Lapse Rate - Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Lapse Rate - Wikipedia, the Free Encyclopedia Lapse rate - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Lapse_rate Lapse rate From Wikipedia, the free encyclopedia The lapse rate is defined as the rate of decrease with height for an atmospheric variable. The variable involved is temperature unless specified otherwise.[1][2] The terminology arises from the word lapse in the sense of a decrease or decline; thus, the lapse rate is the rate of decrease with height and not simply the rate of change. While most often applied to Earth's atmosphere the concept can be extended to any gravitationally supported ball of gas. Contents 1 Definition 2 Mathematical definition 3 Types of lapse rates 3.1 Environmental lapse rate 3.2 Dry adiabatic lapse rate 3.3 Saturated adiabatic lapse rate 4 Significance in meteorology 5 See also 6 External links 7 Additional reading 8 References Definition A formal definition from the Glossary of Meteorology[3] is: The decrease of an atmospheric variable with height, the variable being temperature unless otherwise specified. The term applies ambiguously to the environmental lapse rate and the process lapse rate, and the meaning must often be ascertained from the context. Mathematical definition In general, a lapse rate is the negative of the rate of temperature change with altitude change, thus: where γ is the lapse rate given in units of temperature divided by units of altitude, T = temperature, and z = altitude. 1 of 6 7/6/11 10:04 PM Lapse rate - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Lapse_rate Note: In some cases, Γ or α can be used to represent the adiabatic lapse rate in order to avoid confusion with other terms symbolized by γ, such as the specific heat ratio[4] or the psychrometric constant.[5] Types of lapse rates There are two types of lapse rate: Environmental lapse rate – which refers to the actual change of temperature with altitude for the stationary atmosphere (i.e. the temperature gradient) The adiabatic lapse rates – which refer to the change in temperature of a parcel of air as it moves upwards (or downwards) without exchanging heat with its surroundings. The temperature change that occurs within the air parcel reflects the adjusting balance between potential energy and kinetic energy of the molecules of gas that comprise the moving air mass. There are two adiabatic rates:[6] Dry adiabatic lapse rate Moist (or saturated) adiabatic lapse rate Environmental lapse rate The environmental lapse rate (ELR), is the rate of decrease of temperature with altitude in the stationary atmosphere at a given time and location. As an average, the International Civil Aviation Organization (ICAO) defines an international standard atmosphere (ISA) with a temperature lapse rate of 6.49 K(°C)/1,000 m (3.56 °F or 1.98 K(°C)/1,000 Ft) from sea level to 11 km (36,090 ft). From 11 km (36,090 ft or 6.8 mi) up to 20 km (65,620 ft or 12.4 mi), the constant temperature is −56.5 °C (−69.7 °F), which is the lowest assumed temperature in the ISA. The standard atmosphere contains no moisture. Unlike the idealized ISA, the temperature of the actual atmosphere does not always fall at a uniform rate with height. For example, there can be an inversion layer in which the temperature increases with height. Dry adiabatic lapse rate The dry adiabatic lapse rate (DALR) is the rate of temperature decrease with height for a parcel of dry or unsaturated air rising under adiabatic conditions. Unsaturated air has less than 100% relative humidity; i.e. its actual temperature is higher than its dew point. The term adiabatic means that no heat transfer occurs into or out of the parcel. Air has low thermal conductivity, and the bodies of air involved are very large, so transfer of heat by conduction is negligibly small. Under these conditions when the air rises (for instance, by convection) it expands, because the pressure is lower at higher altitudes. As the air parcel expands, it pushes on the air around it, doing work (thermodynamics). Since the parcel does work but gains no heat, it loses internal energy so that its temperature decreases. The rate of temperature decrease is 9.8 °C per 1,000 m (5.38 °F per 1,000 Ft). The reverse occurs for a sinking parcel of air.