Papertonnetz: Music Composition with Interactive Paper Louis Bigo, Jérémie Garcia, Antoine Spicher, Wendy E

Total Page:16

File Type:pdf, Size:1020Kb

Papertonnetz: Music Composition with Interactive Paper Louis Bigo, Jérémie Garcia, Antoine Spicher, Wendy E PaperTonnetz: Music Composition with Interactive Paper Louis Bigo, Jérémie Garcia, Antoine Spicher, Wendy E. Mackay To cite this version: Louis Bigo, Jérémie Garcia, Antoine Spicher, Wendy E. Mackay. PaperTonnetz: Music Composi- tion with Interactive Paper. Sound and Music Computing, Jul 2012, Copenhague, Denmark. hal- 00718334 HAL Id: hal-00718334 https://hal.inria.fr/hal-00718334 Submitted on 16 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PAPERTONNETZ: MUSIC COMPOSITION WITH INTERACTIVE PAPER Louis Bigo1,3 Jer´ emie´ Garcia1,2 Antoine Spicher3 Wendy E. Mackay2,4 [email protected] [email protected] [email protected] [email protected] 1IRCAM, CNRS UMR STMS 2INRIA, LRI 3LACL, Univ. Paris-Est Crteil 4Stanford University 1 place Igor Stravinsky Univ. Paris Sud, CNRS 61 avenue du Gal de Gaulle Computer Sciences, Gates F-75004 Paris, France F-91405 Orsay, France F-94010 Creteil,´ France B-280 Standord, CA ABSTRACT Creating spatial relationships that follow precise mathe- matical properties, such as the interval cycles that underlie Tonnetze are space-based musical representations that lay harmonic progressions, offers opportunities for both anal- out individual pitches in a regular structure. They are pri- ysis and composition. Systems such as Harmony Space [2] marily used for analysis with visualization tools or on pa- and Isochords [3] allow composers to analyze chords, har- per and for performance with button-based tablet or tangi- mony and MIDI sequences using different Tonnetz repre- ble interfaces. This paper first investigates how properties sentations. of Tonnetze can be applied in the composition process, in- We are interested in another role for Tonnetze, i.e. to sup- cluding the two-dimensional organization of pitches, based port music composition. We were inspired by Jean-Marc on a chord or on a scale. We then describe PaperTon- Chouvel’s composition process [4], in which he designs netz, a tool that lets musicians explore and compose mu- his own Tonnetz, prints them on paper, and then generates sic with Tonnetz representations by making gestures on in- musical sequences. He draws paths through sets of Ton- teractive paper. Unlike screen-based interactive Tonnetz netz cells, which provides the inherent order necessary to systems that treat the notes as playable buttons, PaperTon- define musical sequences. After exploring his ideas, he netz allows composers to interact with gestures, creating then transforms them into a standard format on a musical replayable patterns that represent pitch sequences and/or score (see Figure 2). Although this works well, we wanted chords. We describe the results of an initial test of the sys- to take his approach one step further to provide a direct tem in a public setting, and how we revised PaperTonnetz link between paths drawn on a paper Tonnetz and on-line to better support three activities: discovering, improvising composition tools. and assembling musical sequences in a Tonnetz. We con- clude with a discussion of directions for future research This paper presents PaperTonnetz which lets composers with respect to creating novel paper-based interactive mu- create their own Tonnetz representations, print them on sic representations to support musical composition. interactive paper, and ’play’ them with a pen. We use Anoto technology 1 to detect the position of a digital pen as it draws ink on paper and produces the corresponding 1. INTRODUCTION pitch. PaperTonnetz can be used as a simple performance A Tonnetz, or “tone-network“ in German, is a two-dimen- tool, similar to the tablet-based systems described above, sional representation of the relationships among pitches. but with an emphasis on drawing paths rather than press- Individual pitches are laid out along multiple axes: each ing buttons. However, PaperTonnetz can also be used as intersection is displayed as a cell with a specific pitch. Cre- a sophisticated composition tool, enabling the composer ated by Euler in 1739, Tonnetze were first used to represent to capture, replay, transform and compare sequences and just intonation, with equal distances between the pitches. chords. Our goal is to combine the flexibility of paper and In the mid 1800s, Riemann explored the use of these spaces the power of the computer to help composers explore new to chart harmonic motion between chords and modulation creative possibilities. among keys. Section 2 describes related work on the use of Tonnetze More recently, Tonnetze have been used to analyze classes to support performance as well as related research on inter- of pitches, representing neo-Riemannian transformations active paper to support