Representation of Musical Structures and Processes in Simplicial Chord Spaces Louis Bigo, Daniele Ghisi, Antoine Spicher, Moreno Andreatta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1 Geometric Generalizations of the Tonnetz and Their Relation To
November 22, 2017 12:45 ws-rv9x6 Book Title yustTonnetzSub page 1 Chapter 1 Geometric Generalizations of the Tonnetz and their Relation to Fourier Phases Spaces Jason Yust Boston University School of Music, 855 Comm. Ave., Boston, MA, 02215 [email protected] Some recent work on generalized Tonnetze has examined the topologies resulting from Richard Cohn's common-tone based formulation, while Tymoczko has reformulated the Tonnetz as a network of voice-leading re- lationships and investigated the resulting geometries. This paper adopts the original common-tone based formulation and takes a geometrical ap- proach, showing that Tonnetze can always be realized in toroidal spaces, and that the resulting spaces always correspond to one of the possible Fourier phase spaces. We can therefore use the DFT to optimize the given Tonnetz to the space (or vice-versa). I interpret two-dimensional Tonnetze as triangulations of the 2-torus into regions associated with the representatives of a single trichord type. The natural generalization to three dimensions is therefore a triangulation of the 3-torus. This means that a three-dimensional Tonnetze is, in the general case, a network of three tetrachord-types related by shared trichordal subsets. Other Ton- netze that have been proposed with bounded or otherwise non-toroidal topologies, including Tymoczko's voice-leading Tonnetze, can be under- stood as the embedding of the toroidal Tonnetze in other spaces, or as foldings of toroidal Tonnetze with duplicated interval types. 1. Formulations of the Tonnetz The Tonnetz originated in nineteenth-century German harmonic theory as a network of pitch classes connected by consonant intervals. -
Generalized Tonnetze and Zeitnetz, and the Topology of Music Concepts
June 25, 2019 Journal of Mathematics and Music tonnetzTopologyRev Submitted exclusively to the Journal of Mathematics and Music Last compiled on June 25, 2019 Generalized Tonnetze and Zeitnetz, and the Topology of Music Concepts Jason Yust∗ School of Music, Boston University () The music-theoretic idea of a Tonnetz can be generalized at different levels: as a network of chords relating by maximal intersection, a simplicial complex in which vertices represent notes and simplices represent chords, and as a triangulation of a manifold or other geomet- rical space. The geometrical construct is of particular interest, in that allows us to represent inherently topological aspects to important musical concepts. Two kinds of music-theoretical geometry have been proposed that can house Tonnetze: geometrical duals of voice-leading spaces, and Fourier phase spaces. Fourier phase spaces are particularly appropriate for Ton- netze in that their objects are pitch-class distributions (real-valued weightings of the twelve pitch classes) and proximity in these space relates to shared pitch-class content. They admit of a particularly general method of constructing a geometrical Tonnetz that allows for interval and chord duplications in a toroidal geometry. The present article examines how these du- plications can relate to important musical concepts such as key or pitch-height, and details a method of removing such redundancies and the resulting changes to the homology the space. The method also transfers to the rhythmic domain, defining Zeitnetze for cyclic rhythms. A number of possible Tonnetze are illustrated: on triads, seventh chords, ninth-chords, scalar tetrachords, scales, etc., as well as Zeitnetze on a common types of cyclic rhythms or time- lines. -
TEKNIK GRAFIKA DAN INDUSTRI GRAFIKA JILID 1 Untuk SMK
Antonius Bowo Wasono, dkk. TEKNIK GRAFIKA DAN INDUSTRI GRAFIKA JILID 1 SMK Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang TEKNIK GRAFIKA DAN INDUSTRI GRAFIKA JILID 1 Untuk SMK Penulis : Antonius Bowo Wasono Romlan Sujinarto Perancang Kulit : TIM Ukuran Buku : 17,6 x 25 cm WAS WASONO, Antonius Bowo t Teknik Grafika dan Industri Grafika Jilid 1 untuk SMK /oleh Antonius Bowo Wasono, Romlan, Sujinarto---- Jakarta : Direktorat Pembinaan Sekolah Menengah Kejuruan, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional, 2008. iii, 271 hlm Daftar Pustaka : Lampiran. A Daftar Istilah : Lampiran. B ISBN : 978-979-060-067-6 ISBN : 978-979-060-068-3 Diterbitkan oleh Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional Tahun 2008 KATA SAMBUTAN Puji syukur kami panjatkan kehadirat Allah SWT, berkat rahmat dan karunia Nya, Pemerintah, dalam hal ini, Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah Departemen Pendidikan Nasional, telah melaksanakan kegiatan penulisan buku kejuruan sebagai bentuk dari kegiatan pembelian hak cipta buku teks pelajaran kejuruan bagi siswa SMK. Karena buku-buku pelajaran kejuruan sangat sulit di dapatkan di pasaran. Buku teks pelajaran ini telah melalui proses penilaian oleh Badan Standar Nasional Pendidikan sebagai buku teks pelajaran untuk SMK dan telah dinyatakan memenuhi syarat kelayakan untuk digunakan dalam proses pembelajaran melalui Peraturan Menteri Pendidikan Nasional Nomor 45 Tahun 2008 tanggal 15 Agustus 2008. Kami menyampaikan penghargaan yang setinggi-tingginya kepada seluruh penulis yang telah berkenan mengalihkan hak cipta karyanya kepada Departemen Pendidikan Nasional untuk digunakan secara luas oleh para pendidik dan peserta didik SMK. -
