Effects of Fluoridated Water on Pineal Morphology in Male Rats by Aaron

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Fluoridated Water on Pineal Morphology in Male Rats by Aaron Effects of Fluoridated Water on Pineal Morphology in Male Rats by Aaron Mrvelj Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Biological Sciences Program YOUNGSTOWN STATE UNIVERSITY August, 2017 Effects of Fluoridated Water on Pineal Morphology in Male Rats Aaron Mrvelj I hereby release this Thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Aaron Mrvelj, Student Date Approvals: Dr. Mark Womble, Thesis Advisor Date Dr. Jill Tall, Committee Member Date Dr. Jeffrey Coldren, Committee Member Date Dr. Salvatore A. Sanders, Dean of Graduate Studies Date Abstract The pineal gland is a naturally calcifying endocrine organ which produ ces and releases the sleep-promoting hormone melatonin which also serves as an antioxidant. Fluoride is attracted to the calcium in the pineal gland and inhibits the synthesis and activity of melatonin, induces oxidative stress, and causes cellular changes to the neurons of the hippocampus. Morphological changes to the pineal gland have been demonstrated with increased age, exposure to light during a melatonin production period, or sleep deprivation. This study sought to examine the effects of fluoridated water on the morphology of the pineal gland. The effects of a fluoride-free flush were compared to fluoride treatment. Group 1, previously raised on fluoridated tap water served as a control that was sacrificed at the onset of the experiment. The remaining four groups were then subjected to a four-week fluoride-free diet with Group 2 being sacrificed at the end of this period. Group 3 was maintained on fluoride-free food and water while Groups 4 and 5 were switched to fluoridated water for the remaining four weeks. The fluoride-free flush resulted in an increase in the number of supporting cells and pinealocytes and a decrease in the nuclear diameter of pinealocytes, suggesting that the flush encouraged growth of the gland. Fluoride treatment had no effect on the number of supporting cells, but decreased the number of pinealocytes and their nuclear diameter, suggesting that fluoride is detrimental to the pineal gland. iii Table of Contents Abstract......................................................................................................... iii Table of Contents ......................................................................................... iv List of Figures ................................................................................................ v List of Abbreviations ................................................................................... vi The Institutional Animal Care and Use Committee Approval .............. vii Introduction .................................................................................................... 1 Pineal gland .................................................................................................................... 1 Normal pineal morphology ............................................................................................. 2 Melatonin ........................................................................................................................ 6 Altered Pineal Morphology ........................................................................................... 10 Fluoride ......................................................................................................................... 12 Effects of fluoride .......................................................................................................... 15 Hypothesis ..................................................................................................................... 18 Methods.........................................................................................................18 Population ..................................................................................................................... 19 Animal wellness ............................................................................................................ 20 Animal experimental groups ......................................................................................... 20 Tissue processing and staining ..................................................................................... 21 Morphological analysis ................................................................................................ 23 Statistical analyses ........................................................................................................ 