[7] Since for adiabatic process: 2 of 6 7/6/11 10:04 PM Lapse rate - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Lapse_rate PdV = − VdP / γ the first law of thermodynamics can be written as ncvdT − Vdp / γ = 0 Also since :α = V / n and :γ = cp / cv we can show that: cpdT − αdP = 0 where cp is the specific heat at constant pressure and α is the specific volume. Assuming an atmosphere in hydrostatic Emagram diagram showing variation of dry adiabats (bold equilibrium:[8] lines) and moist adiabats (dash lines) according to pressure and temperature dP = − ρgdz where g is the standard gravity and ρ is the density. Combining these two equations to eliminate the pressure, one arrives at the result for the DALR,[9] . Saturated adiabatic lapse rate When the air is saturated with water vapor (at its dew point), the moist adiabatic lapse rate (MALR) or saturated adiabatic lapse rate (SALR) applies. This lapse rate varies strongly with temperature. A typical value is around 5 °C/km (2.7 °F/1,000 ft). The reason for the difference between the dry and moist adiabatic lapse rate values is that latent heat is released when water condenses, thus decreasing the rate of temperature drop as altitude increases. This heat release process is an important source of energy in the development of thunderstorms. An unsaturated parcel of air of given temperature, altitude and moisture content below that of the corresponding dewpoint cools at the dry adiabatic lapse rate as altitude increases until the dewpoint line for the given moisture content is intersected. As the water vapor then starts condensing the air parcel subsequently cools at the slower moist adiabatic lapse rate if the altitude increases further. The saturated adiabatic lapse rate is given approximately by this equation from the glossary of the American Meteorology Society:[10] 3 of 6 7/6/11 10:04 PM Lapse rate - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Lapse_rate where: Γw = Wet adiabatic lapse rate, K/m g = Earth's gravitational acceleration = 9.8076 m/s2 Hv = Heat of vaporization of water, J/kg r = The ratio of the mass of water vapor to the mass of dry air, kg/kg R = The universal gas constant = 8,314 J kmol−1 K−1 = The molecular weight of any specific gas, kg/kmol = 28.964 for dry air and 18.015 for M water vapor R / M = The specific gas constant of a gas, denoted as Rs Rsd = Specific gas constant of dry air = 287 J kg−1 K−1 Rsw = Specific gas constant of water vapor = 462 J kg−1 K−1 =The dimensionless ratio of the specific gas constant of dry air to the specific gas ε constant for water vapor = 0.6220 T = Temperature of the saturated air, K cpd = The specific heat of dry air at constant pressure, J kg−1 K−1 Significance in meteorology The varying environmental lapse rates throughout the Earth's atmosphere are of critical importance in meteorology, particularly within the troposphere. They are used to determine if the parcel of rising air will rise high enough for its water to condense to form clouds, and, having formed clouds, whether the air will continue to rise and form bigger shower clouds, and whether these clouds will get even bigger and form cumulonimbus clouds (thunder clouds). As unsaturated air rises, its temperature drops at the dry adiabatic rate. The dew point also drops (as a result of decreasing air pressure) but much more slowly, typically about −2 °C per 1,000 m. If unsaturated air rises far enough, eventually its temperature will reach its dew point, and condensation will begin to form. This altitude is known as the lifting condensation level (LCL) when mechanical lift is present and the convective condensation level (CCL) absent mechanical lift, in which case, the parcel must be heated from below to its convective temperature. The cloud base will be somewhere within the layer bounded by these parameters. The difference between the dry adiabatic lapse rate and the rate at which the dew point drops is around 8 °C per 1,000 m. Given a difference in temperature and dew point readings on the ground, one can 4 of 6 7/6/11 10:04 PM Lapse rate - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Lapse_rate easily find the LCL by multiplying the difference by 125 m/°C. If the environmental lapse rate is less than the moist adiabatic lapse rate, the air is absolutely stable — rising air will cool faster than the surrounding air and lose buoyancy. This often happens in the early morning, when the air near the ground has cooled overnight. Cloud formation in stable air is unlikely. If the environmental lapse rate is between the moist and dry adiabatic lapse rates, the air is conditionally unstable — an unsaturated parcel of air does not have sufficient buoyancy to rise to the LCL or CCL, and it is stable to weak vertical displacements in either direction. If the parcel is saturated it is unstable and will rise to the LCL or CCL, and either be halted due to an inversion layer of convective inhibition, or if lifting continues, deep, moist convection (DMC) may ensue, as a parcel rises to the level of free convection (LFC), after which it enters the free convective layer (FCL) and usually rises to the equilibrium level (EL).
