis of sulfenyl chloride derivatives. Tryptophan is important in many aspects in the studies of proteins and also serves as precursors for important compounds. The enzymatic synthesis of tryptophan analogues from anthranilic acid analogues is important and could provide a more efficient route for incorporation of non-canonical amino acids onto proteins. Nitration of tryptophan is also important because it provides a synthetic route for synthesizing other derivatives of tryptophan. Sulfenyl chloride derivatives can be used for labeling proteins and the tryptophan analogues can be determined by mass spectrometry analysis with proteins with a limited number of tryptophan residues makes this application useful. INDEX WORDS: Tryptophan, Anthranilic acid, Enzymatic synthesis, Non-canonical amino acid, Nitration, Sulfenyl chloride, Incorporation THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES by Phanneth Som B.S., Georgia State University, 2003 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2009 © 2009 Phanneth Som All Rights Reserved THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES By Phanneth Som Major Professor: Robert S.
    [Show full text]
  • Fire Diamond HFRS Ratings
    Fire Diamond HFRS Ratings CHEMICAL H F R Special Hazards 1-aminobenzotriazole 0 1 0 1-butanol 2 3 0 1-heptanesulfonic acid sodium salt not hazardous 1-methylimidazole 3 2 1 corrosive, toxic 1-methyl-2pyrrolidinone, anhydrous 2 2 1 1-propanol 2 3 0 1-pyrrolidinecarbonyl chloride 3 1 0 1,1,1,3,3,3-Hexamethyldisilazane 98% 332corrosive 1,2-dibromo-3-chloropropane regulated carcinogen 1,2-dichloroethane 1 3 1 1,2-dimethoxyethane 1 3 0 peroxide former 1,2-propanediol 0 1 0 1,2,3-heptanetriol 2 0 0 1,2,4-trichlorobenzene 2 1 0 1,3-butadiene regulated carcinogen 1,4-diazabicyclo(2,2,2)octane 2 2 1 flammable 1,4-dioxane 2 3 1 carcinogen, may form explosive mixture in air 1,6-hexanediol 1 0 0 1,10-phenanthroline 2 1 0 2-acetylaminofluorene regulated carcinogen, skin absorbtion 2-aminobenzamide 1 1 1 2-aminoethanol 3 2 0 corrosive 2-Aminoethylisothiouronium bromide hydrobromide 2 0 0 2-aminopurine 1 0 0 2-amino-2-methyl-1,3-propanediol 0 1 1 2-chloroaniline (4,4-methylenebis) regulated carcinogen 2-deoxycytidine 1 0 1 2-dimethylaminoethanol 2-ethoxyethanol 2 2 0 reproductive hazard, skin absorption 2-hydroxyoctanoic acid 2 0 0 2-mercaptonethanol 3 2 1 2-Mercaptoethylamine 201 2-methoxyethanol 121may form peroxides 2-methoxyethyl ether 121may form peroxides 2-methylamino ethanol 320corrosive, poss.sensitizer 2-methyl-3-buten-2-ol 2 3 0 2-methylbutane 1 4 0 2-napthyl methyl ketone 111 2-nitrobenzoic acid 2 0 0 2-nitrofluorene 0 0 1 2-nitrophenol 2 1 1 2-propanol 1 3 0 2-thenoyltrifluoroacetone 1 1 1 2,2-oxydiethanol 1 1 0 2,2,2-tribromoethanol 2 0
    [Show full text]