Western Michigan University ScholarWorks at WMU

Master's Theses Graduate College

4-1975

Limnological Investigation of the Muskegon County, Michigan, Wastewater Storage Lagoons

W. Randolph Frykberg

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

Part of the Terrestrial and Aquatic Ecology Commons

Recommended Citation Frykberg, W. Randolph, "Limnological Investigation of the Muskegon County, Michigan, Wastewater Storage Lagoons" (1975). Master's Theses. 2405. https://scholarworks.wmich.edu/masters_theses/2405

This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. LIMNOLOGICAL INVESTIGATION OF THE MUSKEGON COUNTY, MICHIGAN, WASTEWATER STORAGE LAGOONS

by

W. Randolph Frykberg

A Project Report Submitted to the Faculty of The Graduate College in partial fulfillment of th e Specialist in Arts Degree

Western Michigan University Kalamazoo, Michigan A pril 1975

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS

The author wishes to express his appreciation to Drs. Clarence

J. Goodnight, Joseph G. Sngemann and Richard W. Pippen for their advice

encouragement, and assistance during this project. My thanks also go

to Dr. Peter G. Meier of the University of Michigan, who acted as a

consultant; Frank D. Ballo and Roderick J. Morrison, for their assis­

tance in the laboratory; the Rollins family, for the use of their

f a c i l i t i e s ; R ichard Wember, of th e Muskegon Wastewater Management

P ro je c t, who helped in th e c o lle c tio n of sam ples; Tim Westman and th e

rest of the staff at the Wastewater Management Project for their assis­

tance in the physical-chemical aspects of this study and for providing

some of the facilities. The partial financial support of this study by

the Environmental Protection Agency is acknowledged with sincere.thanks

A special note of appreciation is extended to my lovely wife,

Diane, whose patience, understanding, and typing ability have made

this report possible. I dedicate this work to her.

W. Randolph Frykberg

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. MASTERS THESIS M-7063

FRYKBERG, W. Randolph LIMNOLOGICAL INVESTIGATION OF THE MUSKEGON COUNTY, MICHIGAN, WASTEWATER STORAGE LAGOONS.

Western Michigan University, Sp.A., 1975 Limnology

Xerox University Microfilmst Ann Arbor, Michigan 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PLEASE NOTE:

Pages 168 and 177 are not available for photography.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS

PAGE

INTRODUCTION...... 1

H is to ry ...... 1

The Muskegon System ...... 5

METHODS...... 9

Biological Analyses ...... 10

Benthos...... 10

Zooplankton ...... 12

Phytoplankton and ...... 13

Primary Productivity ...... 15

Chlorophyll a and Phaeophytin...... 16

Physical Analyses ...... 16

Temperature...... 16

T u rb id ity ...... 16

Secchi Disk Transparency ...... 18

pH...... 18

Conductivity...... 18

D issolved Oxygen and Biochemical Oxygen Demand...... 18

Nutrients ...... 19

Nitrate Nitrogen...... 19

Ammonia N itrogen ...... 20

i i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS - CONTINUED

PAGE

Orthophosphate ...... 20

Anions ...... 20

S u lfa te ...... 20

C hlorides ...... 20

Total Organic Carbon...... 21

M etals...... 21

RESULTS AND DISCUSSION...... 22

Gate Operating Positions and R esu itin g W astewater Flow P a t t e r n s ...... 22

Biological Parameters ...... 22

Benthos ...... 22

Zooplankton...... 3^

Phytoplankton and Protozoa ...... 51

Chlorophyll a ...... 77

Primary Productivity...... 80

Physical Parameters...... 83

T u rb id ity ...... 83

Secchi Disk Transparency ...... 87

pH...... 88

Conductivity ...... 88

Temperature ...... 88

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS - CONTINUED

PAGE

Dissolved Oxygen and Biochemical Oxygen Demand ...... - ...... 88

Dissolved Oxygen ...... 88

Biocv>~mical Oxygen Demand ...... 92

Total Organic Carbon...... 97

Nutrients, Anions, and Metals ...... 97

Ammonia N itrogen ...... 97

Nitrate Nitrogen ...... 98

Orthophosphate...... 99

S u lf a te ...... 99

C hloride ...... 99

M etals...... 100

SUMMARY AND CONCLUSIONS...... 102

REFERENCES...... 105

APPENDIX A, BENTHIC MACROINVERTEBRATE DATA ...... 110

APPENDIX B, ZOOPLANKTON DATA...... 116

APPENDIX C, PHYTOPLANKTON AND HOTOZOAN DATA...... 12^

APPENDIX D, CHLOROPHYLL a AND PHAEOPHYTIN DATA...... 173

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS - CONTINUED

PAGE

APPENDIX E, PRODUCTIVITY DATA...... 181

APPENDIX F, PHYSICAL PARAMETERS AND TOC DATA...... 184-

APPENDIX G, NUTRIENT, ANIONS, AND METAL DATA...... 193

v i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. L IST OF FIGURES

FIGURE PAGE

.1 Wastewater storage lagoon site...... 8

2 Changes in the abundance of ienthlc organisms in the West Storage Lagoon...... 30

3 Changes in the abundance of benthic organisms in the East Storage Lagoon 31

4 Changes in the abundance of zooplankton in the East Storage Lagoon...... 38

5 Changes in the abundance of zooplankton in th e West S torage Lagoon ...... 39

6 Cyclopoid copepods as a percentage of total zooplankton in the East Storage Lagoon ...... 45

? Cyclopoid copepods as a percentage of to t a l zooplankton in th e West Storage Lagoon...... 46

8 Cyclops vernalis as a percentage of total zooplankton in the East Storage Lagoon...... 47

9 Cyclops vernalis as a percentage of total zooplankton in the West Storage Lagoon 48

10 Laphnla as a percentage of total zooplankton in the East Storage Lagoon 49

11 Daphnla as a percentage of total zooplankton in the West Storage Lagoon...... 50

12 Changes in the abundance of Plankton and Protozoans in the East Storage Lagoon ...... 52

13 Changes in the abundance of Plankton and Protozoans in the West Storage Lagoon 53

14 Chlorophyta as a percentage of total Phytoplankton and Protozoa in the East Storage Lagoon ...... 71

v i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. L IST OF FIGURES - CONTINUED

FIGURE PAGE

15 Chlorophyta as a percentage of tot ail Phytoplankton and Protozoa in the West Storage Lagoon ...... 72

16 Changes in the quantity of Chlorophyll a in the West Storage Lagoon ...... 79

17 Changes in primary productivity in the East Storage Lagoon ...... 84

18 Changes in primary productivity in the West S torage Lagoon ...... 85

19 Changes in the dissolved oxygen content of the East Storage Lagoon ...... 93

20 Changes in the dissolved oxygen content of th e West Lagoon ...... 94

21 Changes in the biochemical oxygen demand in th e East Lagoon ...... 95

22 Changes in the biochemical oxygen demand in th e West Lagoon ...... 96

23 Key f o r u n id e n tifie d cyclopoid copepods...... 117

v i i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF TABLES

TABLE PAGE

1 Conversion of CPM to Carton Fixed ...... 17

2 Gate Operating Positions and Wastewater Flow Patterns...... 23 3 Percentage Composition and Occurrence of Benthos...... 25

4 Empty Gastropoda Shells ...... 29

5 Diversity Indices and Equitability for the B enthic M acroinvertebrate Community...... 32

6 Comparison of Zooplankton Counts (organisms/liter) in the East and in th e West L agoons...... 36

7 Percentage Composition and Occurrence of Zooplankton...... 41

8 Comparison of Phytoplankton and Protozoan Counts (organisms/ml) in the East and West Lagoons ...... 54

9 Percentage Composition and Occurrence of Phytoplankton and Protozoans ...... 60

10 Phytoplankton and Protozoan Trends and Dominants in the East Lagoon ...... 62

11 Phytoplankton and Protozoan Trends and Dominants in the West Lagoon ...... 66

12 Comparison of the Quantity of Chlorophyll a in the East and West Lagoons ...... 81

13 Comparison of Primary Productivity in the East and West Lagoons...... 86

14 Comparison of Turbidity, Secchi Disk Transparency, pH, and Conductivity in the East and West Lagoons ...... 88

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. L IST 0 ? TABLES - CONTINUED

TABLE PAGE

15 Comparison of Temperature, Dissolved Oxygen, and Biochemical Oxygen Demand in the East and West Lagoons...... 39

16 Comparison of Nutrient, Anion and Metal Data in the East and West Lagoon ...... 101

17 Benthic Macroinvertebrate Data (No. per square foot) —SLE-1...... I l l

18 Benthic Macroinvertehrate Data (No. per square foot) — SLE-5 ...... 112

19 Benthic Macroinvertehrate Data (No. per square foot) — SLW- 5 ...... 112

20 Benthic Macroinvertehrate Data (No. per square foot) —- SLE - 8 ...... 113

21 Benthic Macroinvertehrate Data (No. per square foot) — SLW-1 ...... 114

22 Benthic Macroinvertehrate Data (No. per square foot) — SLW-9 ...... 115

23 Zooplankton Data (organisms/liter) — SLE-1.,.. 118

24 Zooplankton Data (organisms/liter) — SLE- 5 .... 119

25 Zooplankton Data (organisms/liter) — SLE- 8 .... 120

26 Zooplankton_J)ata (organisms/liter) — SLW-1.... 121

27 Zooplankton Data (organisms/liter) — SLW- 5 . • • • 122

28 Zooplankton Data (organisms/liter) — SLV-9.... 123

29 Chlorophyll a and Phaeophytin Data ...... 174

30 P ro d u ctiv ity R e s u lts ...... 182

31 Data for Physical Parameters and Total Organic Carbon ...... I 85

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF TABLES - CONTINUED

TABLE pAGE

32 Data for Nutrients, Anions, and Metals ...... 19 ^

x i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. INTRODUCTION

The Muskegon County, Michigan, Wastewater Management System is

an alternative to conventional wastewater treatment and disposal

methods. It offers a technique to help clean up the waters of the

world by the handling of pollutants as resources out of place.

The effluent from traditional wastewater treatment plantc con­

tains many nutrients and other components, some of which may be

toxic, increasing the eutrophication rate and pollutional load of

waterways. Rather than discharge this nutrient-rich and pollution

causing treated wastewater to a stream, river, or lake, the Muskegon

System uses it as irrigation water and allows the soil and plants to

"polish" the effluent and perform the final treatment (traditionally

called "Tertiary Treatment"). This enables the effluent to act as

a fertilizer and a soil conditioner.

H istory

The idea of land treatment of wastewater is not new. In fact,

the use of animal and human waste as soil conditioners and fe rtili­

zers dates back to antiquity. Stansburg (197*0 reports that sewage

farming extends back beyond the Roman Empire. In 1559 a project was

designed to treat wastes from Bunslav, Prussia, by applying domestic

sewage to the land for disposal. This land treatment continued for

over 300 years (Godfrey, 1973? Thomas, 1973)• During the latter

part of the 19**1 Century, some of the most effective sewage treatment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2

systems were well-managed, agriculturally productive farms (Stevens,

1974). Berlin, Germany, disposed of its waste during this period on

four farms, totaling 19,000 acres, on the sandy plains of northern

Germany. During periods of hard frost or heavy storms, sewage was

stored in ponds for later use. In the 1870's Paris, France, began

using land disposal for its wastewater. Initially, the sewage was

given to farmers for irrigation. Soon the wastewater was so much in

demand that the city sold it to farmers. Today some several thousand

acres on a sandy outwash plain near Herblay are s till used for

treating a portion of the wastewater from Paris. During this period

several wastewater irrigation farms also served London.

A wastewater land treatment system was established for Mel­

bourne, Austrailia in 1893* As the volume of wastewater increased,

the farm was expanded. In 1963* the system comprised 26,809 acres

and treated the waste from approximately 2.5 million people, or

about 100 million gallons of domestic and industrial wastewater per

day. This system also includes lagoons to hold peak loads of waste­

water and to provide further stabilization of the wastewater.

Land treatment of wastewater began in the United States in the

1870's, but usually on a more limited scale than in other countries.

The State Insane Asylum in Augusta, Maine, began the first reported

attempt at land treatment in the United States in 1872 (Stevens,

197*0. The first municipal faun using wastewater in the United

States was near Pullman, Illinois, 14 miles south of Chicago, in

1872. The failure of this farm several years later was blamed on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3

poor management (too much wastewater was applied at too rapid a

rate, overtaxing the soil). San Antonio, Texas, constructed lagoons

and began applying sewage to the land around 1900 (Gloyna, 1971).

A survey of 15 western states showed 113 localities practicing

land treatment of wastewater in 1935 (Hutchins, 1939)- Of signifi­

cance is the fact that most of these systems were s till in operation

in 1972 (Thomas, 1973)* Presently about 1,000 United States munici­

palities axe treating and disposing of their wastewater through land

treatment techniques (Stansbury, 1974, and Godfrey, 1973)* Most of

these systems are quite small, comprising less than 1,000 acres.

The largest facility of this type in the United States is the Muskegon

System which utilizes 10,800 acres and is designed to treat 45 million

gallons of wastewater per day (Demirjian, 1973)*

In 1965 , land treatment was used by over 1,300 industrial facili­

ties. The food processing industry, specifically canneries, is the

largest segment of industry using land treatment, at 23$, followed

by the dairy industry and then the meat packing industry (Godfrey,

1973» and Thomas, 1973)*

A common component of land treatment of wastewater systems is a

lagoon or a series of lagoons. These lagoons can serve as reservoirs

during periods when irrigation should be diminished or halted (i.e.,

during very rainy spells, or during periods when the ground is frozen),

when toxic spills occur, and/or to serve as a biological system

giving further treatment to the wastewater prior to disposal on the

land. Lagoons, without being a component of land treatment systems,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4

have also been used for centuries to store and treat animal and human

waste. In 1962, about 1,650 sewage lagoons were treating municipal

wastewater in the United States (Porges and Mackenthun, 1963 ) and

some 1,600 lagoons were treating industrial wastes (Porges, 1963 ).

These studies did not specify the number of lagoons operating alone

or the number of lagoons operating in conjunction with land treatment

system s.

Although there has been a fair amount of experience with land

treatment systems and/or wastewater lagoons, there is a noticeable

dearth of information in the literature concerning the limnology of

wastewater lagoons, especially lagoons which are as large and as

deep as the Muskegon lagoons. There is even less information availa­

ble on the biological aspects of these lagoons. Yet, these lagoons

are important to the successful overall operation of a wastewater

management system, with or without land treatment. As a result, to

manage these lagoons, to make necessary predictions and assumptions,

and in order to understand what is occurring in the facility, it is

necessary to develop an understanding of the numbers, types, distri­

bution and fluctuation of organisms (i.e., the population dynamics)

within the lagoons.

This investigation was concerned with the limnology of the

wastewater storage lagoons in the Muskegon System, with particular

emphasis upon the biological aspects of these waters. The goal of

this study was to generate basic information concerning these lagoons.

Hopefully, this background information can be incorporated into more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 5

intensive studies on the metabolism, energy relations, and trends

within large wastewater storage lagoons. These studies are needed

in order to gain a better understanding of the interrelationships

within lagoons of this type and in order to permit a more scientific

management of wastewater systems.

The Muskegon System

The Muskegon County Wastewater Management System tr e a ts munici­

pal effluents from the greater Muskegon area and industrial effluents

from various industries, including two chemical companies, a paper

mill, and a machinery plant. During this study, the flow was ap­

proximately 28 million gallons per day (MGD), 65$ of which was indus­

trial wastewater.

A network of interceptor sewers, force mains and six pumping

stations collect and deliver the combined municipal-industrial waste­

water to a large central pumping station. From this station, four

pumps with a maximum pumping capacity of 56,000 gallons per minute

drive the combined wastewater 11 miles to the 10,800 acre sandy treat­

ment site. The raw wastes are then discharged into three biological

treatment cells (Fig.1, p. 8). Each cell is equipped with 12 mechan­

ical surface aerators and six mixing units, with 1,000 combined

horsepower per cell, providing a complete mix system and an average

detention time of three days. The effluent from these cells, which

is comparable in quality to that achieved by conventional secondary

treatment, flows by gravity to either or both of two 850 acre storage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6

lagoons. This storage capacity of 5*1 "billion gallons offers operat­

ing flexibility to the system. During periods of heavy rainfall, or

when the ground is frozen, it is not necessary to irrigate. Also,

in the event of a toxic material spill which could be detrimental to

the biological treatment cells, the untreated wastewater can flow

directly into the storage lagoons to be assimilated and biodegraded.

These lagoons also provide additional waste stabilization during

periods of normal operation. In order to prevent seepage from enter­

ing the ground water outside of the waste management site, a drainage

or interception ditch encircles both lagoons, and seven drainage wells

function at the west edge of the lagoon area. Water collected in the

ditch or withdrawn from the wells is returned to the West Lagoon.

From the storage lagoons the water flows to an outlet pond and

then to a chlorination chamber prior to being used as irrigation

water. During periods of high demand the storage lagoons can be by­

passed, with the treated wastewater flowing into a settling pond and

then to an outlet pond. Further operational flexibility is provided

by gates which can control the amount of wastewater flowing into

either lagoon, from one lagoon to the other, and from the lagoons to

the outlet pond (Fig. l). The operating positions of these gates

during the investigation are presented in the results section

(Table 2, p. 23).

Further information on this system can be found in the litera­

tu re (Anonymous, 1973? B astian, 1973? Bauer E ngineering, 1973?

Chaiken, et. al., 1973? D em irjian, 1973? F o r e s te ll, 1973? S heaffer,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 7

1972; Snow, 1973; Teledyne Triple R, 1973).

In la te May, 1973» a sm all amount of e fflu e n t began being d is ­

charged in to both lagoons. At th is tim e th e re was some rainw ater in

the basins, but the bottoms were not yet covered. Due to evaporation

and seepage, the bottom of the lagoons were not covered until August,

1973 1 which time the flow had increased to 28 MGD. By this date

the constituents of the paper m ill's wastewater had helped to seal

the bottom.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 8

FIGURE 1

Wastewater Storage Lagoons Site KEY TO ABBREVIATIONS BIO = Biological treatment cell OUT = O utle t pond SET * Settling pond ID = Point of discharge of interception ditch water OP = Point of discharge from lagoon to outlet j>ond WW = Point of discharge of wastewater EQ ** Equalizing gate

BIO BIO BIO SET OUT

WW SLW-1 SLE-1

SLE-5

WEST STORAGE LAGOON EAST STORAGE LAGOON

SLW-9

SLE-8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. METHODS

This study began in August, 1973* and continued through August,

197^* Sample c o lle c tio n s ta r te d on October 15, 1973* During th e

period from August to October 15, the wastewater management site was

frequently visited in an attempt to establish an appropriate research

scheme, procure the proper equipment and supplies, and gain a better

understanding of the Muskegon System.