composition. Next, we discuss how [1] in which every cell is associated with one of 12 pitches, Tonnetze can be designed to form a composition space. We independently of octave. The vertical axis organizes pitches then introduce PaperTonnetz and describe our initial study in cycles of fifths; the two diagonal axes represent minor of users, both novices and experienced musicians, as they third and major third cycles. Figure 1 illustrates a region of tried it at a public event. We explain how the results in- a neo-Riemannian Tonnetz that extends infinitely in all di- fluenced the design of PaperTonnetz to explicitly support rections and helps visualize harmonic chord progressions. discovery, improvisation and assembly of complex musical sequences. We conclude with a discussion of the benefits Copyright: c 2012 Louis Bigo et al. This is an open-access article distributed of using interactive paper and Tonnetze to support music under the terms of the Creative Commons Attribution 3.0 Unported License, which composition as well as directions for future research. permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 1 http://www.anoto.com 2. RELATED WORK Minor Major 3 4 Third Third Tonnetze may be implemented on a computer, enabling musicians to use them for performances. For example, C- 2 Thru , creates physical Tonnetz keyboard in which each 5 Fourth cell is a physical hexagonal button. The user can play in- dividual notes by pressing one button at a time, or play Figure 1. The neo-Riemannian Tonnetz frequently used to several simultaneously to create a chord. visualize chord progressions because of its harmonic prop- Tablet-based systems such as Musix and IsoKey offer users erties. a customizable isomorphic layout on the screen. Like C- Thru’s products, users can press the hexagonal cells to pro- duce individual pitches, melodies and chord patterns. They then use them as a resource for new compositions. also allow users to switch among different Tonnetz layouts We are interested in allowing composers to use Tonnetz during a performance. Maupin et al. [5] examined the har- as an aid to the composition process. This requires creating monic and melodic characteristics of different square and a Tonnetz-based composition space, discussed in section hexagonal pitch layouts and identified which layouts are 3, and an interactive paper-based system for letting com- better suited to different types of improvisation, within par- posers capture and modify musical expressions, described ticular harmonic contexts. in section 4. Although these systems provide interesting performance opportunities, they were not designed to support composi- 3. TONNETZ AS A COMPOSITION SPACE tion. Computer-based tools that are specifically intended for composition are usually dedicated to the later stages 3.1 Composition example of the creative process [6], such as assigning sequences in Chouvel’s work, entitled Traversee´ [4], offers a compelling time, editing scores or experimenting with advanced forms example of how a Tonnetz can be used as a tool for ex- of sound synthesis. Most of these tools involve learning a 3 ploring composition ideas. After creating and printing a specific language, such as MAX/MSP or OpenMusic [7], Tonnetz on paper, Chouvel drew differently colored paths although a few provide more direct methods, such as Bux- through the hexagonal cells, each representing a set of pitch ton et al.’s [8] techniques for interpreting hand-drawn mu- sequences. He called the resulting geometrical shapes ’con- sical notations. stellations’ because they look like the line drawings that Yet even composers with computer skills and access to connect individual stars in a map of the night sky. Once advanced composition systems prefer to sketch their early drawn, he was able to perform geometrical transformations creative ideas on paper [9, 10]. Paper helps creative pro- on the paths and examine the results, represented as notes fessionals externalize their ideas [11] and composers of- on a standard musical score. Figure 2 illustrates this pro- ten create their own personal languages to express musical cess: note that the paths that link different pitches may be ideas [12], which are difficult to translate into computer treated as a sequence, to create a melody, or in parallel, to terms. create a chord. One method for bridging the gap between physical paper and composition software is interactive paper. The most common approach uses Anoto technology [13], which uses a digital pen to capture the precise location as the pen moves on the paper. The pen contains an integrated video camera in the tip. The paper is printed with tiny, almost in- visible dots that create a unique, identifiable pattern. When the user draws on this paper with the pen, the camera de- tects the precise location of the pen on the page, as well as the time it was written, the pen that was used and even which page.