Recommended publications
  • Avoiding the Risks of Deadly Lightning Strikes
    Avoiding the Risks of Deadly Lightning Strikes Lightning is one of the most underrated severe weather hazards, yet ranks as the second-leading weather killer in the United States. More deadly than hurricanes or tornadoes, lightning strikes in America each year kill an average of 73 people and injure 300 others, according to NOAA's National Weather Service. How Lightning Works Lightning is caused by the attraction between positive and negative charges in the atmosphere, resulting in the buildup and discharge of electrical energy. This rapid heating and cooling of the air produces the shock wave that results in thunder. During a storm, raindrops can acquire extra electrons, which are negatively charged. These surplus electrons seek out a positive charge from the ground. As they flow from the clouds, they knock other electrons free, creating a conductive path. This path follows a zigzag shape that jumps between randomly distributed clumps of charged particles in the air. When the two charges connect, current surges through that jagged path, creating the lightning bolt. The Warning Signs High winds, rainfall, and a darkening cloud cover are the warning signs for possible cloud-to- ground lightning strikes. While many lightning casualties happen at the beginning of an approaching storm, more than 50 percent of lightning deaths occur after the thunderstorm has passed. The lightning threat diminishes after the last sound of thunder, but may persist for more than 30 minutes. When thunderstorms are in the area, but not overhead, the lightning threat can exist when skies are clear. Safety Precautions While nothing offers absolute safety from lightning, some actions can greatly reduce your risks.
    [Show full text]
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • Downloaded 10/02/21 04:34 PM UTC 1512 MONTHLY WEATHER REVIEW VOLUME 145 Initiates Convection
    APRIL 2017 T A S Z A R E K E T A L . 1511 Sounding-Derived Parameters Associated with Convective Hazards in Europe MATEUSZ TASZAREK Department of Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, Poznan, and Skywarn Poland, Warsaw, Poland HAROLD E. BROOKS NOAA/National Severe Storms Laboratory, Norman, Oklahoma BARTOSZ CZERNECKI Department of Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, Poznan, Poland (Manuscript received 3 October 2016, in final form 15 December 2016) ABSTRACT Observed proximity soundings from Europe are used to highlight how well environmental parameters discriminate different kind of severe thunderstorm hazards. In addition, the skill of parameters in predicting lightning and waterspouts is also tested. The research area concentrates on central and western European countries and the years 2009–15. In total, 45 677 soundings are analyzed including 169 associated with ex- tremely severe thunderstorms, 1754 with severe thunderstorms, 8361 with nonsevere thunderstorms, and 35 393 cases with nonzero convective available potential energy (CAPE) that had no thunderstorms. Results indicate that the occurrence of lightning is mainly a function of CAPE and is more likely when the tem- perature of the equilibrium level drops below 2108C. The probability for large hail is maximized with high values of boundary layer moisture, steep mid- and low-level lapse rates, and high lifting condensation level. The size of hail is mainly dependent on the deep layer shear (DLS) in a moderate to high CAPE environment. The likelihood of tornadoes increases along with increasing CAPE, DLS, and 0–1-km storm-relative helicity.
    [Show full text]
  • Chapter 7: Stability and Cloud Development
    Chapter 7: Stability and Cloud Development A parcel of air: Air inside can freely expand or contract, but heat and air molecules do not cross boundary. A rising parcel of air expands because the air pressure falls with elevation. This expansion causes cooling: (Adiabatic cooling) V V V-2v V v Wall Stationary Wall Moving Away An air molecule that strikes an expanding wall will lose speed on bouncing off wall (temperature of air will fall) V V+2v v Wall Moving Toward A falling parcel of air contracts because it encounters higher pressure. This falling air heats up because of compression. Stability: If rising air cools more quickly due to expansion than the environmental lapse rate, it will be denser than its surroundings and tend to fall back down. 10°C Definitions: Dry adiabatic rate = 1000 m 10°C Moist adiabatic rate : smaller than because of release of latent heat during 1000 m condensation (use 6° C per 1000m for average) Rising air that cools past dew point will not cool as quickly because of latent heat of condensation. Same compensating effect for saturated, falling air : evaporative cooling from water droplets evaporating reduces heating due to compression. Summary: Rising air expands & cools Falling air contracts & warms 10°C Unsaturated air cools as it rises at the dry adiabatic rate (~ ) 1000 m 6°C Saturated air cools at a lower rate, ~ , because condensing water vapor heats air. 1000 m This is moist adiabatic rate. Environmental lapse rate is rate that air temperature falls as you go up in altitude in the troposphere.