Three stations were established in each lagoon, as shown in

Figure 1. The station locations and designations correspond to

those used by the managers of the system. Each station was marked

using several empty plastic gallon jugs and/or a styrofoam box tied

to a rope and anchored by cement blocks. During periods of open

water, all samples were taken within 50 feet of the station using an

aluminum boat. For safety reasons, when the lagoons were ice-covered

samples were taken 50 feet from and perpendicular to the shore and

in line with the station. Stations SLE-5 and SLW- 5 , the stations

farthest from shore in both the East and West Lagoons, were not

sampled during periods of ice cover.

A 2.2 lite r, horizontal, opaque, non-metallic Van Dorn bottle

was used to collect samples for analysis of the following parameters:

phytoplankton and protozoans; chlorophyll a and phaeophytin; primary

productivity; temperature; turbidity; conductivity; pH; total organic

carbon; metals, including calcium, iron, magnesium, manganese, potas­

sium, sodium, and zinc; nutrients, including orthophosphate, nitrate,

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 0

and ammonia n itro g en ; c h lo rid e s; and s u lfa te . The volume of sample

required for these tests exceeded the capacity of the Van Dorn bottle

and, therefore, two samples were drawn from the desired depth, mixed

in a non-metallic bucket, and split into the required portions. This

permitted analysis of the above parameters from the same batch of

water. A separate sample was drawn from the same depth, again using

the Van Dorn bottle, for analysis of dissolved oxygen and five-dny

biochemical oxygen demand.

Biological Analyses

Benthos

A six inch by six inch Ekman Dredge was used to collect repli­

cate benthos samples. The dredge contents were washed into a pail.

The samples were brought back to the lab and screened through a

United States Standard No. 30 sieve (28 meshes per inch, 0.595

millimeter openings). The type of substrate was recorded and any

organisms and material retained on the sieve were transferred to a

jar and preserved with 70$ ethanol. The samples were later hand-

sorted by placing a portion of the contents of the jar into a white

enamel pan filled approximately one-third full of water. Most of

the small insects, worms, and crustaceans floated free of the detri­

tus and were placed into a vial containing 7G& ethanol. The debris

remaining in the pan was further searched f a r any organisms, and

after placing any more animal life into the vial, the debris was

discarded. This procedure was repeated until the total sample was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 11

picked and sorted. Qualitative and quantitative analysis of the

organisms found was carried out with the aid of stereoscopic and

compound m icroscopes. Numerous taxonomic referen ces aided the iden­

tification of the benthic macroinvertebrates (Beck, 1968; Curry, 1962;

Edmondson, 1959; Grodhaus, 196?; Johannsen, 193*1-37; Mason, 1973;

Pennak, 1953; Roback, 1957* Ross, 1959; Usinger, 1956).

In order to make and identification of the midges,

it was necessary to prepare head and body mounts of these organisms.

Rather than using the conventional but very time consuming technique

of clearing the midges in KOH, rinsing and then mounting (American

Public Health Association, 1971; Mason, 1973? Weber, 1973)* the

midges were mounted directly into polyvinyl lactophenol (Meier, 197*0 •

This substance acts as both a clearing agent and a mounting media.

In order to identify the Oligochaeta, whole mounts were prepared.

Bata from replicate samples were averaged, and the results were

reported as number of individuals per square foot. The mean diver­

sity, d, and equitability, e, was calculated for each station, as

recommended by th e Environmental P ro tec tio n Agency (Weber, 1973)•

The formulas used were:

d = ?,"?-jp8 (N log10 N - n* log10 ni)

e = —s ' s

where N = the total number of individuals at the designated station over the complete period of study

n^ = the total number of individuals in the ith species

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 12

s' = a tabulated value

s = the number of taxa in the sample

Zoonlankton

Samples were initially taken with a Van Dorn bottle. The con­

tents of the bottle were emptied into a number 12 plankton net (mesh

openings equal to 0.15 millimeters) and concentrated into a 30 ml

vial. Due to the low concentration of zooplankton, this technique

proved to be inadequate. From 12 July 197** throughout the rest of

the study, replicate vertical tows were taken from one foot off the

bottom using the same plankton net. This procedure sampled a column

of water with a 20.32 cm diameter. The samples were preserved in

the field with Koechie's solution (saturated sugar — k % formalin).

A smaller mesh net, such as a number 20 which would be appropriate

for capturing naupilli and other very small zooplankters, could not

be used due to the large amount of suspended matter.

Several one m illiliter subsamples were withdrawn from a well-mixed

zooplankton sample using a Hensen-Stemple pipet. The subsamples

were deposited in a nine-depression glass culture dish and quanti­

tatively and qualitatively analyzed. Genus and species identification

of calanoid copepods was based on minute anatomical details of spec­

imens dissected between the fourth and fifth thoracic segments. Both

segments of the animal were mounted, ventral side up, and examined

under high dry (**5X) or oil immersion (9?X). Several taxonomic

references were valuable aids to identification (Bousfield, 1958*

Brooks, 195?{ Gannon, undated; Edmondson, 1959* Pennak, 1953)•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Data from replicate saaplesvere averaged and the results were

reported as the number of organisms per liter.

Phyto-plankton and -protozoa

Samples were initially collected at one foot and/or three feet.

From 26 April 19?^ throughout the rest of this investigation, sample

depths were related to the transparency within each lagoon. In the

West Lagoon, collection was at a depth equal to the secchi disk

transparency and also at one-half this depth. Due to the very shal­

low transparency in the East Lagoon, samples could not be meaning­

fully collected at these depths, and therefore, collection was at the

secchi disk transparency and at one and one-half feet.

Immediately following collection of a 390 ml sample, 10 ml of

Lugol's solution was added to preserve and help settle the plankton

and protozoa. Analysis was attempted in the lab without further

manipulation of the samples. Due to a low concentration of piankters,

however, this technique was inadequate. Centrifugation, at various

speeds and for various periods of time, was also found to be a poor

technique for this study, as a certain portion of the organisms were

lighter than water and were not concentrated. The centrifuged samples

remained cloudy and microscopic examination revealed that some species

were s till remaining in the supernatant. Davis (1966) has had simi­

lar results with this technique.

A two week period of settling, followed by withdrawal of the

top 375 ml appeared to be the most accurate method of concentration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 4

This technique of concentrating the samples 16 times was used far

all the reported plankton data. By eliminating the need to transfer

the sample to various containers, this method reduced losses due to

plankters adhering to the sides of the jar or chamber.

A Palmer-Maloney cell, rather than a Sedgvick-R after cell, was

used for quantitative and qualitative analysis because of the higher

magnification required for nannoplankton. Twenty fields were examined

in each of several slide preparations, using a microscope equipped

with a calibrated Whipple disk. The results from severed slides

were averaged. The clump count was used, as recommended by the

Environmental Protection Agency (Weber, 1973)- AH unicellular or

colonial organisms were counted as individual units.

Standard diatom mounts were made by ashing and mounting sub­

samples. Up to 2.5 ml were evaporated, through successive dryings,

on 18 ml number one circular cover slips. This subsample was then

ashed, to drive off the organic matter, on a heavy duty hot plate at

over 510° C for at least one hour. Hyrax (refractive index » 1.82)

was used as a mounting media and the silicious cell frustules were

examined under oil immersion. The concentration of diatoms, however,

was normally inadequate for this technique. The recommended 250

cells per slide (Weber, 1973) could not be examined. Further sample

evaporation on the cover slip was not appropriate due to the high

colloidal clay content of the samples. Crushing and masking of the

diatoms occurred with any higher concentration.

References relied upon for the analysis of the phytoplankton

and protozoa included American Public Health Association (l97l)»

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Berges (1971), Edmondson (1959)» Kudo (l9?l), Parish (1968), Patrick

and Reimer ( 1966 ), Prescott ( 1962 ) , and Weber (1966, and 1973).

Primary •productivity

The uptake of inorganic carbon by phytoplankton during photo­

synthesis was measured with the carbon-14 method of Steeman-Neilson

(1952), incorporating modifications of the American Public Health

Association (1971)* the Environmental Protection Agency (Veber,

1973)» and Jordan (1970). Two clear, and one opaque, ground glass

stoppered 125 ®1 Pyrex bottles were filled with water from the larger

sample collected in a Van Dorn bottle, as described above. One micro

Ci/ml carbon-14 as sodium carbonate was withdrawn from two m illiliter

glass ampoules that were sealed until immediately prior to use, and

then injected into each 125 ml bottle. All three bottles were placed

on their side in an incubation rig, clamped at their neck and lowered

back to the depth from which the sample was taken. Samples were

incubated from approximately 10:00 a.m. to 2:00 p.m. After retrieving

the samples and adding 1 ml formalin, they were placed in a light­

proof container for transfer to the lab. A well-mixed 100 ml sub­

sample from each bottle was filtered through a separate 0.45 micron

membrane filter at 0.4 atmosphere of vacuum. The filters were air

dried and glued to planchets. The radioactivity on the filters was

measured for ten minutes in a windowless gas flow detector. The

counts from the two clear (light) bottles were averaged and the

count from the opaque (dark) bottle was subtracted from the average.

This result was divided by the product of the number of hours of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 16

incubation and the number of minutes the radioactivity was counted.

This answer is the cpm counted (referred to as "r") and was inserted

into the formula in Table 1 in order to obtain the amount of carbon

fixed per hour.

Chlorophyll a and phaeophytin

The sample analyzed for chlorophyll a and phaeophytin content

was drawn from the larger sample collected in the Van Dorn bottle as

described above. Five m illiliters of magnesium carbonate was imme­

diately added to the 200 ml sample. The container, an opaque, brown

plastic bottle, was shaken and then placed in an insulated chest for

transport back to the lab. After filtering 100 ml of each sample on

a 0.45 micron membrane filter, the filters were frozen until in vitro

analysis in acetone extracts by flourometry was accomplished.

Physical Analyses

Samples were collected in the Van Dorn bottle as described above.

Temperature

A quality grade mercury-filled centigrade thermometer was placed

into a bucket containing the 4.4 liter sample. After a period of

time sufficient to permit a constant reading, the temperature was

recorded to the nearest one-half degree centigrade.

T u rb id ity

A Hach Model 2100A Turbidimeter was used for direct measurement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1?

TABLE 1

Conversion of CPM to Carbon Fixed

Conversion equation P = | X C X f (Saunders, 1962)

P Photosynthesis in mg C/nP

r cpm counted (uptake of radioactive carbon)

C 19.2 X lO^ mg c/m^ (available inorganic carbon in the lagoons)

f 1.0 6 (isotope conversion factor)

H 4.2? X 105 (total available radioactive carbon in cpm: m icrocuries used X counter efficiency X millipore absorption factor X disintegration per minute per microcurie) 37 000 Microcuries used 40 200 ( s c in tilla tio n cpm/cpm per m icro- * c u rie )

Counter efficiency 0 .25

Millipore absorption O.838 fa c to r

Disintegration per 2.22 X 106 minute per micro­ c u rie

Final equation for P = r X 0.047? lagoons

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 18

of turbidity by the Nephelometric method. Results were reported in

Formazin Turbidity Units (equivalent to Jackson Turbidity Units).

Secchi disk transparency

A standard 20 cm diameter black and white secchi disk was used.

Results were reported in centimeters.

J*

A hydrogen ion selective glass electrode in combination with a

saturated calomel reference electrode was used to determine pH by

the electrometric method. Results were reported in standard pH units.

Conductivity

A platinum electrode type specific conductance cell with a cell

constant of 1.0 + one per cent was used. Conductance measurements

were taken, at ambient temperature utilizing a Barnstead Conductance

Bridge. Results were reported in micro-mhos.

D issolved Oxygen and Biochemical Oxygen Demand

These two parameters are discussed together due to the simi­

larities in the methods used to evaluate each.

The sample was transferred from the Van Dorn sampler to two

300 ml BOD bottles through a tube extending from the bottom of the

sampler to the bottom of the bottle. The narrow, flared mouth glass

stoppered BOD bottles were filled to overflowing and allowed to

overflow for 10 seconds before inserting tapered ground-glass pointed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 19

stoppers. This procedure avoids dissolution of atmospheric oxygen

and prevents turbulence and the formation of bubbles. One bottle

was placed in an insulated chest for later BOD analysis. The other

bottle was used for determining the DO content o f the lagoon by the

azide modification of the iodometric method. Immediately after col­

lection, 2 ml of manganese-sulfate solution were added to the DO

sample, followed by the addition of 2 ml of alkali-iodide-azide

reagent. The bottle was stoppered, mixed by inversion, and left

undisturbed for several minutes to allow the floe to settle. After

another period of mixing and settling, 2 ml of concentrated sulfuric

acid were added. Titration was accomplished in the laboratory.

In the laboratory, a portion of the BOD sample was transferred

to each of two fresh BOD bottles containing an appropriate amount of

dilution water. One of these bottles was used for determination of

the initial DO. The other bottle was incubated in the dark for five

days at 20° C. This bottle was used for determination of the final

DO. The mg per lite r of BOD was calculated by dividing the difference

between initial and final DO by the decimal fraction of the sample

used.

N u trien ts

Nitrate nitrogen

The concentration of nitrate nitrogen was determined through

a copper-cadmium reduction of nitrate to nitrite. The nitrite thus

produced was quantified using sulfanilamide (diazotizer) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 20

N-l-naphthyl-ethylenediaaine (couplet). The resulting highly colored

dye was measured colorimetrically and the results were reported as

mg per liter NO 3 .

Ammonia nitrogen

The concentration of ammonia nitrogen was determined by d istil­

lation followed by nesslerization. Results were reported as mg per

l i t e r

Orthophosphate

The concentration of orthophosphate was determined by color­

imetry, without preliminary filtration, digestion, or hydrolysis,

using ammonium molybdate in the vanadomolybdophosphorlc acid method.

Results were reported as mg per lite r PO^

Anions

S u lfa te

The concentration of sulfate was determined using the Barium-

Methythymol Blue colorimetric procedure. Results were reported as

mg per lite r SO^.

C hlorides

The concentration of chloride was determined by liberation of

the thiocyanate ion from mercuric thiocyanate, followed by a reaction

with the ferric ion. Results were reported as mg per liter Cl“.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Total Organic Gar "bon

The concentration of total organic carbon (TOC) was determined

u sing a Beckman Model 915 Total Carbon Analyzer. Results were re­

ported as ag per liter carbon.

M etals

The concentrations of calcium (Ca)f iron (Fe), magnesium (Mg),

manganese (Mn), sodium (Na), potassium (K), and zinc (Zn) were

determined using flame ionization photometry and atomic absorption

spectroscopy. Results were reported as mg per liter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. RESULTS AND DISCUSSION

The data gathered during this investigation are presented in the

appendices. Summary data only are presented in this section.

The results of each parameter w ill he discussed individually and

the trends or relations between parameters will be discussed where

appropriate.

Gate Operating Positions and Resulting Wastewater Flow Patterns

During this investigation, the operating positions of the gates

controlling inflow, outflow, and mixing between lagoons were altered

(Table 2). The locations of these gates in the lagoons are shown in

Figure 1, page 8. The East Lagoon usually received the wastewater,

while the West Lagoon always received the seepage water.

There was no noticeable effect upon any of the parameters due to

the equalizing gates being open from 17 August through 26 September

1973 and from 29 March through 5 July 197^*

Ammonia nitrogen and secchi disk transparency were the only

parameters noticeably affected when the gate to the outlet pond was

opened in the East Lagoon. These effects are noted in the appropriate

sections of this report.

Biological Parameters

Benthos

The benthic macroinvertebrate population was, surprisingly, very

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 23

TABLE 2

Gate Operating Positions and Wastewater Flow Patterns

8-13-73 through 8-17-73 Flow directly from biological treatment cells to outlet pond. Gates between biological treatment cells and East and West Lagoons (hereafter referred to as east gate or west gate) closed. Outlet gates closed.

8-18-73 through 9- 4-73 Flow into both East and West Lagoons with equalizing gate also open. Outlet gates closed.

9 - 5-73 through 9- 7-73 Flow directly to outlet pond. East and west gate closed, equalizing gate open. Outlet gates closed.

9- 8-73 through 9-26-73 Flow into both lagoons, with equalizing gate also open. Outlet gates closed.

9-27-73 through 3-29-7^ Flow into East Lagoon only. West gate, equalizing gate, and outlet gates closed.

3-30-7^ through 4-2^-7^ Flow into East Lagoon, equalizing gate open, outlet gates closed.

d -30-?^ through 7- 5-7^ Flow into East Lagoon. Equalizing gate and west outlet gate open. East outlet gate closed.

7- 6-?4 through 8-31-7^ Flow into East Lagoon. - East outlet gate- open, equalizing gate and west outlet gate closed.

limited. This community comprised a small number of organisms

representing only a few taxonomic groups. The quantitative and

qualitative results of the benthic investigation are presented in

Appendix A.

The percentage composition, by group and by station, is presented

in Table 3 . This table also indicates the number of samples taken at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 24

each station and the number of samples at each station that contained

no macroinvertebrates. Each station-group category contains two

numbers as a percentage. The first number was obtained by dividing

the number of indicated organisms at the specified station by the

total number of all benthic macroinvertebrates at that station and

multiplying the quotient by 100. This value is called the percentage

composition. The second number was obtained by dividing the number

of occasions the indicated organism was found at the specified sta­

tion by the number of benthic samples taken at that station and

multiplying the quotient by 100. The resultant value is called the

percentage occurrence.

Immature dipterans, of the family Chironomidae (non-biting

midges), almost exclusively dominated the benthic community. This

family, which was represented by seven genera, accounted for 97-5%

(95

station basis, the Chironomidae comprised 10Q& of the benthos at two

stations, over 94% at three stations, but only 63. 6% at the station

closest to the wastewater discharge, SLE-1. These high percentages

are to be expected, as non-biting midges have dominated the benthic

macroinvertebrate population in other wastewater storage-stabilization

lagoons (Grodhaus, 196? and Kimerle and Enns, 1968). The above

authors also report that the Chironomidae breed prolifically in

lagoons and often emerge in extremely large and troublesome numbers.