25 Results ...........................................................................................................28 Animal wellness ............................................................................................................ 28 Effects of fluoride-free flush .......................................................................................... 31 Effects of fluoride treatment .......................................................................................... 37 Discussion .....................................................................................................48 Conclusions ................................................................................................................... 54 Limitations .................................................................................................................... 55 References .....................................................................................................56 iv List of Figures Figure 1: Neural pathway for signals traveling to the pineal gland ................. 8 Figure 2: The MEL molecular pathway in the suprachiasmatic nucleus ........ 9 Figure 3: Common sources of fluoride exposure ............................................. 15 Figure 4: Graphical representation of the experimental design ..................... 21 Figure 5: Grid reticle with relative dimensions at 400X magnification ......... 24 Figure 6: Photograph of light and dark pinealocytes and supporting cells .. 25 Figure 7: Change from initial body weight per animal for each group ......... 29 Figure 8: Food eaten per animal per week ....................................................... 30 Figure 9: Water drank per animal per week ................................................... 31 Figure 10: Change in the number of cells per unit area over time ................ 34 Figure 11: Change in the number of pinealocytes per unit area over time ... 35 Figure 12: Ratio of pinealocytes to supporting cells over time ....................... 36 Figure 13: Diameter of pinealocyte nuclei ........................................................ 37 Figure 14: Number of cells per unit area for each group ................................ 42 Figure 15: Number of pinealocytes per unit area for each group .................. 44 Figure 16: Ratio of light to dark pinealocyte ................................................... 45 Figure 17: Ratio of pinealocytes to supporting cell by group ......................... 45 Figure 18: Number of light and dark cells in the periphery and deep gland ......... 46 Figure 19: Diameter of pinealocyte nuclei for each group .............................. 48 v List of Abbreviations Melatonin (MEL) Also known as (aka) Micrometer (μm) Milliliter (mL) Gram (g) Hematoxylin and eosin (H&E) Connective tissue capsule (CTC) Retinohypothalamic tract (RHT) Suprachiasmatic nucleus (SCN) Paraventricular nucleus (PVN) Action potential (AP) United States (U.S.) Period (per) Cryptochrome (cry) Clock (clk) Cycle (cyc) Clock-Cycle dimer (Clk-Cyc) Period-Cryptochrome dimer (Per-Cry) Superoxide dismutase (SOD) Glutathione peroxidase (GPx) Glutathione reductase (GR) Catalase (CAT) Reactive oxygen species (ROS) Reactive nitrogen species (RNS) Oxidative stress (OS) Deoxyribonucleic acid (DNA) Ribonucleic acid (RNA) Computerized tomography (CT) Hour (hr) Centers for Disease Control and Prevention (CDC) Pineal proteins (PP) Sodium fluoride (NaF) Lipid peroxidation (LPO) Intraperitoneal (i.p.) Alkaline phosphatase (ALP) Parts per million (ppm) Lethal dose (LD) Environmental Protection Agency (EPA) National Institute of Health (NIH) Water (H2O) Celsius (C) Liter (L) Minute (min) Magnification (X) Analysis of variance (ANOVA) Multivariate analysis of variance (MANOVA) Intrinsically photosensitive retinal ganglion cells (ipRGC) vi n n One University Plaza,Youngscown, Ohio 44555 You5 TATEg U N� I sty�o E� RSw� IT� Y ��������---=� Office of Research 330.941.2377 www.ysu.edu June 26, 2016 Dr. Mark Womble Department of Biological Sciences UNIVERSITY Re: IACUC Protocol# 04-16 Title: Fluoride's effect on sleep and pineal morphology in male rats. Dear Dr. Womble: The Institutional Animal Care and Use Committee of Youngstown State University has reviewed the aforementioned protocol you submitted for consideration and determined it should be unconditionally approved for the period of June 24, 2016 through its expiration date of June 24, 2019. This protocol is approved for a period of three years; however, it must be updated yearly via the submission of an Annual Review-Request to Use Animals form. These Annual Review forms must be submitted to the IACUC at least thirtydays prior to the protocol's yearly anniversary dates of June 24, 2017 and June 24, 2019.