MTO 25.1 Examples: Willis, Comprehensibility and Ben Johnston’S String Quartet No
MTO 25.1 Examples: Willis, Comprehensibility and Ben Johnston’s String Quartet No. 9 (Note: audio, video, and other interactive examples are only available online) http://mtosmt.org/issues/mto.19.25.1/mto.19.25.1.willis.html Example 1. Partch’s 5-limit tonality diamond, after Partch (1974, 110) also given with pitch names and cent deviations from twelve-tone equal temperament Example 2. Partch’s 11-limit tonality diamond, after Partch (1974, 159) Example 3. The just-intoned diatonic shown in ratios, cents, and on a Tonnetz Example 4. Johnston’s accidentals, the 5-limit ration they inflect, the target ratio they bring about, their ratio and cent value. As an example of how this table works, take row 11. If we multiply 4:3 by 33:32 it sums to 11:8. This is equivalent to raising a perfect fourth by Johnston’s 11 chroma. Example 5. The overtone and undertone series of C notated using Johnston’s method Example 6. A Tonnetz with the syntonic diatonic highlighted in grey. The solid lines connect the two 5-limit pitches that may be inflected to produce a tonal or tonal seventh against the C. This makes clear why the tonal seventh of C is notated as lowered by a syntonic comma in addition to an inverse 7 sign. It is because the pitch is tuned relative to the D- (10:9), which is a syntonic comma lower than the D that appears in the diatonic gamut. Example 7. Johnston, String Quartet No. 9/I, m. 109. A comma pump progression shown with Roman Numerals and a Tonnetz. -
From Schritte and Wechsel to Coxeter Groups 3
From Schritte and Wechsel to Coxeter Groups Markus Schmidmeier1 Abstract: The PLR-moves of neo-Riemannian theory, when considered as re- flections on the edges of an equilateral triangle, define the Coxeter group S3. The elements are in a natural one-to-one correspondence with the trianglese in the infinite Tonnetz. The left action of S3 on the Tonnetz gives rise to interest- ing chord sequences. We compare the systeme of transformations in S3 with the system of Schritte and Wechsel introduced by Hugo Riemann in 1880e . Finally, we consider the point reflection group as it captures well the transition from Riemann’s infinite Tonnetz to the finite Tonnetz of neo-Riemannian theory. Keywords: Tonnetz, neo-Riemannian theory, Coxeter groups. 1. PLR-moves revisited In neo-Riemannian theory, chord progressions are analyzed in terms of elementary moves in the Tonnetz. For example, the process of going from tonic to dominant (which differs from the tonic chord in two notes) is decomposed as a product of two elementary moves of which each changes only one note. The three elementary moves considered are the PLR-transformations; they map a major or minor triad to the minor or major triad adjacent to one of the edges of the triangle representing the chord in the Tonnetz. See [4] and [5]. C♯ G♯ .. .. .. .. ... ... ... ... ... PR ... ... PL ... A ................E ................ B′ .. .. R.. .. L .. .. ... ... ... ... ... ... ... LR ... ... ∗ ... ... RL ... ( ) ′ F′ ................C ................ G ................ D .. .. P .. .. ... ... ... ... ... LP ... ... RP ... A♭ ................E♭ ................ B♭′ arXiv:1901.05106v3 [math.CO] 4 Apr 2019 Figure 1. Triads in the vicinity of the C-E-G-chord Our paper is motivated by the observation that PLR-moves, while they provide a tool to measure distance between triads, are not continuous as operations on the Tonnetz: Let s be a sequence of PLR-moves. -
A Tonnetz Model for Pentachords
A Tonnetz model for pentachords Luis A. Piovan KEYWORDS. neo-Riemann network, pentachord, contextual group, Tessellation, Poincaré disk, David Lewin, Charles Koechlin, Igor Stravinsky. ABSTRACT. This article deals with the construction of surfaces that are suitable for repre- senting pentachords or 5-pitch segments that are in the same T {I class. It is a generalization of the well known Öttingen-Riemann torus for triads of neo-Riemannian theories. Two pen- tachords are near if they differ by a particular set of contextual inversions and the whole contextual group of inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A description of the surfaces as coverings of a particular Tiling is given in the twelve-tone enharmonic scale case. 1. Introduction The interest in generalizing the Öttingen-Riemann Tonnetz was felt after the careful analysis David Lewin made of Stockhausen’s Klavierstück III [25, Ch. 2], where he basically shows that the whole work is constructed with transformations upon the single pentachord xC,C#, D, D#, F #y. A tiled torus with equal tiles like the usual Tonnetz of Major and Minor triads is not possible by using pentagons (you cannot tile a torus or plane by regular convex pentagons). Therefore one is forced to look at other surfaces and fortunately there is an infinite set of closed surfaces where one can gather regular pentagonal Tilings. These surfaces (called hyperbolic) are distinguished by a single topological invariant: the genus or arXiv:1301.4255v1 [math.HO] 17 Jan 2013 number of holes the surface has (see Figure 8)1. The analysis2 of Schoenberg’s, Opus 23, Number 3, made clear the type of transfor- mations3 to be used. -