This high population was not experienced during the first year of

operation of the Muskegon lagoons, where in 48 out of 52 samples the

benthic macroinvertebrate fauna remained well below 100 organisms per

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ) 0 . 0 0 .0 0 .0 2 .5 x 2 .2 ( (4 .2 ) (0 .0 ) 24 99-3 97.5 94.9 (8 3 .3 ) (83-3) (8 3 .3 ) (1 2 .5 ) WEST, TOTAL ) 0 . 1 .0 2 .6 (7 .4 ) 6 3 98.1 27 97.4 94.9 20.0 ( (5 9 .3 ) (1 1 .1 ) (55-5) (2 2 .2 ) EAST, TOTAL ) ) 0 0 . . 7 0 0 .0 0 0 .0 0 .0 0 .0 ( (0 .0 ) (0 .0 ) ( 97.1 97.1 97.1 (7 1 .4 ) (7 1 .4 ) (7 1 .7 ) SLW-9 ) 0 . 0.0 0 2 10 4 0 .0 0 5 5 .0 4 .0 (0 .0 ) ( 99.5 99.5 94.5 (2 0 .0 ) (4 0 .0 ) SLW-5 (1 0 0 .0 ) (1 0 0 .0 ) (1 0 0 .0 ) 1 AT IONS AT 1 ) SI 0 . 0.0 0 0 .0 0.0 0 .8 (0 .0 ) ( (8 .3 ) (0 .0 ) 98.5 94.7 94.7 (83-3) (83-3) (8 3 .3 ) SLW-1 .O) 8 12 3.2 1 .3 7 5 96.8 2 1.8 ( (1 2 .5 ) (7 5 .0 ) (1 2 .5 ) (1 2 .5 ) (7 5 .0 ) (3 7 .5 ) 100.0 SLE-8 100.0 ) ) 0 0 . . 0 0 .0 2 2 2 0 .8 0 .8 TABLE TABLE 3 5 ( 6 0 99.2 19.4 ( (2 0 .0 ) (6 0 .0 ) (4 0 .0 ) (2 0 .8 ) (6 0 .0 ) 100.0 100.0 ) ) 0 0 . . 6 0 .0 9 .1 ( ? : i ) (7 .1 ) (7 .1 ) (0 .0 ) 72.7 14 6 3 .6 5 0 5 0 5 4 .4 (5 7 .1 ) ( ( SLE-1 SLE-5 modeBtus zero organisms found No. o f sam ples w ith No. o f sam ples b. Cricotopus sp. a. Chironomus plumosus c. Diorotend1pes the percentage composition and the second number, in parentheses, represents the percentage occurrence. See text for further details. Percentage Composition and Occurrence of Benthos. The first number represents 1. Pupae 2. Larvae A. A. Diptera, Chironomidae I Arthropods, Inseota TAXA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE 3 CONTINUED E H o in CQ CO E-< < h OO O O CO c^oo X * E-iW CO d d CO X SB CO X 3* ON r-l 3 cn CM cn 3 CQ CO Ed X X CO H >A < 1 | 1 1 1 1 WEST, TOTAL o -d o o o o o o o C^CM o o d d cv-in o o CM 00 cnen o o o o o o o o X P ■& H d p C O o 6 3 i P CQ CQ i P cd o • • • • • • • • • • « • • • • • • • h ^—/ N—✓ • N

■d 6 o o © v6 o ' 0 CN 00 C'V vo d o CM £v- d c- -d d ' Adc ddoend n e o d d co d iA CO o cn o cn in CM O o vo o COvo CM o © fi P CO © • -^N i ■d *✓S-*' s*.✓ w th CVi cn O •

NO O y*—1N, CNi CVi ON NO d* o 00 co d co ca O-CVi O OvO CO o O O r< H o o co o o - in ,-i o l f ONO o o o o < CJ H a pH • • • • • • • • • • • vo /*N N-c / N - /—s /-s >w» - /-N -—/ --- H o

- vO O VO GO CO Cv. h CM PI O o o CO o o d oo o o vo O OvQ rv-5 CM H CM O- M HON^f CM tH ni o o in in CV.if> CM CM c^-d o O « CM -< a P. •' • • • • • • • • • • m >n -- w '—' —' ' CM - • • s.

' o in vo d nv in vo «n -d H-ico o co o o o rH rH in cn in CO CM d o *-t cn XAO cn© o cn a P • • • • . • h 'Sw" /-N ^■N ✓—s -d rH h H • ' o in co d cv- -d CM o h o n i CN- O CM.-I OvOv O O O CO o nn. n in C-vO H-l O CM CMCMVO CM CM nvo in o o in H-t in H (5 3 o P

( 7 0 . 8 ) NO^ mo o o o « O CVi O o d o o o o o o o th o o o o E t S) P d aS m QO© O CQ p< ri CQ 3 bn • • • • • • • m h • • • • • • • • • • \ d in /""V ««^N M—✓ ./ s w' 'w *»—'S

.'~s .—\ 0 .0 —/ ' / - v *—s -- ^ —✓ ---- t --- H m

' ' ( 0 . 0 ) o -d o in 1 o o o o Oo o o O O end? o d o o o o o o o o o o o o o o o o o o o o 6H X p Ti d u o u o p. •• • • • • N—✓ — /*N .—V Nw. -/ V cm H-i V ✓

o co o cn o o o o o o CVJNO cncv- o o o o o o « p p 3 a d X d © d © £ u a p o © i P i P © • - •> cn s-/ S-/ H • N

26 ) ) 2 2 0.2 0.5 0 .5 (*f. (U.Z) (if. WEST, TOTAL ) 0 . 0.6 0 0 .0 (7.*0 (3-7) ( EAST, TOTAL ) ) 0 0 . . 0 .0 0 .0 0 0 0 .0 ( (o.o) ( SLW-9 ) ) ) 0 0 0 . . . 0 0 .0 0 0 .5 0 .0 ( ( 20 ( SLW-5 ) STATIONS 0 . 1 .5 0 .0 0 1 .5 (8 .3 ) ( (1 6 .7 ) SLW-1 ) ) ) 0 0 0 . . . -8 0 0 .0 0 0 .0 0 0 .0 ( ( ( SLE ) ) 0 0 . . 0.0 0 0.0 0 0 .0 ( (o.o) ( ) 0 . 0.0 0 9.1 (7 .1 ) ( (7 .1 ) 18 .2 SLE-1 SLE-5 Phvsidae. Phvsa E. Coleoptera, Elmidae Tubificidae. Llmnodrilus II Mollusoa, Gastropoda III Annelida, Ollgochaeta TABLE TABLE 3 CONTINUED TAXA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 28

square foot. The greatest number of organisms was 150 per square

foot, all of which were Chironomidae. Thus the number of benthic

organisms remained quite low throughout this study, in sharp contrast

to the more common values of from 1,000 to 16,000 Chironomidae per

square foot in other wastewater storage-stabilization lagoons (Kimerle

and Enns, 1968).

The dominant genera varied from station to station. Procladius

cullcifongus was dominant at SLW -1 and SLW-9, com prising 57«Q% and

85 . 1%, respectively, of the benthic population, while Glyptotendipes

spp. dominated SLE-5 and SLW- 5 , comprising 78 . 1% and 75‘3%» respec­

tively. The margin is not so clear at SLW- 8 , where Glyptotendipes spp.

accounted for 4-7.2%, Procladius culiclformus 22.6%, and Chironomus

plumosus 21.6% of the benthic macroinvertebrate population. The

dearth of organisms at SLE-1 makes the percentages less meaningful

than at the other stations.

These midges appear to be representative of the normal lagoon

insect fauna. In a study of 18 Missouri lagoons (Kimerle and Enns,

1968), Glyptotendipes barbines. Chironomus plumosus. and Tanvpus

punctlpennis (in the same subfamily as Procladius. Tanypodinae)

comprised more than 94% of the total number of insects collected in

all lagoons. Based upon Bureau of Vector Control records of larvae

collected from 22 localities, nine species of chironomlds are con­

sidered to be common inhabitants of lagoons in California, including

Procladius sp., Cricotopus sp., Glyptotendipes barblpes. two species

of Tanypus. and four species of Chironomus (Grodhaus, 1967). Oligochaetes were found on only two occasions, 21 December 1973 a"t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 29

SLE-l ( 8 per square foot), and 1 6 November 19?3 at SLW-1 (4 per

square foot). They represented only one genus, Limnodrilus. a

group which is usually common in organically polluted waters. It

may take longer for the oligochaetes to proliferate in this new

environment.

Empty snail shells were found In seven samples, The genus

Physa was the most common, but three other genera were also present,

as shown in Table **.

TABLE k

Empty Gastropoda S h e lls (No. p er square fo o t)

DATE GENERA AND LOCATION

3-13-7** ** Physa (SLW-9)

5-28-7** 6 Phvsa (SLW-1): 26 Phvsa (SLW-'S)

6-28-7** 2 Physa and 18 Gyraulus (SLW-5)

7-12-7*+ i+ Physa (SLE-5)

8-29-7** 2 Physa. 2 Camooloma. 6 Lvmnaea and 6 Gyraulus (SLW-5)j 2 Physa (SLW-1)

Since it is not known if these snails were living in the lagoons

or if just the empty shells were washed in, they are not included in

any further analyses. On only two occasions were both the snail body

and shell of Physa found, 12 December 1973 at SLE-l (4 per square foot)

and 29 August 19?** at SLW-5 (2 per square foot).

The changes in the abundance of benthic organisms throughout

this investigation are shown in Figures 2 and 3. Both lagoons ex­

perienced a decline in benthos from June to September, during the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. FIGURE 2

Changes in the abundance of Benthic organisms in the West Storage Lagoon

STATIONS •SLW-1

120 SLW-5

SLW-9

MONTHS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 150 FIGURE 3

Changes in the abundance of Benthic organisms in the East Storage Lagoon

STATIONS 120 -0 SLE-l

SLE-5

105 SLE-8

c y

M o 60

MONTHS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. period when emergence occured.

The number of benthic macroinvertebrate organisms at SLE-l

remainedvery low throughout the year, and in six of the 14- samples,

no organisms were found. The mean number of benthic organisms found

at this site was only 3*1 per square foot. Due to this paucity of

animals, no species diversity or equitability could be determined for

this station. Since each of the individual samples at the other five

stations contained so few benthic organisms, diversity and equitabil­

ity were calculated on a per station basis rather than on a per

sample basis. These results are presented in Table 5 .

TABLE 3

Diversity Indices and Equitability for the B enthic M acroinvertebrate Community

SLE-5 SLE-8 SLW-1 SLW-5 SLW-9

Diversity, d 1.7623 2.1*593 1.8623 1.8539 0.8351 Equitability, e 0.7298 0.9377 0.5259 0.7839 0.5122

This index of diversity, d, is based on information theory and

takes into account the number of species (i.e ., richness of species)

as well as the numerical distribution of individuals among the species

(i.e., the relative importance of each species). Theoretically, it

can range from zero to the log of the total number of individuals

(Weber, 1973)*

Organic pollution usually results in the depression of diversity,

d, in the biotic community, while relatively undisturbed environments

have a higher diversity index. Aquatic ecosystems without envtron-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 33

mental perturbations usually support communities having large numbers

of species with no individual species present in overwhelming abun­

dance. Thus if all individuals belonged to the same species, the

diversity would be minimal, while if each individual belonged to a

separate species, the diversity would be maximal. Wilhm (1970) and

Wilhm and Dorris (1968) report that values for d of less than 1 are

usually obtained in heavily polluted aquatic environments, values

between 1 and 3 in areas of moderate pollution, and values above 3

in unpolluted waters.

The diversity indices calculated for each station indicate that

station SLW-9 is heavily polluted, while SLE-5, SLW-1 and SLW-5 are

moderately to heavily polluted, and SLE-8 is only moderately polluted

to unpolluted. This is not, however, borne out by the other data

gathered during this investigation. The East Lagoon received semi­

treated wastewater while the West Lagoon received seepage water and

had a much lower BOD, TOC, and nutrient concentration than did the

East Lagoon.

Equitability, e, is calculated by evaluating the component of

diversity which is due to the distribution of individuals within the

species. This index is reported to be more sensitive than d, and in

fact very sensitive to even slight levels of degradation (Weber, 1973)*

Its range is normally from 0 to 1. Organic wastes reduce equitability

below 0.5 and generally in the range of 0.0 to 0.3* Values between

0.6 and 0.8 are indicative of water not affected by oxygen demanding

waste. Since the equitability values calculated for the lagoons were

all above 0.5, this indicates that the stations are not organically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. polluted. Thus the equitability values are not in agreement with the

calculated diversity values, nor do they agree with the other param­

e te r s .

It may not be appropriate in this study to calcuate diversity

and equitability, and compare the results to historical work, because

almost all of the reported uses of d and e have been in studies with

over 100 individuals per sample, in established lotic communities,

and in communities receiving predominantly organic wastes. These

conditions are not met in this investigation. The Muskegon lagoons

receive more industrial waste, especially from a paper mill, than

municipal waste. These lagoons also represent a new aquatic environ­

ment, they were man-made and were covered with terrestial vegetation

prior to this study. From the beginning, the East Lagoon was a heavily

stressedaquatic environment. Colonization of the benthic community

may take much longer than for the development of the planktonic

community, due in part to the much longer generation time in the

benthic macroinvertebrates than in the plankton.

Zoonlankton

The zooplankton data, arranged by station and by date, are pre­

sented in Appendix B, and are summarized in Tables 6 and 7 and in

Figures-4-11.

Although there was considerable variability through time in

regard to the mean number of organisms per lite r in each lagoon, and

in the dominant group, the number of zooplankton per lite r consistently

remained higher in the nutrient and organically richer East Lagoon

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 35

than in the West Lagoon (Table 6).

The mean in the East Lagoon ranged from a low of 6 .3 organisms

per lite r on 16 November 1973 to a high of 132.3 on 9 August 1974,

while the mean in the West Lagoon ranged from 5*9 organisms per lite r,

a lso on 16 November 1973* to a high of 57-3 on 15 August 1974. The

greater number of zooplankton in the nutrient-richer East Lagoon is

to be expected, since more eutrophic waters often support higher

zooplankton populations than less eutrophic waters (Schelske and

Roth, 1973)* It is believed that this is partly due to the higher

food supply, namely phytoplankton, in more eutrophic waters. Davis

(1958) feels that the zooplankton depend more on phytoplankton than

upon nonliving organic material, even in organically rich waters.

It has not been determined if this is true in the Muskegon Lagoons.

The zooplankton pulses (Figs. 4 and 5 ) do not appear to correspond

to the phytoplankton pulses, and the phytoplankton counts in the

West Lagoon were higher, but zooplankton counts lower, than those in

the East Lagoon. This disparity could be due in part to the methods

used to enumerate the zooplankton and the phytoplankton since only

numbers were determined and not biomass. Another difficulty in

determining a relationship between the zooplankton and the phyto­

plankton is the difference in the digestibility of the various algae,

depending upon the thickness and other properties of the algal cell

wall (Hutchinson, 1967). There is also evidence that phytoplankton

do not constitute a controlling or limiting factor with respect to

the overall zooplankton population (Reid, 1961 and Hutchinson, 1967). The majority of the zooplankton were crustacean arthropods (Table

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ON

%) %) 7 5 . .

30 23

) 1 (4 7 .3 * ) (40.8%) WEST Gyclopoid Gopepods, unidenti­ Gyclopoid Gopepods,fied unidenti­genera** (34.6%) Daphnla Unidentified Rotifer (21.0%) ( f ie d genera** (79-. Cyclops excllis (24.C%) Ghvdorus sphaerlcus (23.7%) Daphnla Fllinla longlseta ( Cyclops

1.6 ± 9 .8 ± 2 .9 6.6 5 .9 ± * 13.3 ± 5 .9 32.5 ± 13.1 Daphnla (84.3*) LAGOON (52-2%) (44.?%) TABLE TABLE 6 .?%) 68 EAST Cyclopoid copepods Daphnla (52.?%) 23.5 + * Daphnla ( 9.9 94.7 ± 109.8 Daphnla (92.3$) 41.6 ± 7.1 Daphnla

in parentheses, the percentage of all zooplankton in the indicated collection. Compaxison of Zooplankton counts (organism/llter) in the East and in the West Lagoon. Dataafce given as the mean ± one standard deviation, followed by the dominant taxa and, 9-73 _ 5-l/j._74 5-21-?4 5-28-74 6- H -74 11 DATE 10-26-73 36.8 ± 11-16-73 6.3 ± * Daphnla (65.1%) * = only one station sampled ** see description in Appendix B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. . 8&) 56 WEST Diaptomus (36.9%) Daphnia (37.6%) Diaptomus (61.2%) Daphnia (53.4%) Diaptomus ( 5.8 112.7 i 18.6 + 5.4 Diaptomus (66.1%) 15.9 57.3 ± 57.3 22.8 ± 56.4 13.7 2 2 .0 LAGOON EAST Cyclops vernalis (31.6%) Cyclops vernalis (46.4%) Cyclops vernalis (25.0%) Cyclopoid copepods (10Q%) Cyclopoid copepods (97*5%) ±37*8 ±29.5 ± 39*6 Cyclopoid copepods (99*8%) (continued) 32.3 57*8 ± 14.2 Cyclopoid copepods (100%) 127*2 I 129*7 5-74 TABLE 6 19-74 - 9-74 - 8 O-I 8 -2 0 -7 4 7 -1 2 -7 4 6 -2 8 -7 4 7 7 -2 6 -7 4 8 -2 9 -7 4 DATE 8 - 2 - 7 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced 200 180 ORGANISMS PER LITER 160 120 20 lntn n t s Soae Lagoon Storage ast E e th in plankton hne i he audne zoo- f o abundance e th in Changes SLE-5 « STATIONS SLE-8 FIGURE MONTHS 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

ORGANISMS PER LITER 20 hne i he audne zooplankton f o abundance e th in Changes n t et oae Lagoon torage S West e th in SLW-1 « STATIONS SLW-5 SLW-9 FIGURE FIGURE MONTHS 5

39 7). The class Crustacea, which was represented by three orders and

nine genera, accounted for 97.3% of the total zooplankton in the East

Lagoon and 98.9% in th e West Lagoon. On th e order and genus le v e ls ,

however, the sim ilarities between lagoons disappears.

Cyclopoid copepods dominated the zooplankton in wastewater East

Lagoon, representing 75*2% of the population. They comprised only a

small portion of the total zooplankton population in this lagoon

during the early phases of this study, a period of very small zoo­

plankton populations, but they were dominant during the summer of

197^ when they accounted for most of the increase in the number of

zooplankton (Fig. 6). Of the ten species of cyclopoid bopepods

present, Cyclops vernalis was the most common, representing 19*9%

of all zooplankton in the East Lagoon.