Recommended publications
  • The Potential Therapeutic Effect of Melatonin in Gastro-Esophageal Reflux Disease Tharwat S Kandil1*, Amany a Mousa2, Ahmed a El-Gendy3, Amr M Abbas3
    Kandil et al. BMC Gastroenterology 2010, 10:7 http://www.biomedcentral.com/1471-230X/10/7 RESEARCH ARTICLE Open Access The potential therapeutic effect of melatonin in gastro-esophageal reflux disease Tharwat S Kandil1*, Amany A Mousa2, Ahmed A El-Gendy3, Amr M Abbas3 Abstract Background: Gastro-Esophageal Reflux Disease (GERD) defined as a condition that develops when the reflux of stomach contents causes troublesome symptoms and/or complications. Many drugs are used for the treatment of GERD such as omeprazole (a proton pump inhibitor) which is a widely used antiulcer drug demonstrated to protect against esophageal mucosal injury. Melatonin has been found to protect the gastrointestinal mucosa from oxidative damage caused by reactive oxygen species in different experimental ulcer models. The aim of this study is to evaluate the role of exogenous melatonin in the treatment of reflux disease in humans either alone or in combination with omeprazole therapy. Methods: 36 persons were divided into 4 groups (control subjects, patients with reflux disease treated with melatonin alone, omeprazole alone and a combination of melatonin and omeprazole for 4 and 8 weeks) Each group consisted of 9 persons. Persons were subjected to thorough history taking, clinical examination, and investigations including laboratory, endoscopic, record of esophageal motility, pH-metry, basal acid output and serum gastrin. Results: Melatonin has a role in the improvement of Gastro-esophageal reflux disease when used alone or in combination with omeprazole. Meanwhile, omeprazole alone is better used in the treatment of GERD than melatonin alone. Conclusion: The present study showed that oral melatonin is a promising therapeutic agent for the treatment of GERD.
    [Show full text]
  • Human General Histology
    135 اووم څپرکي انډوکراين سيستم (Endocrine system) (hormones) (target cells) (receptors) autonomic (sinusoids) ductless glands thyroid gland Pineal gland Hypophysis cerebri(pituitary glands) supra renal( adrenal glands) parathyroid glands 136 اووم څپرکي انډوکراين سيسټم islets cell corpora lutea interstitial tissue (placenta) GIT amines neurotransmitters amines neuromodulator 137 اووم څپرکي انډوکراين سيسټم APUD cells neuroendocrine system system adrenaline, (amino acid derivatives) thyroxin noradrenalin thyroid vasopressin encephalin (small peptides) releasing hormone(TRH) TSH(thyroid stimulating parathormone hormone) cortisol Testosterone estrogen (steroids) 5,12,3 (Hypophysis Cerebri) (brain) pituitary gland (stalk) Ventricle infundibulum stalk pituitary fossa sphenoid pineal hypothalamus body 138 اووم څپرکي انډوکراين سيسټم Hypophysis cerebri Pars pars anterior pars nervosa pars posterior intermediate hypothalamus infundibulum infundibulum stalk )Pars posterior neurohypophysis median eminence (tuber cinereum) infundibulum pars neurohypophysis median eminence pars intermediate pars distalis anterior Adenohypophysis infundibulum pars anterior pars tuberalis adenohypophysis 139 اووم څپرکي انډوکراين سيسټم Adenohypophysis pars intermediate pars anterior adenohypophyisis Pars anterior fenestrated sinusoids (cords) chromophil chromophobic acidophil chromophil basophils orange G eosin PAS-positive hematoxylline Beta cells basophil Alpha cells Acidophil basophils acidophil (dese cored vesicles) alpha Beta Histochemical 140 اووم څپرکي انډوکراين
    [Show full text]
  • 07. Endocrine, Reproductive and Urogenital Pharmacology 07.001
    07. Endocrine, Reproductive and Urogenital Pharmacology 07.001 Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3-Adrenoceptor activation and α1-adrenoceptor blockade. Alexandre EC1, Kiguti LR2, Calmasini FB1, Ferreira R3, Silva FH1, Silva KP2, Ribeiro CA2, Mónica FZ1, Pupo AS2, Antunes E1 1FCM-Unicamp – Farmacologia, 2IBB-Unesp, 3FCM- Unicamp – Hematologia e Hemoterapia Introduction: Overactive bladder syndrome (OAB) is a subset of storage LUTS (lower urinary tract symptoms) highly prevalent in diabetes, obesity and hypertension. Benign prostatic hyperplasia (BPH) in aging men is another pathological condition highly associated with OAB secondary to bladder outlet obstruction (BOO). The β3- adrenoceptor apparently is the major receptor to induce bladder relaxations. Mirabegron is the first β3-adrenoceptor (β3-AR) agonist approved for OAB treatment (Chapple et al., 2014). Urethral smooth muscle plays a critical role to urinary continence, but no studies have examined the mirabegron-induced urethral relaxations. Aims: This study was designed to investigate the mirabegron-induced mouse urethral relaxations. In preliminary assays, mirabegron showed an unexpected action by competitively antagonizing the urethral contractions induced by the α1-AR agonist phenylephrine. Therefore, this study also aimed to characterize the α1-AR blockade by mirabegron, focusing on the α1-AR subtypes in rat vas deferens and prostate (α1A- AR), spleen (α1B-AR) and aorta (α1D-AR) preparations. Methods: Functional assays were carried out in mouse urethra rings, and rat vas deferens, prostate, aorta and spleen. β3-AR expression (mRNA and immunohistochemistry) and cyclic AMP levels were determined in mouse urethra. Competition assays for the specific binding of [3H]Prazosin to membrane preparations of HEK 293 cells expressing each of the human α1-ARs subtypes were performed.