    [Show full text]
  • Chapter 8 Atmospheric Statics and Stability
    Chapter 8 Atmospheric Statics and Stability 1. The Hydrostatic Equation • HydroSTATIC – dw/dt = 0! • Represents the balance between the upward directed pressure gradient force and downward directed gravity. ρ = const within this slab dp A=1 dz Force balance p-dp ρ p g d z upward pressure gradient force = downward force by gravity • p=F/A. A=1 m2, so upward force on bottom of slab is p, downward force on top is p-dp, so net upward force is dp. • Weight due to gravity is F=mg=ρgdz • Force balance: dp/dz = -ρg 2. Geopotential • Like potential energy. It is the work done on a parcel of air (per unit mass, to raise that parcel from the ground to a height z. • dφ ≡ gdz, so • Geopotential height – used as vertical coordinate often in synoptic meteorology. ≡ φ( 2 • Z z)/go (where go is 9.81 m/s ). • Note: Since gravity decreases with height (only slightly in troposphere), geopotential height Z will be a little less than actual height z. 3. The Hypsometric Equation and Thickness • Combining the equation for geopotential height with the ρ hydrostatic equation and the equation of state p = Rd Tv, • Integrating and assuming a mean virtual temp (so it can be a constant and pulled outside the integral), we get the hypsometric equation: • For a given mean virtual temperature, this equation allows for calculation of the thickness of the layer between 2 given pressure levels. • For two given pressure levels, the thickness is lower when the virtual temperature is lower, (ie., denser air). • Since thickness is readily calculated from radiosonde measurements, it provides an excellent forecasting tool.
    [Show full text]
  • 90001602.Pdf
    Kobe University Repository : Kernel タイトル Prediction of human thermophysiological responses during shower Title bathing 著者 Abdul, Munir / Takada, Satoru / Matsushita, Takayuki / Kubo, Hiroko Author(s) 掲載誌・巻号・ページ International Journal of Biometeorology,54(2):165-178 Citation 刊行日 2010-03 Issue date 資源タイプ Journal Article / 学術雑誌論文 Resource Type 版区分 author Resource Version 権利 Rights DOI 10.1007/s00484-009-0265-9 JaLCDOI URL http://www.lib.kobe-u.ac.jp/handle_kernel/90001602 PDF issue: 2021-09-29 PREDICTION OF HUMAN THERMOPHYSIOLOGICAL RESPONSES DURING SHOWER BATHING Abdul Munir Department of Architecture, Faculty of Engineering, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia Satoru Takada Department of Architecture, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan Phone: +81 78 803 6038 Fax: +81 78 803 6038 Email: [email protected] Takayuki Matsushita Department of Architecture, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan Hiroko Kubo Department of Environmental Health, Faculty of Human Life and Environment, Nara Women's University, Kitauoya-nishimachi, Nara 630-8506, Japan ABSTRACT This study develops a model to predict the thermophysiological response of the human body during shower bathing. Despite the needs for the quantitative evaluation of human body response during bathing for thermal comfort and safety, the complicated mechanisms of heat transfer at the skin surface, especially 1 during shower bathing, have disturbed the development of adequate models. In this study, an initial modeling approach is proposed by developing a simple heat transfer model at the skin surface during shower bathing, applied to Stolwijk’s human thermal model.
    [Show full text]
  • How Appropriate They Are/Will Be Using Future Satellite Data Sources?