In the West Lagoon, however, cyclopoid copepods accounted for

only 1^.1% and Cyclops vernalis for only 1.9% of the total zooplank­

ton. The percentage of total zooplankton which were comprised of

cyclopoid copepods declined in the West Lagoon throughout this study

(Fig. ?). The dominant zooplankton in this lagoon were the cladocerans,

which a t 51* 2% were more than twice the percentage of cladocerans in

the East Lagoon (21.6^). Daphnia was the dominant genus in the West

Lagoon zooplankton, ^1.4%, follow ed by Diaptomus. 33*6%. In the East

Lagoon, Diaptomus represented only 0.5% of the total zooplankton

population. This change from calanoid copepods (Diaptomus) in the

West Lagoon to eyclopoid copepods in the East Lagoon corresponds to

the general trend for changing zooplankton composition as waters go

from .oligotrophic to eutrophic: the proportion of calanoids decreases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3 .5 1 .9 5 .2 1 .1 2 .2 26 14.1 98.9 WEST, TOTAL 8 .7 9 .6 23 38.1 19.8 75.2 13.3 97.3 TOTAL ) 7 . 1.4 9 0 .9 5 .5 1.8 2 .8 1 3 .6 98.2 6 6 ( (6 6 .7 ) (4 4 .4 ) (4 4 .4 ) (3 3 .3 ) SLW-9 EAST, (100.0) (100.0) ) 0 . 3 v . 7 1 .7 0 .0 2 .7 4 .4 4 .1 (0 .0 ) 1 1 (7 1 .4 ) (7 1 .4 ) (4 2 .9 ) 100.0 SLW-5 100 (1 0 0 .0 ) (1 0 0 .0 ) ( .0 ) .0 ) 1 .6 . 3-1 1 .0 5 .7 STAT][0NS 4 .2 10 17.0 3 0 98.0 6 0 (4 0 .0 ) ( (5 0 .0 ) (4 0 .0 ) (9 0 .0 ) ( SLW-1 (1 0 0 .0 ) 1 5 .4 89.4 11.6 10.9 20.6 43.1 (7 1 .4 ) (8 5 .7 ) (7 1 .4 ) 100.0 SLE-8 (100.0) (100.0) (1 0 0 .0 ) (1 0 0 .0 ) 7 7 TABLE 7 4 .9 10.8 98.3 14.7 10.2 65.1 2 9 .8 (85-7) (85-7) (8 5 -7 ) (5 7 .1 ) (8 5 .7 ) SLE-5 (1 0 0 .0 ) (1 0 0 .0 ) 9 95.1 1 3 .8 11.0 76.1 24.3 4 2 .8 , 7 ,5 N (6 6 .7 ) (5 5 .6 ) (4 4 .4 ) (6 6 .7 ) (4 4 .4 ) (77-8) SLE-1 (1 0 0 .0 ) b. C. e x c il is No. of sam ples a . C. v e r n a lis c . C. sp. percentage occurrence. See text for further details. Percentagethe Composition percentage and Occurrence composition of and Zooplankton. the second number, The first in parentheses, number represents represents the 1. Cyclops 2. Mesocyclops A. A. Copepoda, Cyclopoida I Arthropods, Crustacea TAXA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. * 1.6 1 .3 2 .5 0.0 1 .5 5 .4 2 .0 33.6 WEST, TOTAL 0 .5 5*5 7-2 5 .9 2 .4 0 .4 5 .7 10.0 17.9 EAST, TOTAL n ) ) ) ) 7 7 0 7 . . . . 1 .0 0 1 .4 0 .0 0 .0 6 .7 2 .4 0 .0 ( (0 .0 ) 37.2 6 6 (0 .0 ) 6 6 6 6 ( , 3 ,3 (4 4 .4 ) (3 3 .3 ) ( (3 3 .3 ) ( SLW-9 ) 0 . 1 .4 0 .9 0 .4 0 0 .1 2 .3 0 .0 1 .8 2 .7 ( 40.4 (85-7) (2 8 .6 ) (2 8 .6 ) (7 1 .4 ) (7 1 .4 ) (1 4 .3 ) (2 8 .6 ) (1 4 .3 ) SLW-5 ) 0 .0 ) .0 ) .0 ) . .0 ) * 3.5 7.1 1 .4 2 .2 0 2 .0 0 .0 2 .2 STATIONS ( 5 0 30 24.2 5 0 3 0 ( ( (2 0 .0 ) ( (4 0 .0 ) ( (1 0 .0 ) (6 0 .0 ) SLW-1 0.1 3 .8 8 .8 0 .0 4 .8 6 .6 9 .6 (0 .0 ) 12.7 21.3 (1 ^ .3 ) (4 2 .9 ) (8 5 .7 ) (5 7 .1 ) (85-7) (5 7 .1 ) (7 1 .4 ) (5 7 .1 ) SLE-8 0 .1 6*5 6 .8 0 .3 3 .7 V 5 .4 2 .1 10.4 19.0 (1 4 .3 ) (85-7) (5 7 .2 ) (4 2 .9 ) (85-7) (8 5 .7 ) (85-7) (7 1 .4 ) (1 4 .3 ) 1 .1 3 .7 7 .4 1 .6 6 .8 0 .6 6 .1 7 .1 1 5 .8 (2 2 .2 ) (5 5 .6 ) (5 5 .6 ) (33-3) (1 1 .1 ) (55-5) (4 4 .4 ) (6 6 .7 ) (5 5 .6 ) SLE-1 SLE-5 >. st b. E6 ** c. E? ** a. B9 ** b. M. dybowskli ParacvclODS a . M. edax c . M. sp. Diantomus Copepoda, Calanolda 4. Unknown Genera ** B. TABLE ? CONTINUED TAXA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. * * 1 .1 0.2 9-8 0 .0 5 1 .2 41.4 WEST, TOTAL * 0 .8 0 .0 2 .3 0 .8 0.2 0 .0 0.1 2 1.6 2 1 .5 EAST, TOTAL ) ) ) ) ) ) 0 0 0 6 1 2 ...... 1 .7 0 0 .7 0 .7 0 .0 0 .0 0.0 4 .7 (0 .0 ) (0 .0 ) ( 11 2 2 5 5 4 7 .4 42.7 (1 1 .1 ) ( ( ( 100 100 SLW-9 ( ( ) ) 0 1 . . 0 .0 0 .0 0 0 .0 0.0 0 .0 0 .0 (0 .0 ) (0 .0 ) ( (0 .0 ) (0 .0 ) (0 .0 ) 3 7 .8 10 .5 48.3 5 7 ( SLW-5 (100.0) (1 0 0 .0 ) [ONS : ) ) ) ) ) ) ) 0 0 0 0 0 0 0 at

. . , . . . . * 0 .1 1 .8 0 .0 0.1 0 .0 st (0 .0 ) (0 .0 ) 1 0 9 0 5 6 .8 3 0 1 0 7 0 1 0 1 2 .9 4 3 .9 ( ( ( ( ( ( 100 SLW-1 ( ) 1 . * 0.0 0 .0 0.0 0.0 0 .0 0 .0 (0 .0 ) (0 .0 ) (0 .0 ) (0 .0 ) (0 0) (0 .0 ) 10.4 10.5 5 7 (5 7 .1 ) ( (1 4 .3 ) SLE-8 ) 3 . 0 .0 1 .6 0 .0 0 .0 0.0 0 .0 0 .0 (0 .0 ) (0 .0 ) (0 .0 ) (0 .0 ) (0 .0 ) (0 .0 ) 33.2 33.2 1 4 (5 7 .1 ) (57-1) ( ) ) ) 7 0 7 . . . 0 .0 0 0 .3 v 0 .0 0 .0 4 .6 2 .1 2 .1 ( (0 .0 ) (0 .0 ) 17.6 1 7.9 6 6 6 6 ( ( (4 4 .4 ) (2 4 .4 ) (WA) (3 3 .3 ) SLE-1 SLE-5 1. Daphnia spp. 3. Chvdorus sphaericus 1. Braohionus uroeolares 2. Bosmina longlrostris 2. Keratella sp. 4. Alona sp. C. C ladocera A. A. Plolma TABLE 7 CONTINUED II RotIfera, Monogononta TAXA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. poue wt pr sin fte oyih we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE 7 CONTINUED s £ l-l O CO Z CO E-tr\n o o o o o A ^ A ir\ H '—*» rH

o d mo 0 H 00 o o o o o o o o o o o o o o o - O r-i O iH H O d d d CM H

4 4 poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

PERCENTAGE J J M A H F J D N O percentage of to t a l zooplankton zooplankton l a t to of percentage n t s Soae Lagoon Storage ast E e th in Cyclopoid copepods as a a as copepods Cyclopoid STATIONS IUE 6 FIGURE MONTHS 100 FIGURE 7

Cyclopoid copepods as a percentage of total zooplankton in the Vest Storage Lagoon 90

80 STATIONS

• SLW-l

70 SLV-5

60

£3 O < I 50 o li

40

30

20

10

0 0 DJ F M A M JN J A MONTHS

of the copyright owner. Further reproduction prohibited without permission. poue wt pr sin fte oyih onr Frhrrpouto poiie ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

PERCENTAGE 0 0 1 20 0 N opako i he Es Soae Lagoon Storage East e th in zooplankton Cyclops v e rn a lis as a percentage of to ta l l ta to of percentage a as lis a rn e v Cyclops D F J SLE-1 « STATIONS SLE-8 IUE 8 FIGURE MONTHS A M M J A J 47 poue wt pr sin fte oyih onr Frhrrpouto poiie ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

PERCENTAGE 0 - g 100 20 0 - 10 0 _ 40 - 0 3 - 50 0 - 70 60 - 80 0 - 90 - - ylp ver i lis a rn e v Cyclops opako i he Ws Soae Lagoon Storage West e th in zooplankton _ OSLw-1 — • SLW-5 • — STATIONS 9 SLW-9 IUE 9 FIGURE MONTHS

a ecnae total a t o t f o percentage a s a

8 4 poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

PERCENTAGE 0 - 70 0 - 40 0 - 50 60 0 - 80 90 0 - 30 20 10 - SE1 V ©SLE-1 opako i he s Soae Lagoon Storage ast E e th in zooplankton Daphnia a s a. percentage of to ta l l ta to of percentage a. s a Daphnia STATIONS \ >SLE-5 SE8 / SLE-8 IUE 10 FIGURE / / ' s / ' s / 9 4 poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R 0 _ 100 70 80 PERCENTAGE 90 60 20 40 30 50 10 N J M A M F J D N 0 ------opako i he et trg Lagoon Storage West e th in zooplankton ahi a a ecnae f otal l a t to of percentage a as Daphnia SLW-1 • STATIONS IUE 1 1 FIGURE MONTHS

/ J A J J M I L I 1 ' 0 5 5 1

while the predominance of cyclopoids increases (Patalas, 1972).

Rotifers were surprisingly scarce, accounting for only 2 . 3 S of

the zooplankton in the East Lagoon and 1.% in the West Lagoon.

The dominance of the zooplankton by copepods (East Lagoon) and

cladocerans (West Lagoon) is similar to conditions in the surrounding

Great Lakes. From varous studies of Great Lakes zooplankton, Davis

( 1966 ) concludes that dominance by either or both of these groups

during various seasons of the year is quite characteristic.

Virtually no information concerning zooplankton populations in

wastewater lagoons could be found in the literature.

Phvtonlankton and protozoa

The complete results of the quantitative and qualitative analy­

sis of the phytoplankton and protozoa present in the lagoons are

presented in Appendix C, arranged by date, station and taxa. Through­

out this paper the abbreviation nr. will be used to denote a species

identification which is not positive. If it is not the indicated

species, it is a closely related one.

There was a great deal of variability in both time and location

in the number as well as the type of protozoa and phytoplankton in

the lagoons (Figs. 12 and 13 and Table 8 ). Due to these large

fluctuations in numbers at different stations, the standard deviation

exceeded, or was very close to, the mean number of organisms on 5 out

of the 19 sampling dates in the East Lagoon and on 3 out of 19 in th e

Lagoon. On 21 December 1973 there were 1,555*7 phytoplankton and

protozoan organisms per ml at SLE-1, "but only 55*6 per ml at SLE- 8 ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 52 FIGURE 12 2 0 ,0 0 0 Changes in the abundance of Plankton and Protozoans in the East Storage Lagoon (Graph is on 4-cycle • semi-logarithmic p ap er). j 1 0,000 — _ STATIONS 8 ,0 0 0 - • ------• SLE-1

6 ,0 0 0 e ------• SLE-5 » ------• -#SLE-8

4,000

g. 2,000 w £ r-3M ►J 1-3M 2 1,000 - P-> ca 800 s 00 M z < 600 o CC o

400

200 '

100

80

J I 1 1 m 1 1 1 N DJFMAMJJA MONTHS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R 00Cu_ u C 0 ,0 0 2

ORGANISMS PER MILLILITER - 10,00c ,0 - 4,00c ,00( 2 - 6,00c ,0 - 8,00c 1,000 400 - 400 0 - - 60C 0 - 800 20C 10C 80 -

hne i h audne f lntn and plankton of abundance the in Changes JFMAMJ rtzas n t Ws Soae Lagoon Storage West e th in protozoans I IUE 13 FIGURE MONTHS STATIONS 1111 1 ,SLW-9 SLW-,5 SLW-1 A J 3 5 %) %) 3 1 . . 83 5 6 (59.5%) ( (7 8 .3 6 ) (62.1%) (99-5%)

WEST Chlorella nr. vulgaris 3689.1 ±7021.8 Chlorella nr. vulgaris .6 6 97 .3 ± *+79*3 Chlamydomonas sp. (92.9%) 680.9- ± 117*9 Chlorella nr. vulgaris 257*0 ± 1 0 8 .0 Bodo 1319. 157*0 Bodo 5902.8 ± 5812 5250.1 ±3731.7 Chlamydomonas sp. ( LAGOON

/.) %) 0 8 . . y6). . . 3&) 76 3 8 6 9 9 5 ( (31. (58.3#) (50.9/o) TABLE 8 EAST Chlamydomonas s p .( Chlorella nr. vulgaris Meloslra nr. granulata 9«8 968.9

— ±

805.6 ±1060.7 Chlorella nr. vulgaris 903.2 ± 372.6 Bodo ( 180.6 ± 122.7 Chlamydomonas s p .(36*5/0 201.5 1972.6 1559 • 1 15591 • ± 702.9 Chlorella nr. pyrenoidosa 2396.3 ± 1011.9 Chlamydomonas s p . ( the principal taxa and, in parenthesis, the taxa's percentage of the mean. Comparison of Phytoplankton and Protozoan counts (Organlsms/ml) in the East and West Lagoons. Data are given as the meant one standard deviation, followed by

9-73 DATE - 2-79 - 1-30-79 1 1-16-79 2-13-79 11-30-73 11-16-73 12-21-73 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%) %) 7 8 . .

18 83 (89.0%) (84.9%) (95.7%) ( (91-7.%) WEST ghiniana ( Chlorella nr. vulgaris Chlorella nr. vulgaris Chlorella nr. vulgaris Chlorella nr. vulgaris Chlorella nr. vulgaris Cyclotella nr. Euglena mene- sp. Glaucoma sp. (18.0%) (39.0%) 7309.3 ± 618.6 .I ±1599.5 204.8 ± 135.7 482.6 ± 111.5 3306.4 ±1198.4 8329 6642.4 ± 2725.4 ±2362.1 10533.6 LAGOON

. w . 6 3 (20.2%) (89.0%) (78.8%) (23.4%) ( s p .(49.0%) pyrenoldosa pyrenoldosa pyrenoldosa sp. ( 3 9 .5 0 pyrenoldosa s p .(5 7 .5 6 )

EAST Chlorella nr. Chlorella nr. Chlorella nr. Chlamydomonas Chlamydomonas Chlorella nr. Chlamydomonas sp . (43.3%) Golenkina pauclspina Trachelomonas .I 6 .7 167 7960.1 ± 319.5 ± ± IO ± 182.4 ± 501.9 324.6 715.2 786.0 255 .7 537.6 7878.5 ±9450.7 9402.8 ± DATE 3-13-74 3-29-74 2-27-74 5-14-74 5-21-74 5-28-74 5 - 7-74 4-12-74 4-26-74 TABLE 8 CONTINUED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. n O /O /O 3 7 • 3*) • . .7/0 T 16 32 Tn. ( (3 2 -8 /0 C

WEST Anabaena constrlcta s t e d t l l Chlamydomonas sp. (11 nr. nord- i 272.1 Chlorella nr. pyrenoldosa ± 145.2 Chlorella nr. vulgaris 632.9 634.5 235.9 ± 61.p Phacus sp. (17.2/0 LAGOON

/O 9 . 19 (3 3 -3 /0 (31.2#) EAST Trachelomonas sp. ( Grvptomonas nr. ovata 209*3 i ± H7.4 Vorticella sp. (23.7/0 .O .O 194 .0 Glaucoma sp. 973.4 623 2 7 3 .3

BATE 7-26-74 8-2-74 7-12-74 7-19-74 6-28-74 6-11-74 TABLE 8 CONriNUED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (45.3£) (5676) WEST ± 125*1 Chlorella nr. pyrenoldosa ±3098.1 Aphanlzomenon flos-aquae 5 6 .6 IO 3256.6 I LAGOON

6&) (20. ( 9.6%) ( EAST lnvlsatatus (3°*9/0 Ankistrodesmus sp. Chlamydomonas sp. ( 9«0/£) Chlorella nr. vulgaris ±1742.1 nr. ovata 3654.2 18813*6 ±4977.8 Stephanodiscus nr. DATE 8-29-74 8-15-74 8-20-74 8 - 9-74 TABLE 8 CONTINUED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. re s u ltin g in a mean of 805• 6 and. a standard, d e v iatio n of 1060.?.

The two major species on this date at SLE-1 (Chlorella nr. ynl ga-H g

and Chlamydomonas s p .) were th e only two species present a t SLE-8.

On the next sampling date, 2 January 1974, a bloom of Chlorella nr.

vulgaris at SLW-1 but not at SLV-9 accounted for 10,777.? organisms

per ml at SLW-1 but only 84?. 4 per ml at SLW-9, resulting in a mean

of 5812.6 +_ 7021.8. A s im ila r co n d itio n occurred on 13 March 1974

and also on 29 March 1974, when a bloom of Chlorella nr. vulgaris

at SLW-1 but not at SLW-9 resulted in the standard deviation exceed­

ing or being very close to the mean number of phytoplankton and

protozoan organisms p er ml in th e West Lagoon. On th e se same two'

dates a bloom of Chlorella nr. -pyrenoldosa at SLE-8 but not at SLE-1

produced the same situation in the East Lagoon.

In May the standard deviation again was close to or exceeded the

mean number of phytoplankton and protozoan organisms per ml in the

East Lagoon. On 7 May 1974 and again on 21 May 1974 this phenomena

was not, however, due to a bloom of any one organism but rather to a

general increase in several organisms at only one station. Due to

higher numbers of Chlamydomonas s p p ., Golenklna -paucispina and

Glaucoma spp. at SLE-1 on 7 May 1974, this station had 1378.9 and

874.9 organisms per ml while SLE-5 had only 111.0 and 124.8 per ml

and SLE-8 had only 486.0 and 249.8 per ml. Due to an increase in the

number of Trachelomonas. Buglena and Glaucoma on 21 May 1974 there

were 694.4 and 631.9 organisms per ml at SLE-1, but only 13.8 and

34.6 p e r ml a t SLE-8 and 125*2 and 34*7 par ®1 a t SLE- 5 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 5 9

The phytoplankton and protozoan population in both lagoons

showed some sim ilarities and yet on other occasions the populations

were drastically different from one lagoon to the other. These

fluctuations in terms of species composition and numbers are pre­

sented in Tables 8-11.

The phytoplankton and protozoan population in both lagoons

remained relatively low during the months of May, June, and July,

although it was on an upward trend during the latter two months.