Recommended publications
  • TEKNIK GRAFIKA DAN INDUSTRI GRAFIKA JILID 1 Untuk SMK
    Antonius Bowo Wasono, dkk. TEKNIK GRAFIKA DAN INDUSTRI GRAFIKA JILID 1 SMK Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang TEKNIK GRAFIKA DAN INDUSTRI GRAFIKA JILID 1 Untuk SMK Penulis : Antonius Bowo Wasono Romlan Sujinarto Perancang Kulit : TIM Ukuran Buku : 17,6 x 25 cm WAS WASONO, Antonius Bowo t Teknik Grafika dan Industri Grafika Jilid 1 untuk SMK /oleh Antonius Bowo Wasono, Romlan, Sujinarto---- Jakarta : Direktorat Pembinaan Sekolah Menengah Kejuruan, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional, 2008. iii, 271 hlm Daftar Pustaka : Lampiran. A Daftar Istilah : Lampiran. B ISBN : 978-979-060-067-6 ISBN : 978-979-060-068-3 Diterbitkan oleh Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional Tahun 2008 KATA SAMBUTAN Puji syukur kami panjatkan kehadirat Allah SWT, berkat rahmat dan karunia Nya, Pemerintah, dalam hal ini, Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional, telah melaksanakan kegiatan penulisan buku kejuruan sebagai bentuk dari kegiatan pembelian hak cipta buku teks pelajaran kejuruan bagi siswa SMK. Karena buku-buku pelajaran kejuruan sangat sulit di dapatkan di pasaran. Buku teks pelajaran ini telah melalui proses penilaian oleh Badan Standar Nasional Pendidikan sebagai buku teks pelajaran untuk SMK dan telah dinyatakan memenuhi syarat kelayakan untuk digunakan dalam proses pembelajaran melalui Peraturan Menteri Pendidikan Nasional Nomor 45 Tahun 2008 tanggal 15 Agustus 2008. Kami menyampaikan penghargaan yang setinggi-tingginya kepada seluruh penulis yang telah berkenan mengalihkan hak cipta karyanya kepada Departemen Pendidikan Nasional untuk digunakan secara luas oleh para pendidik dan peserta didik SMK.
    [Show full text]
  • The Circle of Fifths
    The Circle of Fifths Why a circle? The cyclical nature of musical notes Using a circle diagram to study music can be extremely helpful because of the mathematical beauty of music. In previous lessons, we have touched on the fact that musical notes repeat themselves in predictable patterns going up in pitch. When the sound wave frequency of any particular note is doubled, that same note is produced but at a higher pitch. That note is what we call an octave note; it is one octave above the note below which is half its frequency. You can view this in a linear way, visualizing the notes from left to right in a straight line, as we have done from time to time using the piano keyboard as a diagram: Fig. 1, the seven octaves of the 88-key piano keyboard. In this diagram, I have marked some C notes and A notes on the piano keyboard to illustrate how they repeat themselves, going higher in pitch as you move from left to right. The C note with a blue (cyan) background color is known as “middle C” or also as C4, because it appears in the fourth full octave contained on a standard 88 key keyboard. This C note is twice the sound frequency of the next lower C to the left (C3). It is half the sound frequency of the next highest C to the right (C5). The A note with a yellow background (A4) is important because it is the note most often used these days as the “concert pitch” – it is the note that is traditionally used for all instruments in an orchestra to tune to, so that everyone plays in tune together.
    [Show full text]
  • Bridges Conference Paper
    Bridges 2019 Conference Proceedings Make Music Visible, Play Mathematics Andrea Capozucca1 and Marco Fermani2 1University of Camerino, Italy; [email protected] 2Musician and composer, Potenza Picena, Italy; [email protected] Abstract The workshop is based on interdisciplinary and interactive activities that links mathematics and music and presents mathematical and musical ideas through hands-on and multisensorial approaches. Its goals are to encourage maths teachers to inspire students by making maths audible as well as visible, and music teachers to use a geometrical method to foster a new approach towards music theory. Participants learn how the creative discovery process can be used to form an atmosphere of experimentation and play that can positively affect people attitudes about mathematics, music and learning. Introduction Music and geometry has always had more contact points than we can ever imagine, but nevertheless music theorists has focused attention on counting and ratios. As the great 17th-century German mathematician Gottfried Leibniz wrote: “Music is the sensation of counting without being aware you were counting.” But there is more to this connection than counting. As the French baroque composer Rameau declared in 1722: “I must confess that only with the aid of mathematics did my ideas become clear.” So, is there really a link? Or is it crazy to try to connect the creative art of music with the steely logic of mathematics? Certainly the grammar of music – rhythm and pitch – has mathematical foundations. While the combinations of notes we have been drawn to over the centuries can all be explained through numbers, music is more than just notes and beats.