    Different Convective Indices - - - How appropriate they are/will be using future satellite data sources? Ralph A. Petersen1 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin – Madison, Madison, Wisconsin, USA Will additional input from Steve Weiss, NOAA/NWS/Storm Prediction Center ✓ Increasing the Utility / Value of real-time Satellite Sounder Products to fill gaps in their short-range forecasting processes Creating Temperature/Moisture Soundings from Infra-Red (IR) Satellite Observations A Conceptual Tutorial All level of the atmosphere is continually emit radiation toward space. Satellites observe the net amount reaching space. • Conceptually, we can think about the atmosphere being made up of many thin layers Start from the bottom and work up. 1 – The greatest amount of radiation is emitted from the earth’s surface 4 - Remember, Stefan’s Law: Emission ~ σTSfc 2 – Molecules of various gases in the lowest layer of the atmosphere absorb some of the radiation and then reemit it upward to space and back downward to the earth’s surface - Major absorbers are CO2 and H2O 4 - Emission again ~ σT , but TAtmosphere<TSfc - Amount of radiation decreases with altitude Creating Temperature/Moisture Soundings from Infra-Red (IR) Satellite Observations A Conceptual Tutorial All level of the atmosphere is continually emit radiation toward space. Satellites observe the net amount reaching space. • Conceptually, we can think about the atmosphere being made up of many thin layers Start from the bottom and work
    [Show full text]
  • Effect of Deep Convection on the TTL Composition Over the Southwest Indian Ocean During Austral Summer
    https://doi.org/10.5194/acp-2019-1072 Preprint. Discussion started: 22 January 2020 c Author(s) 2020. CC BY 4.0 License. Effect of deep convection on the TTL composition over the Southwest Indian Ocean during austral summer. Stephanie Evan1, Jerome Brioude1, Karen Rosenlof2, Sean. M. Davis2, Hölger Vömel3, Damien Héron1, Françoise Posny1, Jean-Marc Metzger4, Valentin Duflot1,4, Guillaume Payen4, Hélène Vérèmes1, 5 Philippe Keckhut5, and Jean-Pierre Cammas1,4 1LACy, Laboratoire de l’Atmosphère et des Cyclones, UMR8105 (CNRS, Université de La Réunion, Météo-France), Saint- Denis de la Réunion, 97490, France 2Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, 80305, CO, USA 3National Center for Atmospheric Research, Boulder, 80301, CO, USA 10 4Observatoire des Sciences de l’Univers de La Réunion, UMS3365 (CNRS, Université de La Réunion, Météo-France), Saint- Denis de la Réunion, 97490, France 5LATMOS, Laboratoire ATmosphères, Milieux, Observations Spatiales-IPSL UMR8190 (UVSQ Université Paris-Saclay, Sorbonne Université, CNRS), Guyancourt, 78280, France Correspondence to: Stephanie Evan ([email protected]) 15 Abstract. Balloon-borne measurements of CFH water vapor, ozone and temperature and water vapor lidar measurements from the Maïdo Observatory at Réunion Island in the Southwest Indian Ocean (SWIO) were used to study tropical cyclones' influence on TTL composition. The balloon launches were specifically planned using a Lagrangian model and METEOSAT 7 infrared images to sample the convective outflow from Tropical Storm (TS) Corentin on 25 January 2016 and Tropical Cyclone (TC) Enawo on 3 March 2017. 20 Comparing CFH profile to MLS monthly climatologies, water vapor anomalies were identified. Positive anomalies of water vapor and temperature, and negative anomalies of ozone between 12 and 15 km in altitude (247 to 121hPa) originated from convectively active regions of TS Corentin and TC Enawo, one day before the planned balloon launches, according to the Lagrangian trajectories.
    [Show full text]
  • Atmospheric Stability Atmospheric Lapse Rate
    ATMOSPHERIC STABILITY ATMOSPHERIC LAPSE RATE The atmospheric lapse rate ( ) refers to the change of an atmospheric variable with a change of altitude, the variable being temperature unless specified otherwise (such as pressure, density or humidity). While usually applied to Earth's atmosphere, the concept of lapse rate can be extended to atmospheres (if any) that exist on other planets. Lapse rates are usually expressed as the amount of temperature change associated with a specified amount of altitude change, such as 9.8 °Kelvin (K) per kilometer, 0.0098 °K per meter or the equivalent 5.4 °F per 1000 feet. If the atmospheric air cools with increasing altitude, the lapse rate may be expressed as a negative number. If the air heats with increasing altitude, the lapse rate may be expressed as a positive number. Understanding of lapse rates is important in micro-scale air pollution dispersion analysis, as well as urban noise pollution modeling, forest fire-fighting and certain aviation applications. The lapse rate is most often denoted by the Greek capital letter Gamma ( or Γ ) but not always. For example, the U.S. Standard Atmosphere uses L to denote lapse rates. A few others use the Greek lower case letter gamma ( ). Types of lapse rates There are three types of lapse rates that are used to express the rate of temperature change with a change in altitude, namely the dry adiabatic lapse rate, the wet adiabatic lapse rate and the environmental lapse rate. Dry adiabatic lapse rate Since the atmospheric pressure decreases with altitude, the volume of an air parcel expands as it rises.