The highest populations in both lagoons occurred in August. On

20 August 19?4 the phytoplankton and protozoan population was almost

19,000 per ml in the East Lagoon and on 29 August the population was

over 13,000 per ml in the West Lagoon.

Various organisms dominated the overall phytoplankton and pro­

tozoan population in each lagoon throughout this Investigation. In

the West Lagoon Chlorella nr. vulgaris was the dominant organism on

10 out of the 19 sampling dates, but in the East Lagoon it was the

dominant organism on only 2 out of the 19 sampling dates. Chlamydo­

monas was the most common form on five occasions in the East Lagoon,

followed by Chlorella nr. -pyrenoldosa. dominant on four sampling

dates. Each of these forms was dominant on just two occasions in

the West Lagoon. Out of the 19 sampling dates, 10 different organisms

in the East Lagoon and 8 in the West Lagoon were the dominants on one

or mare dates.

Chlorella and Chlamydomonas are among the most common algae in

other waste-stabilization lagoons, also. Their presence is important,

since they are very significant in maintaining a desired oxygen level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. n O o * 0.7 2 .9 3.3 1.3 75 67.4 25.3 WEST, TOTAL 3 .0 3-6 0.2 4 .8 79 55-4 1 7 .6 17.7 TOTAL ) 0 . 3 .3 0 .6 0 .0 1 .9 4 .8 31 (0 .0 ) 6 9 .3 21.8 7 1 (9 6 .8 ) (5 8 .1 ) (8 3 .9 ) (35-5) ( (1 0 0 .0 ) ) 8 . 3.1 0 .0 1.2 0.9 1.6 14 (0 .0 ) 51.3 4 2 .8 9 2 (6 4 .3 ) (7 1 .4 ) ( (7 1 .4 ) (100.0) (100.0) [0NS : ) ) ) ) ) ) ) at 7 3

3 3 3 0 0 ...... * st 3 3.1 0 .6 2 .7 1 .0 30 7 4 .0 96 ( 1 9 .9 5 3 9 3 6 3 5 0 9 0 ( ( ( ( SLW-1 SLW-5 SLW-9 EAST, ( ( ) 8 . 2 .0 1 .6 3-2 0.2 31 67-9 11.2 67 14.7 (3 8 .7 ) ( SLE-8 (5 8 .1 ) (1 2 .9 ) (7 4 .2 ) (5 4 .8 ) (1 0 0 .0 ) ) 0 . TABLE 9 3.0 5 .0 0 .4 5 .8 16 47.2 5 0 1 3 .8 2 5 .9 ( (8 7 .5 ) (7 5 .0 ) SLE-5 (2 5 .0 ) (8 7 .5 ) (8 1 .2 ) (100.0) .I 3-5 6 .8 0.2 7.2 32 (9 -4 ) 23.5 2 5 (6 8 .8 ) (8 1 .2 ) (4 3 .8 ) (8 4 .4 ) (7 1 .9 ) SLE-1 (100.0) No. No. of sam ples number represents the percentage composition and the second number, in parentheses, Percentage Composition and Occurrence of Phytoplankton and Protozoans. The first represents the percentage occurrence. 1. Ciliophora P yrrophyta A. Chlorophyta, Chlorophyceae 39-6 B. Cyanophyta, Myxophyceae TAXA D. Euglenophyta, Euglenophyceae C. Chrysophyta, Baclllariophyceae F. P rotozoa E.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. n O * 2 .0 WEST, TOTAL

1 .7 1 .0 0 .0 12 .4 EAST, TOTAL ) ) 1 0 . . 0 .0 0 .1 0 2 .7 ( 16 (5 4 .8 ) ( SLW-9 ) ) 6 0 . . * 0 .6 0 .0 0 ( 7 8 ( (2 1 .4 ) SLW-5 ) ) 0 0 . . STATIONS 0 .0 0 2 .1 ( (6 .7 ) 6 0 ( SLW-1 ) ) 1 8 . . -8 0 .4 2 .0 1 1 .1 1 6 2 5 (5 4 .8 ) ( ( SLE ) 0 . 1 .6 9 .2 2 .0 2 5 (6 2 .5 ) ( (37-5) ) ) 0 5 . . 1 .3 1 .5 1 6 .6 12 5 0 ( (1 8 .8 ) ( SLE-1 SLE-5 microns in diameter. 3-5 O.C$> . . Sarcodina 3 2. Mastigophora Unidentified Taxa ** approximately TABLE TABLE 9 CONTINUED ** Thistiaxon appears to be composed of one genus of light colored, spherical organisms, TAXA * *» * less *» than G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. o\ ro %) 4 . Bodo 0 .0 0 .0 ( 0 .0 /) (o.o/O 4 5 ( 409.7

MASTIG0PH0RA

0 .0 0 .0 0 .0 ( 0 .0 /) (0.0/o) (o.o/O lnvlsatatufe Navi = Navlcula Nost Hostoc «* 0861 comminutum = Osolllatorla Vort Vortlcella ■* Nitz “ Nltzschia nr. Phac palae = Phaeus Step = Stephanodiscus nr. Trac Trachelomonas ■= Phac Phac Trac

(2 .3 * ) ( 0 .9 /) (6.9/0 13.9 20 .8 1 3 .9

ULNPYACILI0PH0RA EUGLENOPHYTA

7/0 Melg Melg Melg

(9.9/0 (15.4%) ( 5 1 . 104.2 138.8 154.1 TABLE TABLE 1 0

Osci Osci KEY TO ABBREVIATIONS KEY 0 .0 = = Chroomonas nr. = Chlamydomonas n o r d sted= Cryptomonas tll nr. = Cvclotella ovata = Glaucoma nr. = Golenklna meneghlniana = pauclspinaMeloslra = granulateMelosira nr. varians (6.9/0 (4.6*) (O.Q/) 13-9 4 1 .7 YNPYACHRYSOPHYTA CYANOPHYTA

Chlv (3 2 .3 * ) ( 3 1 .Q*) (8 9 .2 * ) 291.7 1391.0 Chlv, Clam Chip, Clam of the organism(s), total number this arranged mean in represents, order of decreasing in parentheses, abundance. and the major 201.5 62.6 Phytoplankton and Protozoan Trends and Dominants in the East Lagoon. Data 903.2 are given as the mean number of organisms per ml, followed by the percentage 1559-1 TOTAL NO./MLTOTAL CHLOROPHYTA 30-73 - DATE Anab Anab = Anabaena Ankf “ Ankistrodesmus Anks «= Ankistrodesmus Chil falcutus sp. Chllomonas =■ nr. parameclum Clam Cycl Cryp Ghrn 11 11-16-73 Chlv >= Chlv >= ChlorellaChrd « nr. Chroococus vulgaris d lsp ersu s Gole Melg 11- 9-73 Chip = Chlorella nr. Chrm pyrenoidosa = Chroococus nr. minor Glau Melv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. poue ih emiso o h oyih we. ute erdcin rhbtdwtotpr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE 10 CONTINUED o H P=3 < Q ' O O H f f N C C O O >5 CO NO M — — CM'— 0 0 0 NO M H A C CM O'O CO CM— M O O CM O 0 CO CM O M « \ CM C O O O'—> C\2 o CA rH CN- \ r OJ rH 1 1 •o • •u • • • •u • - - o - - •O • d a —- ' ' s ' ' >9 5 H ^5. o ^ 99. >9 ffj ctf 9 9 SZ \S - & ^

V JZ H

3- : j d - -3 OO NO NO 3 ° 0 0 0 o >> S C CA c0'— ON O CACA Cn O' JO CM m •>cm— ^ wC^r- r ^ C Ow C^- ON C rH rH m f I • . o . • *u • • a • • dO 0^ O d

-— ' H ' -— - > ^-N >9 >9 9 Sh 99. ^ 9 rH rH 9 ^ 0 0 0

a - o JZ a u e

a c o \ 00 MO ■— » 00 co — co CM NO H'—r ' rH o - 4 co ts-o _-v H CO rH M CMCM cans' -C CM CM CO CM O' CA^I ON CA CA \ r rH •> - 1 •o * 1 •u • • i • • >d o So >s ? VI I VI ' 13.

h « -P o ( o Z J SH e H S - j P O rH ^ U CO NO V H •• CV2 H O OH CAO 0 O O rH O 0 ' H _ vcv co CA £ CA o H CN2 CH . • - O - • 1

'—V I—{ p w 99 «5 ^ 9 O *9 0 ca 0 ca n • . .

■JO u m > a o U >5 O E MDO \o \o •— d o d d o O O d 0 O s o CO N ^ C ON H « NH ^OO O « ON ON C^CO i O CM ' O H CA m 1 • • •o • •

-P — >9 0 0 0

O rH : x o 10 p<

NOo 4 M v H CM Cv CM O on d o 0 0 -=}■ C H '—r o H o H ^ O CO CO rH CA CM. CN C' C“\ ■ O ■ • • • O • •

H BJ H " 3 r"N /— H /— ^ ^9 S S

76 o ^ 17 0 0 0 0 m O •

( ( o a Chip E Vort, Jj- Jj- M CM O 0 3 c^ c -3* 3“ -3 § o CA 0 •Cj- a Cflc H o o os>n 00 cA' N ON ON 0 O CM ON s*—*rH ON CM ON C^- \ r • • •O - 1 1 • ■ • • - o

d y—S. ----- Tj T ^ ----- P< ^ >9 0 «H ^ 0 TO • O • * H a z j JC o E -

63 poue ih emiso o h cprgtonr Frhrrpouto poiie ihu emission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE 10 CONTINUED s o o CO o s ft ft a 8 2 o ft § ft ft a < a < ft ai o H a rH Q < ft W ■ • • m • • n n

A O V +3 -V " . 3 — >9 >9 9 9 fn fn 9 9 >9 C i ft _ I » —I a /

O U ft NO t f ft t t o ft ft O O CO oo o 00CN O CM CM O CM 0 J CM CA C o o CM t f t f CM MO C A CA A m 1 • C3 * ~ - • a • - " • f" V '-M « r~N -P ------= -P '=9 '=9 9 ?H>9 99 O m >■ • n n

•p O £ -p a U £ o

NOft tft ft ^ A 0) A ^ CO fHft N CO A ( ON MCM CM • » ' N t f ft O M O CM C A CM A A A O A CM C 'A'—' ON CA NO CM - M O t f CM m 1 m ------O • • S • • ft • • •o - • P • pq • - P3 • - CO r-N > r-N - 3 r-M -N O N r- >9 ft >9 aS 9 > *a 9 > n rH - a ft O £ ft o N a o u c

CM - A 3 rH •3- O 43 t f CO CM O CM MCM CM CM i—i —* A A CM A ft CM A cAO^a cc o A O A A H 0 0 A > O CM A A CA A O CA - c_, - • • • o • • • s • • . . . . '"N > m '^ ' -—v o _/ V O r-M 99rH 5 ti 95 9 tS >9 a$ ■>9 9 9 -^ n

O o ft co n CO o £ 3

Hi-ft NOCM O CM MO NO t f ft O t f O N t f t f CO CM N A ON CM NO ON CM A rH i—I C CM - O CMCO o o o o o o m 1 1 1 • • a • • • o • • *ft • • ■ > • - - 3rN ft f r-N 63 r-M «-m '-m O N - / .9 >9 99 ft o __ • ' *h jo ft ft u a £ u

NO M * CM t f O t f CO CO CA ^ CA CO M CMCM C t f t f CC O CM A AO HrH ft CM CM l S - N C CM A A CM rH CA C — H r t f A H CM (A CMCM AC - CM CA m 1 ^ • • ft f * • •O • • • • • ~ O ^~N n ----- o* 9 9 9 o 99 «S 9 > 9 9 /

E o ft ft o fH co 2 u j > C ft h

t f no NO H « rH t f CM t f ft CO ft ft CM C M f t t f M C CM O i—! cmco CA'© O A CM 3 w t f O'COft A C ON CM CM m 1 1 • > * • 9 >»99 CM M A -' o •

aJ c c ft o ft ft jC rH o w ft ttf q nJ >> o O ft «

4 6 poue wt pr sin fte oyih we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE 10 CONTINUED £ X u a a z O £ < £ CQ 0 P as O « < X O < o O M P w O £ 8 s O 0 g p 0 < z < P Z M o < < 0 P< i s O P a o §i H z R h h h h MO nj-— -3-CO ONONO O NO NO O CO rH CM O N - O CO O 1 C'lrH O* H ^ C c it O rH CM — ' rH N Ari C^N r-i (A ON CM-— O rH s A* cs- rH -H V C —is—' CO CM O C^> ------• • • * I . * n n n rH H-N N r a s < - P .c cn a +> Oy~^jo j ^ ~ y < JO 0 0 PS < c . r—I H J *H u >> © '-N- 0 id O P. P u B > s a h h 0 O JC O NO nt MOCM NO NO O rH NO CM CM CM C'N CM rH NO r-i rH H NO -P - CN — -' N N C •HN,CN- C ft CO O - t f o CO - CO f—I CM cA 0 ------. . - 1 - • I < • • - < - - n ^ r r-N P, - C 11 h - © r-N •*§. tfi >5. Hg. Hg. CO oS 5 ^ S a RS. rH rH -- — • • h » P< O Ph CO 0 •C P >> © P<

Trac 65 n O ON

Bodo Bodo Bodo 7 .0 ( 1 .0 / ) ( 6 7 .5 /) (7 6 .8 /0 173-6

1013.8

Glau 0 .0 7 .0 0 .0 ( 0 .0 / ) ( 0 .5 / ) (o.o/O dricauda var. parvus CILI0PH0RA MASTIG0PH0RA Navi = Nitz Navlcula Nltzschia *= Phac Phacus ■= nr. palae Melg M ■= eloslraMelv granulata “ Meloslra nr. varians Seen = Scenedesmus nr. qua- Syne Synedra •= ulna Vort = Vorticella Trac Trachelomonas ■=

Phac Eugl T rac

( 8 .4 / ) (3 -1 /0 2 7 .8

2 0 .8 (1 0 .8 /) 1 1 1 .1

EUGLEN0PHYTA N itz

(5-3^0 6 9.5 4 8 .6 (1 8 .9 /0 (2 7 .5 /) 187.4

N itz , Melg N itz , Navi TABLE 1 1 CHRYS0PHYTA KEY TO KEY ABBREVIATIONS 0 .0 Golenkina pauclspina 0 .0 0 .0 = C yclld ium (o.o/O = Chlamydomonas ( 0 .0 / ) =* Fragilarla=* nr. construens = Cryptomonas= Cyclotella nr. ovata nr. meneghiniana Glaucoma •=> B ( 0 .0 / ) *• *• E u glena = Chroomonas nr. nordstedtil = M icrocystis aeruginosa Seen Chlv Chlv 7 .0 (2 .7 /0 ( 8 .9 / ) ( 6 8 .4 /) 118.0 CHLOROPHYTA CYAN0PHYTA of the total number this mean represents, in parentheses, and the major organism(s), arranged in order of decreasing abundance. Phytoplankton and Protozoan Trends and Dominants in the West Lagoon. Data are given as the mean number of organisms per ml, followed by the percentage 2 5 7 .0 6 3 0 .4 46 5 .2 1319-^ TOTAL TOTAL NO./ML DATE Anks = Ankistrodesmus sp. Cryp Aphz =■ Aphz Aphanlzomenon =■ flos-aquae Cyum Anab *= Anabaena Ghrn Anac “ Anabaena cApha o n= s t r i Aphanocapsa c t a rivularisChip =» Chlorella nr, pyrenoldosa Glam Cycl Frag Ghil - Chllomonas nr. paramecium Eugl 11 - 9-73 1 1-16-73 Chlv *= Chlorella nr. vulgaris Glau 11-30-73 Ghrm Ghrm » Chroococus nr. minor Micr Ghrd = Chroococus dispersus Gole

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE 11 CONTINUED < >H £ £ a a /*»**>H 02 a a o a X E O X o § s % E o X o u § o a o a < X 8 X o o g x < M H < M u a £ a < < Q a El a § X o < < X h h -©— NO -d- CoS'S cc OJv-r o o © o

-© N-X © © O on o a a o o © o O— - NO'— w --- 99 5 ifl >5 >9 -9 -9

S

o a >s noa -d- o © NO 3 -d- -3- c - cc O rH CO •d- CO : 2 co CO a on o o d o o o d o o o o © o o d © o o n o © X © o on a o a a a a a n u n 1 i ! i i • o • • • • u • • - a • r-va r-va -—. o N > ' ----- >9 9 o 99 *9 *9 >9. <-i 9 9

p

NO -— O CO NO CC C OH © o a a a 00 p p 00 a - a a i-n ON'— - a © a © a 5 a Nin unun on o un CN- a on n 1 - o - - - o - • - o - • • • o • • -'— • • - . >».© rH —N P, -- 99 9 «t>9 9 >> *9 O 9 9 -s (0 v-.s n t

3 a Ti O O

-d-v_r 99 3 3 99 9 9 9 9 99 99 9 9

a o o a a >» a £

NO '— NO "Si © o a o o o o o o o © o o o 3 -3- -3- onan o o © ° CO on a o '—ra £N- CfSX a C CN- - o - - • « n • o • - - ^~N E r~N> >9 9 9 99 VO >9.a 3 3 >>

co NO o © o o © o — a O N O ON NO X © -d NO * W N O a o d o a o a unw unw CO ON C^ 09 on • u • - x * • i 1 - o - • -—N 3 >9 99 ht d 99 - > '-N >9. 9 > 99 9 9 a

a CO >» c ®

O ON NO ■d-nX x d o © o a 3 3 a CN- o ON © o -d""—^ o- o p a o . w n u cn >1 N O £ a ro a '—r * a in- o a a a a o- un ON on • > • • • u • • • i •a • i . o r~N £ ^ - r-N 99 99 99 c c 99 9 P 99 X w X a • >> X I CO a a < X J d aJ V e h