    [Show full text]
  • Circle of Fifths Guitar Scales
    Circle of fifths guitar scales Continue We used to talk about a large scale. We have built a large scale C, which happens to contain no sharp and non-flats. We then created some other large scales based on the same exact scale formula; that is, with the same exact type of steps as major C, but starting with a different note other than C. C Main Scale C♯ D D♯ E F♯ G♯ A♯ B C Let's take the fifth note in C-scale (tone G) and use this note to make a new scale. What will be the names of the notes? From G we will apply the formula of whole and half steps, using chromatic scales as our source: wh, wh, h, wh, wh, h. the result is G A B B C D F F♯ F. G. G. G. Major Scale G♯ A♯ B C C C♯ D♯ E F F♯ G When writing notation, we will always write sharp when F appear? It seems annoying. Therefore, the standard practice is to announce it at the beginning of a piece of music called key signatureA markings used at the beginning of a piece of written music to specify the key; usually, which notes will be sharp or which notes will be flat. (But not both) (pictured). This symbol indicates that until otherwise stated, all F will actually be F♯. Note that the sharp one is placed directly above the triple key line of note F. This key signature will be a G major key. While useful in understanding notation, key signatures are also valuable, even if we never read music.
    [Show full text]
  • Harmony Analysis
    Workshop HfM Karlsruhe Music Information Retrieval Harmony Analysis Christof Weiß, Frank Zalkow, Meinard Müller International Audio Laboratories Erlangen [email protected] [email protected] [email protected] Book: Fundamentals of Music Processing Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015 Accompanying website: www.music-processing.de Book: Fundamentals of Music Processing Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015 Accompanying website: www.music-processing.de Chapter 5: Chord Recognition 5.1 Basic Theory of Harmony 5.2 Template-Based Chord Recognition 5.3 HMM-Based Chord Recognition 5.4 Further Notes In Chapter 5, we consider the problem of analyzing harmonic properties of a piece of music by determining a descriptive progression of chords from a given audio recording. We take this opportunity to first discuss some basic theory of harmony including concepts such as intervals, chords, and scales. Then, motivated by the automated chord recognition scenario, we introduce template-based matching procedures and hidden Markov models—a concept of central importance for the analysis of temporal patterns in time-dependent data streams including speech, gestures, and music. Dissertation: Tonality-Based Style Analysis Christof Weiß Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings Dissertation, Ilmenau University of Technology, 2017 Chapter 5: Analysis Methods for Key and Scale Structures Chapter 6: Design of Tonal Features Recall: Chroma Features . Human perception of pitch is periodic .
    [Show full text]
  • Is CBS 1766 a Tone-Circle?
    1 Is CBS 1766 a Tone-Circle? by Sara de Rose Abstract This paper illustrates how the heptagram on tablet CBS 1766 can be derived as a geometric/numeric pattern when creating a 12-tone scale by reducing perfect fifths. It also shows that the sequence 4,1,5,2,6,3,7, generated by following the diagonals of the heptagram on CBS 1766, explains the construction of the diatonic scale. The paper suggests that the sequence 4,1,5,2,6,3,7 was originally derived from the 12-tone scale and then later re-applied, intentionally, to create the diatonic scale. It is suggested that this re-application of the sequence 4,1,5,2,6,3,7 to create the diatonic scale was, in fact, an analogy, in the original sense of the word (i.e. a comparison based on number) and that a series of further analogies using the sequence 4,1,5,2,6,3,7 were also created – analogies that extended beyond the practical applications of music. Finally, the paper shows that the sequence 4,1,5,2,6,3,7 has a role, today, in teaching music theory, for it is, quite literally, what musicians call the key . 2 Is CBS 1766 a Tone-Circle? 1 In New Light on the Babylonian Tonal System , Figure 1: CBS 1766 L. Crickmore suggests that musicologists pose the question “could CBS 1766 be the earliest known example of a tone-circle?” This paper explores that possibility. There are two assumptions that I will make before exploring the diagram on CBS 1766 as relating to a tone-circle.