    [Show full text]
  • 2018 Camp Lesson Book
    Arkansas 4-H Veterinary Science Urinalysis 1 Why Urine? Urine is the end product of a filtering process that removes waste from the body The color of urine can give you information about hydration level as well as possible underlying disease A urinalysis should be performed at least yearly for healthy pets, and more often for older animals and those with existing or chronic health issues Important elements of a urinalysis include a visual inspection of the urine sample, a dipstick test, and microscopic evaluation of urine sediment 2 The Urinary System The urinary tract consists of the kidneys, the ureters, the bladder, the urethra, and finally, the urethral opening at either the end of the penis or just within the vagina Kidneys filter out waste products from the blood Ureters connect the kidneys to the bladder The urethra is a tube that is controlled by a sphincter muscle that empties the bladder to the outside world 3 The Bladder Detrusor muscle Ureter Bladder Ureteral Opening Bladder Neck Sphincter Muscles Trigone Urethra 4 Urinary Tract Problems Inflammation of bladder caused by stress Bacterial or fungal bladder infections Inflammation of bladder from urinary crystals Inflammation of bladder from bladder stones Inflammation of the urethra Damage to ureters by trauma, passing kidney stones, surgical accident or cancer Damage to kidneys by dehydration, infection, toxins or cancer 5 Feline Idiopathic Cystitis Inflammation of the bladder with an unknown cause Can quickly lead to kidney and heart problems Can lead to
    [Show full text]
  • The Third Eye and Pineal Gland Connection
    D.U.Quark Volume 5 Issue 1 Fall 2020 Article 2 12-27-2020 Rolling My Third Eye: The Third Eye and Pineal Gland Connection Shannon B. Jackson Follow this and additional works at: https://dsc.duq.edu/duquark Recommended Citation Jackson, S. B. (2020). Rolling My Third Eye: The Third Eye and Pineal Gland Connection. D.U.Quark, 5 (1). Retrieved from https://dsc.duq.edu/duquark/vol5/iss1/2 This Staff Piece is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in D.U.Quark by an authorized editor of Duquesne Scholarship Collection. Rolling My Third Eye: The Third Eye and Pineal Gland Connection By Shannon Bow Jackson D.U.Quark 2020. Volume 5 (Issue 1) pgs. 6-13 Published December 27, 2020 Staff Article Chances are the optometrist only checks that two of your eyes are functioning. But what about your third eye; who checks on that? A neurologist? Spiritual Healer? Yoga Instructor? Yourself? The answer might vary, given that this third eye is believed to reside within the pineal gland inside of the brain. The name “third eye” comes from the pineal gland’s primary function of ‘letting in light and darkness’, just as our two eyes do. This gland is the melatonin-secreting neuroendocrine organ containing light-sensitive cells that control the circadian rhythm (1). The diagram shows that nerve cells in the retinas of our eyes allow for light to be sensed. When there is light, the nerve cells in the retina then signal to the suprachiasmatic nucleus (SCN) in the hypothalamus.