7 6 poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE 11 CONTINUED O 5 E X f^ O 33 3 r j P 33 < O M X CO E < &q 3 £ M o o s < 2 E M O X 3 o X £ X < O X FH < 5 C o X x < o 3 3 O FH X > ' - r > > < E O < i-3 X o S X o rv-> E a E < h h h h h h h h h h . r-f 3 - — o v 3 - O O VO O n c CO o o c n i - 3 CVJ o o o rH -3- * n C o o CVJ > cn c t>- •si- c c d c o '-H ^ C CVJ OV'---H v O n v c cvj CN rH n- rH - o n c n c - • • 1 i h • • - • • • • n x >9 _ ✓ o £ o o JZ < O X rH >5 td be u 35 e E E s h « h 6 v c c 3 - n c CVJ o •3- 3 3 - VO ■3- O n i CO - j i - O HO r H r n e rH Ov rH p n c - o n c s c r C C - 0 rH t - r n C OCVJ CVJ lO C I CS-CVJ i—! 1—1' o v n x o aj n c \ / _ s c r-l n x n x n i cvj n c 1 i i • u • • • X • * - o - • • o • • • • o • - o • • • - O - • o • • o , p v - r N—1 - OvrHrN Or O v r* O r-N r-H v O H-N V £ v " ' ' x. OS5x9. 9 O 99. -. OS 9-9. 9. S . '9 -- 9 rH >9. --- -- _ - ^ “VI—1 ' Z J 3 E x h h O CVJ vO C rH CC C CO CC VO H—- C - rH-— 3 - El rH rH r n x o p r e v o V 33 >J CVJ 3 3 3 - - j v e n c C ^ X - - X ^ C v xr*i S o i^ * r x cvj CO rH '—'' rH cvj n e n x I V - X r-t OV CVJ -rH C rH - o —! n x 1 CO • * o • • * o * • - - - - U • . • n i —' ' C v - r , P v - r ' ^ V N X 9 9 33 9 9 o 9 9 9 rH 99. C __ ->rH n ' E ' £ ' ' O o X m X fH p rH 3 - 3 • n c c \ 3 ^ 0 C CVJ XJN, H Ov rH CC — ' i—! — 3 . 0 - t- ^ v o o o v v VO o v 00 cvj cvj Ov Ov Hs— - n c - r s*—^ rH NO O O -N O V cvj CVJ n x - o 1 - o - • 1 i r P . . • J3 • * • • • U • - • • • • —✓ / - s ffi v - r cd 9 9 E 9 9 cc cc cvj N-^. rH O v z j r > •rH a P > h h O O VO x n c o v 3 CM -3- j r r rH Hj- n c c c j r xn x n c rH Hj- C o- o CC' NO o v n x n e n x 3 - co co C f J H iH N*«—' iH O X CO O c 3 0 4) c o n x c c ON n- n c n x • o • * * O * - • - - • 1 * ■< * * * X * • - < - • - Hr-v v - r PH r-N c - — W - r-V X v - r • -—' (0 n >—s E — O 3 VO cS ^ 5 >> ^5 rH ^ n c « P X > ■+H X O rH E X O E e aj a X c PX, h h h O Hxncvj v c n x rH VO O -H S i NO -- O CVJCO O v n x - o Cv- CO V 3- oC r O rH CO o CVJ - 3 rH -—r rH O v H Ov \ O n x CVJ O V -H CVJ ■ 3 ^ 3 - n o / v H n x n x CVJ ON cn^— CN- n c £v- rH ON ------X • - . > . • - • • - • • o • • O • - n • *7* • • 1 1 C3 . . r-f r-f r-V +5 r-V N v r .— n c •> / . S - r-V 9 -P >9. 9 cS >9 9 O >9. “ e H rH HX rH < <-* >> E E O i P E © bO > i t - O i P h h h i x n v n x E 3 0 v O ^ C o n c O CVJCO _ H' - '— rH v cn © n c cvj O v_3 rH 3 _ Cv H CD rH O CO « r — n n c x - c CVJ n x Cv- _____ • > • • * C-H * • - £ - • i * • • * • o • • n nn ^ -- rH -- ^ — - - — r — O v - r H — rH > ^ r — E ^ v - r ■XR 9 rH >9. rH X O N - hh rH rH s =rl o X rH c i P > S h h 68 poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE U CONTINUED , N 63 O < O H ►4 as >1 CO O P >H < 63 E CJ 45 E P O s CO E o H “C P 5 M o P 3S E < E M o o < O ac < £ N * X VO H < E O S o 35 P < O s 45 o as 41 O P s < CS =H < 45 E E 63 O < h h h h h h h h • h h SO ^ E SO ^ Os 0 SOsd o t P ' - " O S OSO SO VO o s CC vo s O 2 CO Cs > ^ a o ca ca " O O rH COrH s O Cs-A OS H oc *• ca co CC COCO SS \0 r v rH'W' CM O Os f i E i f Os VO rH VO IN CO. rH i 1 • > • • • C=J • • 1 1 • u • • • s • • • • • • • • • rH ' ' ttf ^ ^—* ^-N J ^ g ^ H ^ ^ H H ^ * • • tn r—I r jjr JC < a < 0) t f P 63 j D h

3 o •3- o vo so O H O CO rH o u A co O CO CO a * ca ca oa H s—' H O rH CO as -C so ca o co o 00 O W O rH v*—-'COO VO N— rH a c CO C"- rH Cv • • • • >* • • • £ • - • • • • • • • ^ - ^ -s 0 "-"s > ^ H-V t f ? rH V? -S ^ C-4 • a H <£ p (3 ft o s 41 * •4 e ta a c

in the lagoons (Gloyna, 1971)•

The percentage composition and occurrence of the phytoplankton

and protozoan population, organized by station and group, is pre­

sented in Table 9» which also indicates the number of samples obtained

from each lagoon and station. Calculations for determining the con­

centrations of phytoplankton followed the same methodologies as those

utilized in the benthos Table 3» page 25-

The Chlorophyta clearly dominated the phytoplankton and protozoan

population of both lagoons, comprising 55**$ in the East and 67. ^ in

the West. It is interesting to note that the proportion of the popu­

lation of the green algae increased from a low of JS-6% a t SLE-1

(station nearest to the point of wastewater discharge) to 47.2$ at

SLE-5, and to 6 7 . at SLE-8 (station farthest away from the dis­

charge) .

There was a major difference between the percentage of blue-

green algae in the East and West Lagoons, with 25*3$ of the phyto­

plankton and protozoan population in the West accounted for by the

blue-greens but only 3*0$ in the East. It should be noted, however,

that the large Cyanophyta bloom (composed of Anhanizomenon flos-aquae)

in the West Lagoon on 29 August 19?4 accounted for most all of the

blue-greens, 93.6$! On this one day 60,277*6 Cyanophyta organisms

per ml were counted in the West Lagoon, while on the other 18 sampling

dates a combined total of only 4,097*1 blue-green algae were observed.

This type of late summer bloom is characteristic of the Cyanophyta

and especially of Anhanizomenon. a genus well known for its trouble­

some blooms in standing bodies of water (Prescott, 1962). It is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

PERCENTAGE 100 20 0 - 50 60 - STATIONS MONTHS IUE 4 1 FIGURE -1 E L S ♦ iSLE-8 C hlarophyta as a p ercen tag e e tag ercen p a as hlarophyta C P rotozoa in th e . E a st S to rag e e rag to S st a E . e th Lagoon in rotozoa P f yolntn and. hytoplankton B l a t o t of 71 FIGURE 1 5

Chlorophyta as a percentage of 100 to tal Phytoplankton and Protozoa In the West Storage Lagoon

90

80

70

60

50

40 STATIONS SLW-1

30 SLW-5

-*SLW-9

20

V

10

ission of the copyright owner. Further reproduction prohibited without permission. 73

surprising that the blue-green algae were more common in the seepage

water West Lagoon than in the nutrient and organically richer waste­

water East Lagoon. It may be, however, that the high amount of

available nitrogen in the East Lagoon may eliminate some of the

advantage that the nitrogen-fixing blue-green algae have over other

alg ae.

A sim ilar phenomena occurred with the diatoms, which represented

17.6% of the East Lagoon population and only 2.9% of the population

in the West. A diatom pulse on the last sample date in the East

Lagoon, 20 August,1974, accounted for the great majority of diatoms.

On this one day a total of 36,756*6 diatoms per ml were observed at

the three East Lagoon stations, while on the other 18 sampling dates

a combined total of only 5 * 057*5 diatoms were counted.

The Euglenophyta, Ciliophora, and Mastlgophora were a ll more

common in the nutrient and organically richer East Lagoon than in the

seepage water West Lagoon.

In both lagoons the green algae were the most common form during

the winter and early spring (Figs. 14 and 15). During this time

period, the green algae accounted for the majority of the total

phytoplankton and protozoan population and for all of the pulses,

while the Euglenophyta were notably absent. From a two-year study

of waste-stabilization lagoons, Davis et. al. (1964) concluded that

the green algae dominate during the winter months, and several pulses,

rather than one peak, can be expected. They also concluded that the

Euglenophyta population remains very scant during the winter months

and occurs intermittently throughout the rest of the year. These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 74

conclusions are supported by the findings in this investigation.

Gloyna (l97l)» however, states that Euglena. together with Chlaay-

domonas. tend to dominate during cooler weather.

As shown by Tables 10 and 11, the dominant organisms within

each phylum or class were comprised of only a few different genera

throughout this study. One or more of only four genera were the

major Chlorophyta on the 19 sampling dates in the East Lagoon.

Chlorella nr. pyrenoidosa. Chlorella nr. vulgaris and Chlanydomonas

spp. were the first dominant green algae. One or more of these two

genera (th re e sp ecies) were th e p rin c ip a l Chlorophyta from 9 November

1973 through 26 April 1974 and from 21 May 1974 through 12 July 1974.

Chlamydomonas sp. and Golenkina •pauclsoina were the most common algae

on 7 May 1974. Ankistrodesmus falcutus and Ankistrodesmus sp.,

to g e th e r w ith C h lo re lla spp. and Chlamydomonas spp. were th e major

Chlorophyta throughout the remainder of this study.

In the West Lagoon, the composition of the more abundant

Chlorophyta was more varied than in the East Lagoon. Scenedesmus nr.

quadricauda v ar. -parvus was th e dominant green alg a on 9 November

1973 and Chlamydomonas spp. or Chlorella nr. vulgaris were the

principal green algae from 16 November 1973 through 14 May 1974.

Golenkina oauclsnlna was dominant on 28 May 1974, Chlamydomonas spp.

and Ankistrodesmus sp. were the most common forms on 28 June 1974,

and Chlorella spp. dominated the green algae throughout the rest of

this study in the West Lagoon.

CMarftlift. c m attydoBinnaK- and Scenedesmus have been among the

first genera of algae to become established in other lagoons also,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. and they remain typical components of the Chlorophyta throughout

the year (Gloyna, 197l). Gloyna (1971) also lists Golenkina as a

typical green alga in vaste-stabilization lagoons, while both Gloyna

(l97l) and Davis, et. al. (1964) include Ankistrodesmus as a common

representative. The Chlorophyta population of the Muskegon Lagoons

appears, therefore, to be quite typical of a wastewater lagoon

environment.

The characteristic blue-green algae in the East Lagoon initially

consisted of O scillatoria spp., followed by Chroococcus nr. minor.

Chroococcus disuersus and Nostoc comminutum. and in July and August,

Anabaena spp. Chroococcus nr. minor. Chroococcus disoersus. and

Anabaena spp. were also dominant in the West Lagoon, along with

A-phanocansa rivularls. Microcystis aeruginosa, and Aphanlzomenon

flos-aquae. Oscillatoria spp. was never a dominant in the West

Lagoon. These species are not as typical of a wastewater lagoon

as are the species of Chlorophyta. The only principal blue-green

algae Gloyna (l97l) listed were Oscillatoria and Anabaena. while

Davis, et. al. (1964), listed four genera dominating the Cyanophyta,

Anacystls. O scillatoria. Phormldlum and Snirullna.

With the exception of Chroococcus spp., the principal blue-green

algae in the West Lagoon are quite characteristic of eutrophic waters.

In a study of Lakes Michigan, Superior, Huron, and Erie, Scheleske and

Roth (1973) found A-nhanlzomenon. M icrocystis, and Anabaena to be the

blue-green genera characteristic of the most eutrophic zones.

Hutchinson ( 1967 ) listed the same three genera as dominant blue-green

algae in eutrophic waters, especially in the temperate zone during the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ?6 summer months.

The diatoms in the West Lagoon were comprised mostly of six genera,

Melosira nr. granulata. Meloslra nr. varians. Nitzschia nr. palae.

Navicula spp., Cyclotella nr. meneghiniana. Synedra ulna, and Fragllaria

nr. construens. The latter two were never dominant diatoms in the

wastewater East Lagoon, hut the other four species, along with Steph-

anodiscus nr. lnvisitatus were the dominant diatoms in the East Lagoon.

The only organism mentioned in the literature as typical of the diatom

population in wastewater lagoons is Nitzschia (Gloyna, 19?l).

Nitzschia nr. nalae. a species found in the Muskegon lagoons, was the

only diatom present in a composite list of over 200 trickling filter

organisms (Cooke, 196?).

Meloslra granulata and Stenhanodiscus spp. sire very common rep­

resentatives of the diatom population in eutrophic waters, with

Meloslra granulata very rarely occurring in oligotrophic waters.

Cyclotella spp., which was often a common diatom in both lagoons, is

listed by Hutchinson ( 1967 ) as an oligotrophic diatom, a fact which

does not agree with the findings of this study. Other authors, how­

ever, report that Cyclotella meneghiniana is common in waters tending

toward eutrophic conditions (Scheleske and Roth, 1973)*

Phacus. Euglena. and Trachelomonas were the principal Euglenophyta

in the West Lagoon, while only Phacus and Trachelomonas were the common

Euglenophyta in the wastewater East Lagoon. The lack of Euglena as a

dominant in the East Lagoon is surprising, for they, along with Phacus.

are common dominants of the Euglenophyta in other wastewater lagoons

(Gloyna, 1971 and Davis, et. a l., 1964). Gloyna (1971) describes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 77

Euglena as having the highest degree of adaptability to various lagoon

conditions of any of the common lagoon inhabitants. The three genera

of euglenophytes which were found in the Muskegon lagoons are all

common in polluted waters rich in nitrogenous organic compounds

(Hutchinson, 1967).

The Ciliophora in the East Lagoon were dominated by Glaucoma anr)

V orticella. whereas Glaucoma. Vorticella and Cyclidium were dominant

in the West Lagoon. Vorticella is often the dominant protozoan

present in secondary wastewater effluent (Yarma, et. a l.f 1975).

Since the quality of the water discharged into the lagoons is equival­

ent to wastewater undergoing secondary treatment, this genera was

expected to be present. All three genera found are common components

of the Ciliophora in trickling filters (Cooke, 1967).

The dominant Mastigophora present in both lagoons were the same,

Bodo spp., Chilomonas nr. paramecium. Chroomonas nr. nordstedtli. and

Cryptomonas nr. ovata. Bodo spp. is a common representative of the

Mastigophora in trickling filters (Cooke, 1967).

Chlorophyll a

In aquatic plants, as in terrestlal plants, chlorophyll is the

critical agent and initiator in a series of physical-chemical changes

which are responsible for and culminate in the fauna. Due to chloro­

phyll’s importance in photosynthesis, chlorophyll measurements may be

used as indirect indices of potential productivity (Prescott, 1951»

and Odum, 19?l). Since the amount of chlorophyll increases in bodies

of water as the waters become more eutrophic, chlorophyll measurements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 78

also provide comparative data on eutrophication (Mackenthun, 1973 ).

All algae contain chlorophyll a and thus it is usually the specific

pigment measured in chlorophyll determinations (Weber, 1973 )*

The chlorophyll a data are presented in Appendix D and are

summarized in this section. Figure 16 shows the variability in the

quantity of chlorophyll a at each station throughout the year in the

West Storage Lagoon. Two major peaks in the quantity of chlorophyll

a appeared, one during February and one in late August, 1974. The

peak in February does not show a good correlation with the number

of phytoplankton. On 13 February 1974, 42.99 chlorophyll a/m^

was present at SLW-1 and 57*84 at SLW-9. The phytoplankton counts

on this day were approximately 9400 organisms/ml at SLW-1 but only

4400 at SLW-9* On 27 February 1974 the quantity of chlorophyll a

increased to 5 6 .16 rag/m^ at SLW-1 and decreased sharply to 9*7 at

SLW-9, yet the phytoplankton remained fairly constant at SLW-1 and

increased sharply to 11,277.7 organisms/ml at SLW-9. Since the

environmental conditions did not fluctuate greatly, and the same

species, Chlorella nr. vulgaris was dominant in all these cases, it

appears that the viability of the algal cells varied during this

period. On 29 August 1974 the quantity of chlorophyll a in the

shallow sample at SLW-1 and SLW-9 was over 50 mg/m3, and th e phyto­

plankton counts were over 14,000 and 11,000 organisms/ml, respectively,

at each station.

Unfortunately, the East Lagoon chlorophyll samples from 26 April

1974 through 2 August 1974 were misplaced and cannot be included in

these results. Due to this large block of missing data, a meaningful

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. FIGURE 16

Changes in the quantity of chlorophyll a in th e West Storage Lagoon

STATIONS •SLW-1

SLW-5

-® SLW-5

20

0N J FM A M J JD A MONTHS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. graph of chlorophyll a could not he made for the East Lagoon.

A comparison of the mean quantity of chlorophyll a hy depth and

lagoon is presented in Tahle 12. This table also indicates the large

variability of this parameter.

The chlorophyll a concentrations for both lagoons are not exceed­

ingly high compared to natural waters. Caution must be exercised,

however, in making comparisons since the quantity of chlorophyll a per

unit of algae present is influenced by various environmental and

nutritional factors, as well as the species and age or viability of

the algal cells (Weber, 1973)* Lake Kinneret, Israel, has had some

of the highest reported concentrations of chlorophyll a, over 300 mg/

m^ (Berman and Pollingher, 197*0. Concentrations in the Great Lakes

are much lower, ranging from a low of 0.66 mg/m^ in Lake Superior

to a high of 12.1 mg/m^ in Lake Erie (Scheleske and Roth, 1973).

Primary productivity

The rate of uptake of inorganic carbon by phytoplankton during

photosynthesis is known as primary productivity. The basic aim of

these measurements was to provide am estimate of the quantity of

organic matter which was produced from inorganic substances within

the lagoons. It is assumed that during photosynthesis one molecule

of oxygen is released for each atom of carbon assimilated (American

Public Health Association, 1971). These measurements, therefore,

also provide information concerning the rate of oxygen production,

an important consideration in the heavily stressed lagoon environment.