The Circle of Fifths
The Circle of Fifths Why a circle? The cyclical nature of musical notes Using a circle diagram to study music can be extremely helpful because of the mathematical beauty of music. In previous lessons, we have touched on the fact that musical notes repeat themselves in predictable patterns going up in pitch. When the sound wave frequency of any particular note is doubled, that same note is produced but at a higher pitch. That note is what we call an octave note; it is one octave above the note below which is half its frequency. You can view this in a linear way, visualizing the notes from left to right in a straight line, as we have done from time to time using the piano keyboard as a diagram: Fig. 1, the seven octaves of the 88-key piano keyboard. In this diagram, I have marked some C notes and A notes on the piano keyboard to illustrate how they repeat themselves, going higher in pitch as you move from left to right. The C note with a blue (cyan) background color is known as “middle C” or also as C4, because it appears in the fourth full octave contained on a standard 88 key keyboard. This C note is twice the sound frequency of the next lower C to the left (C3). It is half the sound frequency of the next highest C to the right (C5). The A note with a yellow background (A4) is important because it is the note most often used these days as the “concert pitch” – it is the note that is traditionally used for all instruments in an orchestra to tune to, so that everyone plays in tune together. -
1 Original Place of Publication: Murphy, Scott. (2014) “Scoring Loss in Some Recent Popular Film and Television.” Music Theo
Original place of publication: Murphy, Scott. (2014) “Scoring Loss in Some Recent Popular Film and Television.” Music Theory Spectrum, 36(2), 295-314. Original date of publication: 7 Oct 2014 URL: http://mts.oxfordjournals.org/content/early/2014/09/24/mts.mtu014 ABSTRACT A certain tonally- and temporally-oriented progression of two triads, dwelt upon usually through undulation, accompanies scenes depicting the contemplation of a considerable sorrowful loss in many popular films and throughout one television program produced between 1985 and 2012. In lieu of any strong stylistic precedent for this musico-dramatic association, certain structural relationships between the two triads relative to other triadic pairings may account for possible motivations of the association. Keywords: film music, television music, tonality, triadic harmony, triadic transformation, mediant triad, loss, sorrow, homology, James Horner, Cocoon The narrative of Ron Howard’s 1985 movie Cocoon brings two parties into conflict: a peaceable and immortal alien race suffering from the regrettable but necessary abandonment of twenty of their kind on Earth thousands of years ago, and a group of present-day retirement-home residents in Florida suffering from degradation of health and vitality.*To counter these adversities, both parties use a lifeforce generated in a neglected swimming pool by a team of four aliens, led by Walter (Brian Dennehy), sent back to Earth to retrieve their stranded and cocooned comrades. The pool restores the abandoned aliens to full health, a requirement for their interstellar journey home, but it also acts as a “fountain of youth” for a trio of elderly men—Art (Don Ameche), Ben (Wilford Brimley), and Joe (Hume Cronyn)—who surreptitiously swim there; for example, the alien lifeforce miraculously throws Joe’s leukemia into 1 remission. -
Chapter 3 Topological Structures in Computer-Aided Music Analysis
Chapter 3 Topological Structures in Computer-Aided Music Analysis Louis Bigo and Moreno Andreatta Abstract We propose a spatial approach to musical analysis based on the notion of a chord complex.Achord complex is a labelled simplicial complex which represents a set of chords. The dimension of the elements of the complex and their neighbourhood relationships highlight the size of the chords and their intersections. Following a well-established tradition in set-theoretical and neo-Riemannian music analysis, we present the family of T/I complexes which represent classes of chords which are transpositionally and inversionally equivalent and which relate to the notion of Generalized Tonnetze. A musical piece is represented by a trajectory within a given chord complex. We propose a method to compute the compactness of a trajectory in any chord complex. Calculating the trajectory compactness of a piece in T/I complexes provides valuable information for music analysis and classification. We introduce different geometrical transformations on trajectories that correspond to different musical transformations. Finally, we present HexaChord, a software package dedicated to computer-aided music analysis with chord complexes, which implements most of the concepts discussed in this chapter. Louis Bigo Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU, San Sebastian,´ Spain e-mail: [email protected] Moreno Andreatta CNRS, France IRCAM, Paris, France Universite´ Pierre et Marie Curie, Paris, France e-mail: -