    [Show full text]
  • The Digestive System
    69 chapter four THE DIGESTIVE SYSTEM THE DIGESTIVE SYSTEM The digestive system is structurally divided into two main parts: a long, winding tube that carries food through its length, and a series of supportive organs outside of the tube. The long tube is called the gastrointestinal (GI) tract. The GI tract extends from the mouth to the anus, and consists of the mouth, or oral cavity, the pharynx, the esophagus, the stomach, the small intestine, and the large intes- tine. It is here that the functions of mechanical digestion, chemical digestion, absorption of nutrients and water, and release of solid waste material take place. The supportive organs that lie outside the GI tract are known as accessory organs, and include the teeth, salivary glands, liver, gallbladder, and pancreas. Because most organs of the digestive system lie within body cavities, you will perform a dissection procedure that exposes the cavities before you begin identifying individual organs. You will also observe the cavities and their associated membranes before proceeding with your study of the digestive system. EXPOSING THE BODY CAVITIES should feel like the wall of a stretched balloon. With your skinned cat on its dorsal side, examine the cutting lines shown in Figure 4.1 and plan 2. Extend the cut laterally in both direc- out your dissection. Note that the numbers tions, roughly 4 inches, still working with indicate the sequence of the cutting procedure. your scissors. Cut in a curved pattern as Palpate the long, bony sternum and the softer, shown in Figure 4.1, which follows the cartilaginous xiphoid process to find the ventral contour of the diaphragm.
    [Show full text]
  • Pineal Calcification, Melatonin Production, Aging, Associated
    molecules Review Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland Dun Xian Tan *, Bing Xu, Xinjia Zhou and Russel J. Reiter * Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA; [email protected] (B.X.); [email protected] (X.Z.) * Correspondence: [email protected] (D.X.T.); [email protected] (R.J.R.); Tel.: +210-567-2550 (D.X.T.); +210-567-3859 (R.J.R.) Received: 13 January 2018; Accepted: 26 January 2018; Published: 31 January 2018 Abstract: The pineal gland is a unique organ that synthesizes melatonin as the signaling molecule of natural photoperiodic environment and as a potent neuronal protective antioxidant. An intact and functional pineal gland is necessary for preserving optimal human health. Unfortunately, this gland has the highest calcification rate among all organs and tissues of the human body. Pineal calcification jeopardizes melatonin’s synthetic capacity and is associated with a variety of neuronal diseases. In the current review, we summarized the potential mechanisms of how this process may occur under pathological conditions or during aging. We hypothesized that pineal calcification is an active process and resembles in some respects of bone formation. The mesenchymal stem cells and melatonin participate in this process. Finally, we suggest that preservation of pineal health can be achieved by retarding its premature calcification or even rejuvenating the calcified gland. Keywords: pineal gland; calcification; melatonin; aging; neurodegenerative diseases; rejuvenation 1. Introduction Pineal gland is a unique organ which is localized in the geometric center of the human brain. Its size is individually variable and the average weight of pineal gland in human is around 150 mg [1], the size of a soybean.
    [Show full text]
  • THE MACIHNE BRAIN and PROPERI1ES of the L\1IND
    THE MACIHNE BRAIN AND PROPERI1ES OF THE l\1IND Robert O. Becker, M.D. ABSTRACf It is the author's contention that modem neurophysiology is based upon the operations ofless than half of the brain and that the anatomical and functional existence of more than half of the cells constituting the nelVOW system are ignored. The author argues that the neurone doctrine, which holds that all functions of the nervow system are the result of operations of the neurons alone, is incomplete, and that a more basic and primitive information transfer system resides in these neglected cdls. Theoretical considerations. prior dc:ctrophysiological evidences which were ignored, modem aspects of electrophysiology and evidence derived from the new science of bioelearomagnetics will be presented to support the theory of a "dual nervow system." This theory re-introduces some of the ancient ideas of mind functions into present day consideration of the possible operations of the mindlbrain system. Keywords: Mind. brain, electrophysiology, bioelecttomagnetics, neuronal, glial Subtle Energies • Volume 1 • Number 2 • Page 79 INTRODUcnON f a way were devised to dissolve all of the nerves in the brain and throughout the body, it would appear to the naked eye that nothing was missing. The brain I and spinal cord and all of the peripheral nerves would appear intact down to their smallest terminations. This is because the central nervous system (CNS) is composed of two separate types of cells; the nerve cells, or "neurons", and the "perineural cells/' There are far more perineural cells in the eNS than there are neurones. The brain is totally pervaded by glial cells of various types and every peripheral nerve is completely encased in Schwann cells from its exit from the brain or spinal cord down to its finest termination.