The primary productivity data are presented in Appendix E and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 00 .58 25.92 0.57 - 2.67 5.15 1 0.89 33.74 ±

30.56 WEST ± 2.41 6.61 4.71 ± 0.66 13-37 1 1.19 16.53 1 3.91 16.56 ± 17.03 13.61 ± IO = = both depths 3.88 1.79 8.31 2.13 10.50 B B 0.43 - ± ± 0.08 ± 0.95 i ± 1.46 ± 0.84 5.60 11.61 10.18 ± 11.56 32.93 ± 32.84 34.55 ± 10.54 10.66 19.69 50.41 ± LAGOON 12 0.25 0.09 = = deep samples ± ± D D TABLE TABLE .38 0.29 ± 0.09 O 0.20 ± 0.10 0.14 ± 0.08 0.13 KEY KEY TO ABBREVIATIONS 0.03 0.00 0.11

EAST DBSDB - ± ± 1 0.3 4 0.2 4 0.25 0.51 0.15 0.16 ± 0.12 *= shallow*= samples S S 0.10 0.05 0.05 0.15

0.07 S - -

Data are given as the mean (mg/m3) 1 one standard deviation. Comparison of the Quantity of Chlorophyll a in the East and West Lagoons. 1.67 1 1.24 0.3 4 1 0.42 1 4.22 ± 2.84 0 .2 4 ± 0.16 0.12 ± 0.08 0 .0 8 ± * 26-73 DATE - 9-73 - 3-13-7** 3-29-74 2-13-74 2-27-74 4-26-7** 4-12-74 11 11-16-73 0.73 10 11-30-73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE 12 CONTINUED u o < o s E-i 65 < A 3 65 C/5 05 65 Q 05 cq A 05 i + 1 + 1 + 1 + 0 \ OCC CO vO CM V o CVJ rH o o o CV cv n c n v o -3- o o a c d • - o rH • • • • • » 1 • • 1 + 1 + 1 + d C'- -d- rH o v CO d C^- o o Ov a c iH rH o rH a c a c rH CCC CC CV C*- VT\ 1 1 1 + 1 + O\0r o rH 0 \ VO t H CV CVJ vCN Cv d o iH c*- rH CM O n c • n > '•A rH vO - 0 CvJ • • • • » 1 * i 1 1 1 1 1 i ! + 1 + +1 vO vO O o V c c CVJ rH CVJ Ov Ov a c -d" O a c O CN- rH o n n 1+1+1 + 1 + 1 + 1 + r + n > CM c c o CVJ ON a c n c T ACC CA VTV rH CVJ »A vrv rH vA a c c c c c CVJ C^ ! | + 1 + -H vO vO vO O c c o o CV Cv \ d o N Ov vA HrH rH Ov - d Ov o rH Ov t 1 + l + vO c c CA a c cA cA - 0 vrv Ov O Ov vA *A Ooo CO rH CM ON t H CO n > rH • 1 I 1 1 + 1 + 1 + VO d - o CV CVJ ^5* CO rH CVJ rH \ r ^ CA rH c c vA cA vA CVJ cv c c c c cv c^- o 1 + l + VO d - CC •d- ■d rH «H o - O rH Cv Cv- CA rH s O CA CA rH ■d- C n c CM £N- CN • n rH o OS C ID >1 e A o CO c 82 83

are summarized, in this section. There was a general increase in the

primary productivity in the East Lagoon during the summer (Fig. 1?).

The rates of carbon fixation in this lagoon ranged from a low of

3.47 mg C/m^/hr on 11 June 1974 to an extremely high value of

1,476.55 on 20 August, 1974 (Table 13)•

There was also a general increase in primary productivity in

the West Lagoon during the summer (Fig. 18). The rates of carbon

fixation ranged from a low of 11.06 mg C/m3/hr on 28 May 1974 in

the deep sample (a depth equal to the secchi disk transparency) to

an extremely high value of 1,649*31 on 29 August 1974 in the shallow

sample (a depth equal to one-half the secchi disk transparency).

These highs and lows in the West Lagoon correspond with the summer

highs and lows for the concentrations of chlorophyll a. Due to

missing data, the same comparison cannot be made for the East Lagoon.

Physical Parameters

The data from the physical parameters are presented in Appendix

F. The direction of flow of the wastewater, as controlled in the

various gates, had an apparent effect upon only one parameter, secchi

disk transparency.

T u rb id ity

With the exception of SLE-1, turbidity was fairly constant at

each station and depth, and the only apparent major trend was higher

turbidity in the East than in the West Lagoon. In the West Lagoon,

th e mean tu r b id ity was 3 .5 + 1.5 Formazin Turbidity Units (FTU).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

C/m-^/h 2000 1000 200 600 800 100 HAY Storage Lagoon (O rdinate is a p a r tia l 4 cycle cycle 4 l tia r a p a is rdinate (O Lagoon Storage Changes in primary p ro d u c tiv ity in th e East East e th scale) in ic ity tiv c u logarithm d ro p primary in Changes SLE-8 • -& SLE-5 « STATIONS SLE-1 UEJULY JUNE IUE 17 FIGURE MONTHS AUGUST 2000 FIGURE 18

Changes in primary productivity in the West Storage Lagoon (Ordinate i a partial 4 cycle logarithmic scale)

1000

800

600

200

STATIONS 100 -•SLW-1

20

MAY JUNE JULY AUGUST

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. a 85.69 22.72 241.02

604.94 ± ± ± ± 137-96 553.55 525.90 1114.24

0.09 5.76 - 228.58

19-55 17.38 29.00 ± ± ± ±

* DB WEST WEST 14.96 ± 11.06 *+*+.56 3*+7.55 3*+7.55 579.17 464.76 ± 42.02 LAGOON 60.90 130.70 73.39 ± ± TABLE 13 TABLE ± 10.87 121.70

15 KEY TO KEY ABBREVIATIONS *+. *+. 15 759-5*+ 759-5*+ 587.01 1649.31 ± 27.18 13*+.*+6 119-73 787.60 SS ± ± S S = shallow samples D = deep samples B = both depths ± ± *+ EAST 10 3.47 ± 2.78 *+. *+. Data are given as the mean (mg C/m3/hr) ± one standard deviation. Comparison of Primary Productivity in the East and West Lagoons. 88 289.00 267.70 l*+76.55 DATE - 2-7*+ - 9-7*+ 5-14-7*+ 7-12-7*+ 7-19-7** 7-26-7*+ 8 8-15-7*+ 8 5-28-7*1 6-11-7*+ 8-20-7*+ 8-29-7*+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The range was from a low of 1.7 ETU at SLW-1 and SLW-5 on 15 August

1974 to a high of 7.4 ETU at SLW-1 on 2 August 19?4. Only minor

differences in turbidity were apparent between the two depths at

each station.

In the East Lagoon, the mean turbidity was 11.7 + 6 .5 ETU.

The turbidity at station SLE-5 was always close to the turbidity at

SLE-8. At SLE-1, closest station to the inflow of the semi-treated

wastewater, the turbidity was consistently much higher, and was more

variable between the two depths. The range at SLW-1 was from a low

of 4.2 ETU on 12 July 1974 to a high of 34 on 21 May 1974, while the

range at the other two stations was from a low of 3*7 ETU at SLW-5

on 12 Ju ly 1974 to a high of 16 a t SLE-8 on 26 A pril 19?4.

Since turbidity did not correspond with the fluctuating plankton

population, and since turbidity at SLE-1 was much greater than at

any other station, it appears that suspended matter such as clay,

silt, and finely divided organic and inorganic detritus, rather than

aquatic organisms, accounts for the majority of the turbidity.

Secchl disk transparency

The transparency in the East Lagoon was very small and consistent­

ly remained much lower than in the West Lagoon. The mean in the East

Lagoon, 17.0 cm + 3 . 3 , was only 17-6% of th e mean in th e West Lagoon,

96.3 cm + 18. 5 . The lowest values were at SLE-1 on all but one oc­

casion, 9 August 1974. On this date, the exit to the outlet lagoon

was open (Fig. l) and it is quite possible that the incoming waste­

water was not mixing completely with the lagoon wastewater but rather

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 88

was short-circuiting directly to the outlet. This outlet gate was

open from 5 July through 29 August 1974, and during this time the

maximum tran sp aren cies a t SLE-1 were recorded. There was no appre­

c ia b le d ifferen c e during th e period when th e equalizing g a te was open

and water flowed from the East into the West Lagoon.

pH

The pH in the East Lagoon had a mean of 7*7 ± 0.2, while the

mean in th e West Lagoon was more a lk a lin e , 8.1 + 0.3* P eriods of

high photosynthetic activity did not appear to elevate the pH in

either lagoon, indicating a good buffering capacity in these waters.

Conductivity

The conductivity at each station in the East Lagoon consistently

remained higher than at each station in the West Lagoon, except on

21 December 1973* There were minor variations between stations and

depths within each lagoon, and an overall increase in conductivity

throughout this investigation. The mean conductivity in each lagoon

is given in Table 14.

Temperature

The mean temperature + one standard deviation for each lagoon

and sampling date is presented in Table 15* There was very little

variation in water temperature between stations and between the two

depths sampled on the same date, except for slight elevation in

temperature at SLE-1 in the winter months due to the incoming waste-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 88

water. There was, of course, a great deal of seasonal variation.

TABLE 14

Comparison of Turbidity, Secchi Disk Transparency, pH, and Conductivity in the East and Vest Lagoons. Data are given as the mean + one standard deviation.

PARAMETER LAGOON

EAST WEST

Turbidity, PTU 11.7 ± 6.5 3-5 ± 1.5

Secchi Disk Transparency, cm 17 ± 3 96 + 18

pH 7 .7 ± 0.2 8 . 1 + 0 .3

Conductivity, micro-mhos 970 + 221 711 + 196

D issolved Oxygen and Biochemical Oxygen Demand

The data from these parameters are presented in Appendix F.

The mean dissolved oxygen (DO) and biochemical oxygen demand (BOD) +

one standard deviation for each lagoon and sampling date is presented

in Table 15• The direction of flow of the wastewater, as controlled

by the various gates, had little apparent effect upon these parameters.

Dissolved oxygen

With th e exception of 9 November 1973» and immediately a f te r

the ice broke up on 29 March 1974, the mean DO levels consistently

remained very low in the East Lagoon, and much below the DO levels

in the Vest Lagoon. During the first several months of this investi­

gation, there was a large difference in the DO levels between stations in the East Lagoon, as evidenced by the large standard deviations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 0.2 0 .5 3 .2 2 .5 0 .7 0 .7 0.0 4 .1 + + + + + +

3 .7 ± 1.6 0.5 6.5 7.0 5.6 4 .4 + 0.2 1.1 1.8 6.8 0.1 0 .4 0 .3 1-3 2 .5 WEST + + 0 .4 + + + + + 8 .4 + 11.8 11.6 12.9 11.2 13-6 10.8 14.2 + 0 .4 0 .3 0 .3 0.0 0.0 0.0 10.5 0.0 0.0 0.0 + + + + + + TEMP DO BOD 1.0 0.8 0.8 9 .3 ± 9 .0 + 7 .5 ± 0.5 0.0 10.0 LAGOON 16.8 22.0 27.6 + 3 .3 BOD + 4 .2 + + TABLE 15 TABLE 19.2 14.7 ± 13.3 34.5 1 4 .0 + 2 .3 15.3 ± 5-5 19.5 ± 16.0 32.5 + 30.4 KEY TO ABBREVIATIONS KEY *** 0.0 19-8 3-5 0.2 1 .9 0.1 2 .3 2 .4 4 .0 4 .5 ± DO + +

0 .3 + 0.0 3-7 ± 3*1 + 3 .9 ± 1 .4 + 8.1 5 .2 + EAST * 0 .4 0 .3 0.6 0 .3 0.00.8 0.2 0 .4 7 .0 + 0.0 + + ± + TEMP 1-5 ± the East and Vest Lagoons. Data are given as the mean + one standard deviation. 2.2 2 .4 + 9 .0 + 0 .5 + 2.0 7.8 9 .3 ± 0.8 Comparison of Temperature, Dissolved Oxygen, and Biochemical Oxygen Demand in - 2-74 DATE 1-16-74 1-30-74 1 2-13-74 2-27-74 11-16-73 11-30-73 11- 9-73 10-26-73 10.3 ± 0.3 12-21-73 TEMP ■= Temperature, ■= TEMP °C = DO Dissolved Oxygen, mg/l = BOD Five Day Biochemical Oxygen Demand, mg/l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE 15 CONTINUED £ P=3 2 o 53 o 2 63 Sg E-* 3r W CO E-i E R o O E § CH m « Pi O o h h ■so so CO CO MCM CM CM o rH C^ CM o o o v r d A < 3 A * -3* v O vO rH i o CM u"V CO CA rv rH rH cm 1 + + 1 o + 1 + 1 + 1 + ! — ’•A +1 +1 +1 1 1 I ^ SO so -d- oo so SO S’ -S o CM rH (H o ^e'v c^ Ov A ( S'S, o A > d rH CS! + CM 1 + 1 + \O r\ O 1 + + 1 1 1 so so -d- ■3“ CO CO cc o rH CM ■•cv d o o voi C'- rH o m c o o co + 1 O'-N 1 + + 1 +1 o rH 1 + i + i 1 vO sO so sO -d- CO CM CM d- -d CM CM O -d- OS CM MV rH o HrH rH rH O W rH rv s O os + d 1 + 1 + +1 Cs. »A + 1 + 1 1 1 1 VO 3-- - -d - •3 CO S O s O CM i—1 Cs- rH o v O Cv- CV- i + 1 + t i 1 . -a- SO d- -d o vcv cc rH O O o + 1 rH CM CM + 1 +1 i I ■s* d-Hi- - •d CO o CC d d rH - o tN d I cm rH vcv CM 1 + + 1 +i —I 1 1 1 1 i 1 | sO OrH CO SO so rH o CM d d o 'A Cs. CM o CM CM o 1 + ! + 1 + 1 1 3- -3 vO cm cm d o o rH o o o \ o \ r d IN rH +! + 1 +1 I • 3- -3 vO d- -d CO CM CM CM CM o - A N \ d o o

TABLE 15 CONTINUED rft o o a

WEST O « ft. 8 ft, Cft s DO + o OCO NO _ 3 •3" -3* cm cc d o CVi CC CO CO CC d CM o r-C'- fr*- o o CM d c o + h + 1 i - 1 1 ■d 0 \ ft? CM o o- cm CM CM rH rH r—i ON o O i + +! | + 1 i SO Cs2 o o d m c CM \ r v rH rH O + +1 + 1 i t n 1 1 -a* -3- CO CO CM o o o d\ rH cm CM 0 ! + +1 1 - cm o CO rH rH d o O ON rH o * * * CN. CM O * + 1 1 + i 1 i n «J Q H * * 6 ( ft t f © *d o o £ Pi

(Table 15)* The DO at SLE-1 was quite a bit lower than at SL¥-8.

By 2 January 1972*, however, the DO had dropped at SLE-8 and it re­

mained more uniform within the lagoon on all subsequent sampling

dates. There were two periods of especially low DO in the East

Lagoon, one during ice-cover and the other during July and August,

when the water temperatures were at their maximum (Fig. 19). The

DO levels in the West Lagoon did not experience a similar decline

during the ice-cover, but did experience an early summer decline,

with recovery in August (Fig. 20).

On only one occasion, 29 August 197^- in the West Lagoon, did a

phytoplankton bloom coincide with a peak in DO. The other phyto­

plankton peaks are not evident by observing the DO values. This

suggests that there may be a significant heterotrophic algae growth

occurring in both lagoons, a common situation in waste lagoons

(Zajic and Chiu, 1970, and Wiedeman, 1970).

Biochemical oxygen demand

The biochemical oxygen demand (BOD) was consistently higher in

the East Lagoon, due to the nature of the wastewater, than in the

West Lagoon. This, in part, accounts for the lower DO levels in the

East Lagoon. Similar to the situation for DO, during the first

several months of this investigation, there was a large difference

in the BOD levels between stations in the East Lagoon, as evidenced

by the large standard deviations. By January, however, the wastewater

constituents had obtained a more homogeneous distribution within this

lagoon and the BOD at SLE-1 was close to the BOD at SLE-8 (Fig. 2 l).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

DO ( ppm) xgn otn o t s Lagoon ast E e th of content oxygen Charges in th e dissolved dissolved e th in Charges IUE 19 FIGURE MONTHS —-•SLE-8 STATIONS ♦SLE-1 93 9*

14

13

12

11

10 STATIONS 9 -•SLW-1

^ 8 SLW-5 % ft o 7 a

6

5

4

3 FIGURE 20

Changes in the dissolved 2 oxygen content of the West Lagoon

J L I 1 I I I F M A M MONTHS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 95

55 FIGURE 2 1

Charges in the biochemical oxygen demand in the East Lagoon 50 STATIONS « SLE-1

45 SLE-5

-© SLE-8

40

35

30

25

20

15 K \

10

5

ONDJFMAMJJA MONTHS

owner. Further reproduction prohibited without permission. poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

BOD 5 $ 10 8 ? 6 9 3 2 1 0 N D J F IUE 2 2 FIGURE SLW-9 0 MONTHS SLW-1 « SLW-5 « STATIONS M A he Ws Lagoon West e th hne i he biochem­ e th in Changes cal xgn ead n in demand oxygen l a ic M J J A 97

Total Organic Carbon

The total organic carbon (TOC) data are presented along with

the data from the physical parameters in Appendix F. The overall

mean concentration of total organic carbon in the East Lagoon, 41.6

mg of carbon/l + 12.9 was much greater than the overall mean in the

West Lagoon, 26.2 + 17.6. On two occasions, however, the West Lagoon

did have a greater amount of total organic carbon. These pulses, on

29 March 1974 and 14 May 1974, do not correspond to any phytoplankton

bloom and are unexplainable with the present data. Total organic

carbon was more homogeneous in the West Lagoon than in the East

Lagoon.

Nutrients, Anions, and Metals

The data from these parameters are presented in Appendix G.

Table 16 is a summary of this data, and presents for each parameter,

th e mean + one standard d ev iatio n . Only one param eter, ammonia

nitrogen, was noticeably affected by a change in flow due to gate

p o sitio n s.

Ammonia n itro g en

The co n cen tratio n of ammonia n itro g en was much higher in th e

E ast Lagoon th an in th e West Lagoon due to th e high le v e ls of ammonia

in domestic and in d u s tria l w astes. The mean co n cen tratio n of ammonia

nitrogen in the West Lagoon was only 4 .3& of the mean in the East Lagoon, and the concentration was very often below 0.1 mg/l.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. In the East Lagoon from 2 January 1974 through 11 June 1974

th e re was an o v e ra ll general r i s e in th e amount of ammonia, from a

low of 1.0 mg/l to a high of 5*6. Throughout the remainder of this

stu d y , however, th e ammonia le v e ls decreased in th e East Lagoon to a

low of 0.3 mg/l on 20 August 1974. Just prior to this period of

rapid decline in ammonia levels, the wastewater flow pattern was

altered in the East Lagoon. The gate to the outlet cell was opened,

thus allowing the incoming wastewater to enter the East Lagoon, hut

instead of mixing with the lagoon water, immediately flow back out

to be used for irrigation water. It appeared, from the flow of sur­

face foam, that this short-circuiting was occurring. However, secchi

disk transparency was the only other parameter to bear this out.

T his could p o ssib ly be due to th e f a c t th a t ammonia i s ra p id ly oxi­

dized to nitrite and nitrate nitrogen, and therefore, in order to

m aintain th e high le v e ls of ammonia which were p re se n t, a co n tin u al

in flu x was req u ired . Without c o n tin u al replenishm ent, th e ammonia

levels plummetted. Host of the other parameters do not change form

so rapidly, and thus the levels could not drop quickly. This fluc­

tuation accounts for a great deal of the rather large standard devi­

a tio n .