    [Show full text]
  • AMM Study with Arcosys 2018
    [email protected] SPECIAL RESEARCH PROJECT: www.MuK.ac.at www.JuraMargulis.com www.PianistToPianist.com Musical Performance Memory with Ar.Co.Sys, a Musical Mnemonic Method (AMMM) AMMM was introduced in 2017 in the last year of the International Piano Academy Freiburg, continued as a special research project of the IWF (Institut für Wissenschaft und Forschung) at the MuK Vienna University in 2018, and features a multi-year study of a methodology specially developed to analyze and train the pianist musician’s onstage performance memory. It draws on the millennium old knowledge of mnemonics, the art and science of memorization, as well as recent cognitive, psychological, and scientific research, and introduces a completely innovative aspect: The creation and methodical development of ArCoSys ~ Artificial ‘Color Synesthesia’ (or ‘Chromesthesia’, or ‘sound-color synesthesia’) chromatically applied to the primary harmonic relations of the Circle of Fifths. The integration of ArCoSys systematically into a multilayered retrieval structure by repetition with purpose is the object of study and foundation of the ArCoSys Musical Mnemonic Method. AMMM is a voluntary and feed-back based open study with a growing number of participants; students and professionals from all institutions are welcome to participate.* • Repeon is the mother of memory. But retrieval structure is its father! Mul-Integraonal Neuro-Synapc Coding - a fancy name for part of a process that can be used to specifically train and improve musical performance memory which remains a challenge for most aspiring internaonal concert pianist and recording arst as well as for the myrmidons of the musical world. As we know from the study of memory, mnemonics, it is the development of a retrieval structure that enables access to a large amount of data.
    [Show full text]
  • Letter Circular 987: Color Harmony: an Annotated Bibliography
    BBJ : EMR U. S. DEPARTMENT OF COMMERCE Letter NATIONAL BUREAU OF STANDARDS Circular;: WASHINGTON LC987 May 10. 1950 (Supersedes LC525) COLOR HARMONY : An Annot ated Bibl i ography This Bureau has not conducted any work on color harmony; it does not issue color charts showing what combinations of colors are har- monious. The combination of various colors in pleasing ways is the concern of the artist, the architect, the landscape architect, the interior decorator, and the textile designer. The following bibli.graphy on color harmony not only serves to indicate some important sources of information but also to give a summary of the several conclusions reached. Contradictions between conclusions by the various authori- ties are not infrequent, and, indeed, are to be expected because of the complexity of the subject. Rumford, Nicholson’s Journal, Vol. 2, pp, 101-106, 1797. Rum- ford’s rule: Two neighboring colors are in perfect harmony,- ..id then only,- when their mixture results in perfect white. W. v. Goethe, Zur Farbenlehre (On the science of color), Vol, 1, Cotta, Tubingen, p. 301, 1810. If the eye perceives a color, there immediately appears another co„or which, with the first, represents the totality of the hie circle. Hence, one ’ solated color excites in the eye the need to see the general group. Here is the basis of the fundamental law of color harmony. Yellow demands reddish-ol le, blue demands orange, and purple demands green. The view of the whole hue circle causes an agreeable sensation. Field, Chromatics, London, 1815. Field’s rule for a good com- bination: The separate colors must be so chosen and their areas so adjusted that their mixture, or the result by viewing from a gre.
    [Show full text]
  • Pemetaan Pola Progresi Chord Berdasarkan Kombinasi Interval
    Pemetaan Pola Progresi Chord Berdasarkan Kombinasi Interval Ilham Pamuji Institut Seni Budaya Indonesia (ISBI) Bandung Jl. Buah-Batu No.212, Cijagra, Lengkong, Kota Bandung 40265 [email protected] ABSTRACT Various phenomena, concepts and theories in music can be explained by mathematics. Moreover, it can be an approach in the process of song creation, composition, or music arrangement. Related to this, this study discusses the mapping of chord progressions based on interval combinations in chromatic circles. To be more specific, by connecting the musical notes with lines that represent various combinations of two specific types of intervals into a series of notes (chord progression patterns) in one loop ( starts and ends at note C). The interval combination pattern refers to the smallest size, namely m2 (minor second /minor second, 1 semitone step). This research was conducted to produce various patterns of unconventional chord progression patterns viewed through a tonal harmony system. This research is motivated by the strong influence of the tonal harmony system limiting creativity in the music creation process. Therefore, it takes an approach, method, or other system that needs to be tested to get out of the system. The result of this research is that there are 32 variations of chord progression patterns (series of notes) which are summarized in geometric shapes. By comparing the geometric shapes, the patterns appear mathematically, systematic, and symmetrical. In its application, these patterns seem unconventional, come out of a tonal harmony system (it can still be studied through the system, depending on the chord shape used) and produce a unique sound. Keywords: chord progression, interval, chromatic circle, music creation PENDAHULUAN matematis pada unsur atau formula A.