Bridges Conference Paper
Bridges 2019 Conference Proceedings Make Music Visible, Play Mathematics Andrea Capozucca1 and Marco Fermani2 1University of Camerino, Italy; [email protected] 2Musician and composer, Potenza Picena, Italy; [email protected] Abstract The workshop is based on interdisciplinary and interactive activities that links mathematics and music and presents mathematical and musical ideas through hands-on and multisensorial approaches. Its goals are to encourage maths teachers to inspire students by making maths audible as well as visible, and music teachers to use a geometrical method to foster a new approach towards music theory. Participants learn how the creative discovery process can be used to form an atmosphere of experimentation and play that can positively affect people attitudes about mathematics, music and learning. Introduction Music and geometry has always had more contact points than we can ever imagine, but nevertheless music theorists has focused attention on counting and ratios. As the great 17th-century German mathematician Gottfried Leibniz wrote: “Music is the sensation of counting without being aware you were counting.” But there is more to this connection than counting. As the French baroque composer Rameau declared in 1722: “I must confess that only with the aid of mathematics did my ideas become clear.” So, is there really a link? Or is it crazy to try to connect the creative art of music with the steely logic of mathematics? Certainly the grammar of music – rhythm and pitch – has mathematical foundations. While the combinations of notes we have been drawn to over the centuries can all be explained through numbers, music is more than just notes and beats. -
Circle of Fifths Guitar Scales
Circle of fifths guitar scales Continue We used to talk about a large scale. We have built a large scale C, which happens to contain no sharp and non-flats. We then created some other large scales based on the same exact scale formula; that is, with the same exact type of steps as major C, but starting with a different note other than C. C Main Scale C♯ D D♯ E F♯ G♯ A♯ B C Let's take the fifth note in C-scale (tone G) and use this note to make a new scale. What will be the names of the notes? From G we will apply the formula of whole and half steps, using chromatic scales as our source: wh, wh, h, wh, wh, h. the result is G A B B C D F F♯ F. G. G. G. Major Scale G♯ A♯ B C C C♯ D♯ E F F♯ G When writing notation, we will always write sharp when F appear? It seems annoying. Therefore, the standard practice is to announce it at the beginning of a piece of music called key signatureA markings used at the beginning of a piece of written music to specify the key; usually, which notes will be sharp or which notes will be flat. (But not both) (pictured). This symbol indicates that until otherwise stated, all F will actually be F♯. Note that the sharp one is placed directly above the triple key line of note F. This key signature will be a G major key. While useful in understanding notation, key signatures are also valuable, even if we never read music. -
Harmony Analysis
Workshop HfM Karlsruhe Music Information Retrieval Harmony Analysis Christof Weiß, Frank Zalkow, Meinard Müller International Audio Laboratories Erlangen [email protected] [email protected] [email protected] Book: Fundamentals of Music Processing Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015 Accompanying website: www.music-processing.de Book: Fundamentals of Music Processing Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015 Accompanying website: www.music-processing.de Chapter 5: Chord Recognition 5.1 Basic Theory of Harmony 5.2 Template-Based Chord Recognition 5.3 HMM-Based Chord Recognition 5.4 Further Notes In Chapter 5, we consider the problem of analyzing harmonic properties of a piece of music by determining a descriptive progression of chords from a given audio recording. We take this opportunity to first discuss some basic theory of harmony including concepts such as intervals, chords, and scales. Then, motivated by the automated chord recognition scenario, we introduce template-based matching procedures and hidden Markov models—a concept of central importance for the analysis of temporal patterns in time-dependent data streams including speech, gestures, and music. Dissertation: Tonality-Based Style Analysis Christof Weiß Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings Dissertation, Ilmenau University of Technology, 2017 Chapter 5: Analysis Methods for Key and Scale Structures Chapter 6: Design of Tonal Features Recall: Chroma Features . Human perception of pitch is periodic .