    [Show full text]
  • Electrified Shower Clouds and Their Contribution to the Global Electrical Circuit” (Liu Et
    Contribution of Thunderstorms and Shower Clouds to the Global Electric Circuit Review of “Diurnal Variations of Global Thunderstorms and Electrified Shower Clouds and Their Contribution to the Global Electrical Circuit” (Liu et. al. 2010) Kyle Chudler ATS 780 • Two main discrepancies • Amplitude of thunder days is Thunder Days and Carnegie Curve ~2 times that of Carnegie curve • Phases misaligned • Thunder Day curve max: Africa (14 – 15 UTC) • Carnegie curve max: South America (19 – 20 UTC) • Possible explanations: • Ocean not accounted for • Non-lightning producing precipitation (electrified shower clouds) • Try to use TRMM data to get a Whipple (1929) handle on both of these Methods • TRMM Precipitation Features • Groups contiguous raining pixels into one feature • Can get statistics of individual PF’s (max echo height, precipitation volume, etc.) • Divide PFs into thunderstorms, electrified shower clouds, and non-electrified • Thunderstorm: PF’s with at least one lightning flash (LIS) • Electrified Shower Cloud: , T30dBZ < -10 C over land and T30dBZ < -17 C over ocean • Only look at PF’s > 75 km2 • 75% of population, but <10% of rainfall and rain area • Compare several diurnal cycles to Carnegie curve • Rainfall • Total, On/Off Land, Thunderstorm vs Electrified Shower • Total Lightning • Contrast amplitude and phases of cycles • More PFs over Ocean (81%) than land (19%) • Thunderstorms • ~1/200 PFs • 25% of rainfall • Electrified Shower Clouds • ~1/200 PFs • 15% of rainfall Non-electrified Rainfall Dominates Ocean Diurnal Rainfall vs. Carnegie Curve • Total rainfall (black line) has similar phase, smaller amplitude • Includes ocean, which has weaker diurnal signal • Best match is land rainfall • 60% of land rainfall is from electrified storms/showers • Best amplitude match of all cycles Diurnal Rainfall vs.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Basic Features on a Skew-T Chart
    Skew-T Analysis and Stability Indices to Diagnose Severe Thunderstorm Potential Mteor 417 – Iowa State University – Week 6 Bill Gallus Basic features on a skew-T chart Moist adiabat isotherm Mixing ratio line isobar Dry adiabat Parameters that can be determined on a skew-T chart • Mixing ratio (w)– read from dew point curve • Saturation mixing ratio (ws) – read from Temp curve • Rel. Humidity = w/ws More parameters • Vapor pressure (e) – go from dew point up an isotherm to 622mb and read off the mixing ratio (but treat it as mb instead of g/kg) • Saturation vapor pressure (es)– same as above but start at temperature instead of dew point • Wet Bulb Temperature (Tw)– lift air to saturation (take temperature up dry adiabat and dew point up mixing ratio line until they meet). Then go down a moist adiabat to the starting level • Wet Bulb Potential Temperature (θw) – same as Wet Bulb Temperature but keep descending moist adiabat to 1000 mb More parameters • Potential Temperature (θ) – go down dry adiabat from temperature to 1000 mb • Equivalent Temperature (TE) – lift air to saturation and keep lifting to upper troposphere where dry adiabats and moist adiabats become parallel. Then descend a dry adiabat to the starting level. • Equivalent Potential Temperature (θE) – same as above but descend to 1000 mb. Meaning of some parameters • Wet bulb temperature is the temperature air would be cooled to if if water was evaporated into it. Can be useful for forecasting rain/snow changeover if air is dry when precipitation starts as rain. Can also give
    [Show full text]