    [Show full text]
  • Histology Histology
    HISTOLOGY HISTOLOGY ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA NATIONAL MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Серія заснована в 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) The series is initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 1 L. V. Arnautova O. A. Ulyantseva HISTÎLÎGY A course of lectures A manual Odessa The Odessa National Medical University 2011 UDC 616-018: 378.16 BBC 28.8я73 Series “Medical Student’s Library” Initiated in 1999 Authors: L. V. Arnautova, O. A. Ulyantseva Reviewers: Professor V. I. Shepitko, MD, the head of the Department of Histology, Cytology and Embryology of the Ukrainian Medical Stomatologic Academy Professor O. Yu. Shapovalova, MD, the head of the Department of Histology, Cytology and Embryology of the Crimean State Medical University named after S. I. Georgiyevsky It is published according to the decision of the Central Coordinational Methodical Committee of the Odessa National Medical University Proceedings N1 from 22.09.2010 Навчальний посібник містить лекції з гістології, цитології та ембріології у відповідності до програми. Викладено матеріали теоретичного курсу по всіх темах загальної та спеціальної гістології та ембріології. Посібник призначений для підготовки студентів до практичних занять та ліцензійного екзамену “Крок-1”. Arnautova L. V. Histology. A course of lectures : a manual / L. V. Arnautova, O. A. Ulyantseva. — Оdessa : The Оdessa National Medical University, 2010. — 336 p. — (Series “Medical Student’s Library”). ISBN 978-966-443-034-7 The manual contains the lecture course on histology, cytology and embryol- ogy in correspondence with the program.
    [Show full text]
  • Male Reproductive System • Testis • Epididymis • Vas Deferens
    Male Reproductive System Dr Punita Manik Professor Department of Anatomy K G’s Medical University U P Lucknow Male Reproductive System • Testis • Epididymis • Vas deferens • Seminal Vesicle • Prostrate • Penis Testis • Covering of testis 1.Tunica vaginalis 2.Tumica albuginea Mediastinum testis Lobule of testis- -Seminiferous tubule -Interstitial tissue 3.Tunica vasculosa Testis • Tunica Albuginea • Seminiferous tubules • Cells in different stages of development • From basement membrane to lumen: Spermatogonia,sper matocytes, spermatids and spermatozoa Testis • Seminiferous tubules: Lined by Stratified epithelium known as Germinal epithelium. • Germinal epithelium has 2 type of cells 1. Spermatogenic cells-that produce sperms 2. Sertoli cells-tall columnar cells, lateral process divide cavity (basal and luminal), that nourish the sperms Sertoli cells Functions • Physical support, nutrition and protection of the developing spermatids. • Phagocytosis of excess cytoplasm from the developing spermatids. • Phagocytosis of degenerating germ cells • Secretion of fructose rich testicular fluid for the nourishment and transport of sperms Testis • Basement membrane Myoid cells • Interstitial tissue 1.blood vessels 2.Loose connective tissue cells 3.Leydig cells- testosterone secreting interstitial cells Seminiferous tubules SERTOLI CELLS Sertoli Cells Sustentacular cells Supporting cells •Extend from the basement membrane to the lumen •Slender, elongated cells with irregular outlines Leydig cells Interstitial cell of Leydig •Present in the interstitial connective tissue of the testis with blood vessels and fibrocytes •Produce testosterone Blood Testis Barrier • The adjacent cytoplasm of Sertoli cells are joined by occluding tight junctions, producing a blood testis barrier. • It protects the developing cells from immune system by restricting the passage of membrane antigens from developing sperm into the blood stream.