    [Show full text]
  • The Geometry of Tonal Space
    BRIDGES Mathematical Connections in Art, Mnsic, and Science Hearing With Our Eyes: The Geometry of Tonal Space Julian L. Hook School of Music Penn State University University Park, PA 16802-1901 E-mail: [email protected] There is no intrinsic reason why musical structures should be represented graphically. Music is, after aU, an auditory phenomenon. It consists of vibrations transmitted through the air as sound waves, received by our ears and processed by our brains as acoustic data. Visual aspects of music-the arrangement of musicians on a stage or of notes on a page, the gyrations of the conductor, the shine of the piano-are of secondary importance in our understanding and appreciation of a musical work. Most human beings, however, are visually oriented. We rely on our eyes more than our ears or any of our other sense organs in finding our way around, identifying other people and objects, and learning new information. Because of this dependence on the visual world, most people find abstract concepts easier to grasp if they can somehow be visualized: if some sort of graphical, geometric representation can be devised showing, if only metaphorically, the important elements of the conceptual framework and their relationships with each other. Even if these elements exist in sound and time rather than in light and space, such a representation may help us to get our bearings and to interpret what we hear. Pitches, chords, and key areas are examples of musical elements that lend themselves well to graphical depiction. Many music theorists through the centuries have drawn diagrams showing the appearance of "tonal space" from various perspectives.
    [Show full text]
  • Music Theory Contents
    Music theory Contents 1 Music theory 1 1.1 History of music theory ........................................ 1 1.2 Fundamentals of music ........................................ 3 1.2.1 Pitch ............................................. 3 1.2.2 Scales and modes ....................................... 4 1.2.3 Consonance and dissonance .................................. 4 1.2.4 Rhythm ............................................ 5 1.2.5 Chord ............................................. 5 1.2.6 Melody ............................................ 5 1.2.7 Harmony ........................................... 6 1.2.8 Texture ............................................ 6 1.2.9 Timbre ............................................ 6 1.2.10 Expression .......................................... 7 1.2.11 Form or structure ....................................... 7 1.2.12 Performance and style ..................................... 8 1.2.13 Music perception and cognition ................................ 8 1.2.14 Serial composition and set theory ............................... 8 1.2.15 Musical semiotics ....................................... 8 1.3 Music subjects ............................................. 8 1.3.1 Notation ............................................ 8 1.3.2 Mathematics ......................................... 8 1.3.3 Analysis ............................................ 9 1.3.4 Ear training .......................................... 9 1.4 See also ................................................ 9 1.5 Notes ................................................
    [Show full text]
  • The Physics of Musical Scales: Theory and Experiment Dallin S
    The physics of musical scales: Theory and experiment Dallin S. Durfee and John S. Colton Citation: American Journal of Physics 83, 835 (2015); doi: 10.1119/1.4926956 View online: http://dx.doi.org/10.1119/1.4926956 View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/83/10?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Classroom Materials from the Acoustical Society of America Phys. Teach. 51, 348 (2013); 10.1119/1.4818371 Physics of Music and Acoustics at University of New South Wales, www.phys.unsw.edu.au/music/www.acs.psu.edu/drussell/demos.html Phys. Teach. 50, 574 (2012); 10.1119/1.4767508 Experimenting with a “Pipe” Whistle Phys. Teach. 50, 229 (2012); 10.1119/1.3694076 A Simple Experiment to Explore Standing Waves in a Flexible Corrugated Sound Tube Phys. Teach. 49, 360 (2011); 10.1119/1.3628265 A simple experiment for measuring bar longitudinal and flexural vibration frequencies Am. J. Phys. 78, 1429 (2010); 10.1119/1.3493403 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.187.112.1 On: Sat, 26 Sep 2015 14:14:25 The physics of musical scales: Theory and experiment Dallin S. Durfeea) and John S. Colton Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602 (Received 15 December 2014; accepted 1 July 2015) The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound.
    [Show full text]