    [Show full text]
  • Pineal Gland - a Mystic Gland Daniel Silas Samuel1, Revathi Duraisamy1, M
    Review Article Pineal gland - A mystic gland Daniel Silas Samuel1, Revathi Duraisamy1, M. P. Santhosh Kumar2* ABSTRACT The pineal gland has been the subject of amazement and awe down the centuries. The structure and function of this enigmatic gland play an important role in day-to-day life of human beings. The pineal gland secretes an important hormone melatonin which is necessary for lightening the skin tone, and it has several other important functions in humans. The pineal gland is composed mainly of pinealocytes. The pineal gland is present in the midline of the skull and is a part of epithalamus and hypothalamus. It regulates the secretion of both. The pineal gland is activated by darkness and it is mandatory to maintain a normal circadian rhythm of sleep-wake cycle, if not humans may turn into zombies. The pineal gland is also present in animals. The secretion of this gland in higher amounts causes precocious puberty and development of primary and secondary sexual characters mainly in boys. It is also called the third eye since after eye, and it is the only gland which detects light but, on the contrary, secretes melatonin largely under darkness. This gland also affects the mood of human beings, thereby getting involved in the psychological behavior of men. It increases the immune action of human beings; thereby, it also acts as immunostimulant preventing a person from attack of antigen by producing a suitable antibody. Its presence hinders the spread of tumor and becomes malignant, and its calcification affects the memory or the memorizing capacity of the brain leading to dementia.
    [Show full text]
  • Other Useful Books
    Other Useful Books Dictionaries: Leeson TS, Leeson CR: Histology, 4th ed. Philadel­ phia: Saunders, 1981. Dorland's Illustrated Medical Dictionary, 26th ed. Lentz, TL: Cell Fine Structure. Philadelphia: Saun­ Philadelphia: Saunders, 1981. ders, 1971. Melloni's Illustrated Medical Dictionary. Balti­ Rhodin JAG: Histology, A Text and Atlas. New more: Williams and Wilkins, 1979. York: Oxford University Press, 1974. Stedman's Illustrated Medical Dictionary, 24th ed. Williams PL, Warwick R: Gray's Anatomy, 36th Baltimore: Williams and Wilkins, 1982. English edition. Philadelphia: Saunders, 1980. Weiss L, Greep ROO: Histology, 4th ed. New York: McGraw-Hill, 1977. Textbooks: Histology and Cytology Wheater PR, Burkitt HG, Daniels VG: Functional Arey LB: Human Histology, 4th ed. Philadelphia: Histology. Edinburgh: Churchill Livingstone, 1979. Saunders, 1974. Bloom W, Fawcett DW: A Textbook of Histology, Textbooks: Pathology 10th ed. Philadelphia: Saunders, 1974. Anderson WAD, Kissane JM: Pathology, 7th ed. Borysenko M, Borysenko J, Beringer T, Gustafson St. Louis: Mosby, 1977. A: Functional Histology. A Core Text. Boston: Lit­ tle, Brown, 1979. Anderson WAD, Scotti TM: Synopsis of Pathology, 10th ed. St. Louis: Mosby, 1980. Copenhaver WM, Kelly DE, Wood RL: Bailey's Golden A: Pathology. Understanding Human Dis­ Textbook of Histology, 17th ed. Baltimore: Wil­ ease. Baltimore: Williams and Wilkins, 1982. liams and Wilkins, 1978. King D, Geller LM, Krieger P, Silva F, Lefkowitch Cowdry EV: A Textbook of Histology, 4th ed. Phila­ JH: A Survey of Pathology. New York: Oxford delphia: Lea and Febiger, 1950. University Press, 1976. Dyson RD: Cell Biology. A Molecular Approach, Robbins SL, Cotran RS: Pathologic Basis of Dis­ 2nd ed. Boston: Allyn and Bacon, 1978.
    [Show full text]