Nitrate nitrogen

The difference between the concentration of nitrate nitrogen

in th e two lagoons was much le s s th an f o r ammonia. There was a

great deal of fluctuation in the nitrate levels, as evidenced by the

large standard deviations. The standard deviation was larger than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 99

the mean in the East Lagoon and was over 50% of the mean in the

West Lagoon.

Orthophosphate

Due to the high amount of phosphate in domestic sewage, the

mean concentration of orthophosphate in the East Lagoon was quite

high, 4.47 mg/l + 1 . 23 , and 5*5 times greater than the mean of

0.80 + 0.97 in the West Lagoon. Unlike the situation in many natural

waters, phosphorous does not seem to lim it phytoplankton growth or

control standing crops, at least in the East Lagoon.

The great fluctuations in the concentrations of orthophosphate

— in the West Lagoon is puzzling. In January 1974 the concentration

was 2.3 and 3*8 mg/l, yet on the next four consecutive samples, during

February and March 1974, it was less than 0.1 mg/lJ This fluctuation

accounts for the very large standard deviation.

S u lfa te

Sulfate levels were not high and were quite homogeneous within

each lagoon. The mean concentration in the West Lagoon, 71.5 mg/l +

1 4 .6 , was 76.7% of th e mean in th e E ast Lagoon, 93*2 mg/l + 13«9»

C hloride

The concentration of chloride in each lagoon was high and very

evenly distributed between the three stations in each lagoon. There

was only minor variation in the chloride levels during this investi­

gation. The concentration of this ion was consistently higher in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 100

the East Lagoon. This is as expected, since chloride is usually

higher in sewage than in raw water because sodium chloride passes

unchanged through the digestive system. The mean in the East Lagoon,

159*2 mg/l + 12.9 was 59*2^ higher than the mean in the West Lagoon,

100.0 + 16.2.

M etals

With the exception of magnesium, a common constituent of natural

waters, the concentration of each of these parameters was higher in

the East Lagoon than in the West Lagoon. The means + one standard

deviation for the metals are presented in Table 16. Sodium levels

were much higher in th e E ast th an in th e West Lagoon fo r th e same

reason that chloride was much higher.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 101

TABLE 16

Comparison of Nutrient, Anion, and Metal Data in the East and West Lagoons. Data are given as the mean (mg/l) + one standard deviation.

DATE LAGOON EAST WEST Ammonia N itrogen, NH 14.-N 2.89 ± 1.81 0.12 + 0.16

Nitrate Nitrogen, NO 3-N 1.00 + 1.03 0.64 + 0-33

Orthophosphate, POij. 4.4? + 1.23 0.80 + 0 . 9 ?

Sulfate, SOzj. 93-2 ± 13.9 71.5 ± 14.6

Chloride, Cl 159.2 + 12.9 100.0 + 16.2

Calcium 63.3 + 8.4 53.4 + ?.2

Magnesium 15.80 + I .51 17.25 + 1.31

Sodium 145.3 +9-7 90.1 + 13.4

Potassium 12.05 ± 1.21 5.44 + 0.84

Manganese 0.234 + 0. 036, 0.043+ 0-021

Zinc 0.206 + 0.041 0.081 + 0.039

Iron 0.920 + 0.166 0.788+ 0.394

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SUMMARY AND CONCLUSIONS

The limnology of two 850 acre lagoons, with special emphasis on

the biological aspects, was investigated from September 1973» shortly

a fte r the in itia l f illin g of the lagoons, through August 197^. The

water quality and benthic and plariktonic population in the West

Lagoon was different than in the East Lagoon due to the different

waters in each lagoon. Semi-treated municipal and industrial waste­

water was discharged predominantly into the East Lagoon, while usually

only seepage water and ground water were discharged into the West

Lagoon.

The East Lagoon was slig h tly less alkaline than the West Lagoon.

Turbidity, BOD, total organic carbon, nutrients, anions, and metals,

except for magnesium, were all appreciably higher in the East Lagoon

than in the West Lagoon. Due to the high turbidity, the transparency

in the East Lagoon was very small, 17 cm. The high BOD content in

the East Lagoon was a major reason for the very low DO levels.

The benthic fauna was very limited. This community comprised a

small number of organisms representing only a few taxomonic groups.

Chironomids, represented by seven genera and nine species, accounted

for virtually all, 9?. 5ft, of this scant population. Glyptotendipes

spp. was the most common midge in both lagoons. Procladius c u llc i-

formrg occurred in higher numbers in the seepage water West Lagoon

than in the East Lagoon, while Chlronomus -plumosus was more common

in the wastewater East Lagoon than in the West Lagoon. The oligo- chaetes have not yet flourished in this environment. They appeared 102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 103

on only one occasion in each lagoon. Llmnodrilus. the only genus

found, is usually common in organically polluted water. It appears

that the lagoons w ill support benthic organisms and that a more dense

and diverse benthic community will develop in the future. Several

more generation times are needed to allow the benthic macroinverte­

brates to reach their potential density in this relatively large new

h a b ita t.

Although there was considerable variability through time in

regard to the mean number of zooplanktonic organisms per lite r in

each lagoon, and in the major groups, the number of zooplankton

per lite r consistently remained higher in the nutrient and organically

richer East Lagoon than in the seepage water West Lagoon.

In the East Lagoon, cyclopoid copepods accounted for 75*2% of

the total zooplankton population during this investigation. Of the

10 species of calanoid copepods present, Cyclops vernails was the

most common.

In the West Lagoon the cladocerans accounted for 51-2% of the

total zooplankton population. Daphnla was the dominant genus , with

Slantomus. a calanoid copepod, a sub-dominant. Rotifers were scarce

in both lagoons. The zooplankton pulses do not appear to correspond

with the phytoplankton pulses.

There was also a great deal of variability through both time

and location in the number and types of phytoplankton and protozoans

in both lagoons. The green algae clearly dominated this population

in both lagoons, comprising 55*^ of the phytoplankton and protozoan

population in the East Lagoon and 6?.*$ in the West Lagoon. It is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. loif

interesting to note that in the East Lagoon the proportion of green

algae steadily increased with the distance from the source of waste­

water discharge — 39*6% at SLE-1, ^?.2$ at SLE-5, and 67-9& at

SLE-8.

The hlue-green algae accounted for 25-3^ of the phytoplankton

and protozoan population in the West Lagoon, but only 3* Qfe in th e

East. The large Cyanophyta bloom (comprised of Aphanlzomenon flos-

aquae) in the West Lagoon on 29 August 197^ accounted for nearly

all of the hlue-greens , 9 3 during this study.

A sim ilar phenomena occurred with the diatoms. Their numbers

were quite low throughout this study, except for a pulse in the

East Lagoon on 20 August 197^. Due to this one bloom, diatoms

accounted for 17-6^ of the total population in the East Lagoon and

only 2.9& in the West Lagoon.

The Euglenophyta, Giliophora, and Mastigophora were a ll more

common in the nutrient and organically richer East Lagoon than in

the West Lagoon.

The concentration of chlorophyll a in the West Lagoon peaked in

the winter as well as in the summer. The winter peak does not show

a good correlation with the number of phytoplankton, but the summer

peak correlates well with both the number of phytoplankton and the

rate of primary productivity. Cell viability, as well as various

environmental factors, appeared to influence the chlorophyll a concen­

tr a tio n .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REFERENCES

American Public Health Association. 1971* Standard, methods for the examination of water and wastewater. 13th edition. Washington, D.C.

Anonymous. 1973* The Muskegon County plan of w astew ater reuse. Public works Ocothers 77-79*

Bastian, Robert K. 1973* Project status and research at Muskegon, Michigan. Presented at the symposium on land treatment of secondary effluent, Boulder, Colorado. 8-9 November: 1-29*

Bauer Engineering. 1973* Muskegon County, Michigan wastewater management system No. 1.

Beck, William, Jr. 1968. Chironomidae. In F. Parrish (ed.), Keys to water quality indicative organisms. FWPCA, U.S. Dept, of the Interior, Washington, D.C.

Berges, Forrest M. 1971* The diatoms of Clear lake and Ventura Marsh, Iowa. Unpublished doctor’s dissertation, Iowa State U n iv ersity , Ames, Iowa.

Berman, Thomas, and Utsa Pollingher. 197^. Annual and seasonal variations of the phytoplankton, chlorophyll, and photosynthesis in Lake Kinneret. Limnol. Oceanogr. 19: 31-5^*

Bousfleld, E.L. 1958. Freshwater amphipod crustaceans of glaciated North America. The Canadian Field-Naturalist 72 : 55-113*

Brooks, J.L. 1957* The systematics of North American Daphnla. Mem. Conn. Acad. Arts & Sci. 13s 1-180.

Chaiken, Eugene I . , S. P oloncsik, and C.D. Wilson. 1973* Muskegon sprays sewage effluents on land. Civil Engineering - ASCE May: 1-5*

Cooke, Wm. Bridge. 1967* Trickling filter ecology. In L. Keup, W.M. Ingram, and K.M. Mackenthun (eds.), Biology of Water Pollution. FWPCA, U.S. Dept, of the Interior, Washington, D.C.

Curry, L.L. 1962. A key for the larval forms of aquatic midges (Tendipedidae: Diptera) found in Michigan. Dept, of Bio., Central Mich. Univ., Mt. Pleasant, Mich. NIH Report No. 2, C ontract No. RG-6^29*

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 106

Davis, Charles C. 1958. An approach to some problems of secondary production in western Lake Erie region. Limnol. Oceanogr. 3: 15-28.

Davis, Charles C. 1966. Plankton studies in the largest Great Lakes of the world with special reference to the St. Lawrence Great Lakes of North America. Great Lakes Res. Div., Pub. No. 14, Univ. Mich., Ann Arbor, Nich.

Davis, Ernst M., Maxwell J. Wilcomb, and George V. Reid. 1964. Algal succession and bacterial reduction in bio-oxidation ponds. Proc. Okla. Acad, of Sci. 1964s 220-227.

D em irjian, Y.A. 1973* Muskegon County wastewater management system No. 1. 31 World Congress of Engineers and Architects, Tel Aviv, Is r a e l 17-24 Decs 1-24.

Edmondson, W.T. (ed.) 1959* Freshwater biology (2n<^ ed.). John Wiley and Sons, New York.

F o r e s te ll, W illiam L. 1973* Sewage farm ing ta k es a g ia n t step forward. American City Mag Oct.: 72-74.

Gannon, John E. Undated. An artificial key to the common zooplank­ ton crustacea of Lake Michigan, exclusive of Green Bay. Center for Great Lakes Studies, Univ. Wis., Milwaukee, Wis.

Gloyna, Earnest F. 1971. Waste stabilization ponds. World Health Organization, Geneva, Switzerland.

Godfrey, Kneeland A., Jr. 1973* Land treatment of municipal sewage. Civil Engineering - ASCE Sept: 103-109*

Grodhaus, Gail. 1967. Identification of chironomid midges commonly associated with waste stabilization lagoons in California. Calif. Vector Views 14: 1-12.

Hutchins, W.A. 1939. Sewage irrigation as practiced in the western states. U.S. Dept. Ag., Washington, D.C. Tech. Bull. No. 675*

Hutchinson, G. Evelyn. 196?. A treatise on limnology. Vol. II. Introduction to lake biology and the limnoplankton. John Wiley & Sons, Inc., New York.

Johannsen, O.A. 1934, 1935» 1937a, 1937b. Aquatic D iptera. Memoirs of the Cornell Univ. Ag. Experiment Station. Reprinted by Entomological Reprint Specialists, Los Angeles, Calif. 1969-

Jordan, Robert A. 1970. Factorial enrichment experiments in a southeastern Michigan lake. Unpublished dost or's dissertation, Univ. M ich., Ann Arbor, Mich.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 107

Kiaerle, Richard A., and W.R. Enns. 1968. Aquatic Insects associated with midwestera waste stabilization lagoons. Journal WPCF 40: R31-R41.

Kudo, Richard R. 1971* Protozoology (5^h ed.). Charles C. Thomas, Springfield, 111.

Mackenthun, Kenneth M. 1973* Toward a cleaner aquatic environment. Environmental Protection Agency, Washington, D.C.

Mason, William T., Jr. 1973* An introduction to the identification of chironomid larvae. Rational Environmental Research Center, U.S. Environmental Protection Agency, Cincinnati, Ohio.

Meier, Peter G. 1974. Personal communications. Asst. Prof. Univ. Mich., School of Public Health, Ann Arbor, Mich.

Odum, Eugene P. 1971* Fundamentals of ecology (3r^- ed.). W.B. Sanders Co., Philadelphia, Pa.

Parrish, Fred K. (ed.). 1968. Keys to water quality indicative organisms. FWPCA, U.S. Dept, of the Interior, Cincinnati, Ohio.

Patalas, K. 1972. Crustacean plankton and the eutrophication of St. Lawrence Great Lakes. J. Fish. Res. Bdard Can. 29: 1451- 1462.

Patrick, R., and C.W. Reiraer. 1966. The diatoms of the United States. Vol. II. Acad. Nat. Sci., Philadelphia, Pa.

Pennak, Robert W. 1953* Freshwater invertebrates of the United States. Ronald Press, New York.

Porges, R. 1963. T^rretr^/a.! waste stabilization ponds in the United States. Journal WPCF 35s 456.

Porges, R., and Kenneth M. Mackenthun. 1963* Waste stabilization ponds: use, function and biota. Biotechnology and Bioengng 5: 255-259. Prescott, G.W. 1962. Algae of the western Great Lakes area (2nd ed.). W.C. Brown, Dubuque, Iowa.

Prescott, G.W. 1968 . The alg ae: a review . Houghton. M ifflin Co., Boston, Mass.

Reid, George K. 1961 . Ecology of inland waters and estuaries. Reinhold Publishing Corp., New York.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Ross, H.H. 19*t4. The eaddlsflies, or Trichoptera, of Illinois. B u ll. 111. Nat. H is. Survey 23* 1-326. R eprinted hy Entomo­ logical Reprint Specialists, Los Angeles, Calif. 1969*

Ross, H.H. 1959* Trichoptera. In W.T. Edmondson (ed.), Freshwater Biology, John Wiley & Sons, New York.

Saunders, Q.V., F.B. Trama, and R.W. Bachmann. 1962. E valuation of a modified C-14 technique far shipboard estimation of photosyn­ thesis in large lakes. Great Lakes Res. Div., Pub. No. 8, Univ. Mich, Ann Arbor, Mich.

Scheleske, Claire, L., and James C. Roth. 1973* Limnological survey of Lakes Michigan, Superior, Huron and Erie. Great Lakes Res. Div., Pub. No. 17, Univ. Mich., Ann Arbor, Mich.

Sheaffer, John R. 1972. Pollution control: wastewater irrigation. DePaul Law Review XXI: 987-1007.

Snow, A. 1973* An engineering achievement: Muskegon County's wastewater management system. Michigan Contractor and Builder A pril: 8 - 13.

Stansbory, Jeff. 19?4. Of human waste and human folly. The Living Wilderness 38 s 8 - 15 .

Steeman Nielson, E. 1952. The use of radioactive carbon (C-14) for measuring organic production in the sea. J. Cons. Int. Explor. Mer. 18: 117-140.

Stevens, Leonard A. 1974. Clean water — nature's way to stop pollution. E.P. Dutton, New York.

Teledyne Triple R. 1973* Wastewater systems. Teledyne Triple R, Muskegon, Mich.

Thomas, Richard E. 1973* Land disposal II: an overview of treatment methods. Journal WPCF 45 : 1176-1184.

Usinger, R.L. 1956. Aquatic insects of California, with keys to North American genera: and California species. University of California Press, Berkeley, Calif. 1 Weber, Cornelius I. 1966. A guide to the common diatoms at water pollution surveillance system stations. FWPCA, U.S. Dept, of the Interior, Cincinnati, (Mo.

Weber, Cornelius I. (ed.). 1973* Biological field and laboratory methods for measuring the quality of surface waters and efflu­ ents. National Environmental Research Center, U.S. Environmental Protection Agency, Cincinnati, Ohio.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 109

Wiedeman, Varley E. 1970. Heterotrophic Nutrition of waste-stabili­ zation pond, algae. In J.E. Zajic (ed.), Properties and products of algae. Proc. of the symposium on the culture of algae, 1969- Plenum Press, New York.

Wilhm, Jerry L. 1970. Range of diversity, index on benthic macro- invertebrate populations. Journal WPCF 42: R221-R224.

Wilhm, J e rry L ., and Troy C. D o rris. 1968. B io lo g ical param eters for water quality criteria. BioScience 18: 477-481.

Yarma, Man M., Harold E. Finley, and Glen H. Bennett. 1975* Population dynamics of protozoan in wastewater. Journal WPCF 47: 85-92.

Zajic, J.E., and Chiu, Y.S. 1970. Heterotrophic culture of algae. In J.E* Zajic (ed.), Properties and products of algae*. Proc. of th e symposium on th e c u ltu re of a lg ae , 1969* Plenum P ress, New York.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDIX A

BENTHIC MACROINVERTEBRATE DATA

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 111 0 0 0 0 4 0 0 2 6 4 4 4 4 16 TOTAL O ther 8 Oligochaeta (Limnodrllus) 4 Dicrotendipes modestus. 4 Physa 4 Odonata (Coenogrionidae) 4 Pupae 4 TABLE TABLE 17 plum osa Ghironomus 2 P ro c la d iu s culiciformus 2 llp e s Benthic Macroinvertebrate data (No. per square foot) — SLE-1 2 2 4 4 sp B sp G A sp G ly p to ten c DATE 1-16-7*1 1-30-74 3 -1 3 -7 4 7- 12-74 8 - 9-7*1 2-27-7*1 5 - 21-74 4-26-7*1 4 -1 2 -7 4 10-26-73 11-16-73 11-30-73 1 1 - 9-73 12-21-73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 112 0 0 2 4 114 150 13^ 146 TOTAL TOTAL Other Other 2 Cricotopus 2 Physa 20 Pupae 19 4 12 12 84 40 TABLE TABLE 1 8 TABLE TABLE plumosa plumosa Ghironomus Chironomus 2 2 6 18 P rocladius culiciformus culiciformus 6 6 10 Benthic Macroinvertebrate data (No. per square foot) —SLE-5 Benthic Macroinvertebrate data (No. per square foot) — SLW-5 7 b 50 24 8 36 sp B sp G 4 16 68 26 16 28 28 '36 sp A sp B sp G sp A Glyptotendipes Glyptotendipes Procladius 2 1 -7 4 2 9 -7 4 - DATE - DATE 5 7_12-7b 8 - 9-74 2 Pupae 4-26-74 10 78 8- 2-74 8 6-28-74 60 5-28-7^ 10-26-73 10-26-73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 0 0 36 Gif 32 52 58

8 Tanytarsus sp. if if Cricotopus sp. if if Dicrotendipes modestus 10 Pupae 32 if8 12 2if TABLE TABLE 2 0 plumosa Chironomus Other TOTAL if 10 16 36 culiciformus 8 26 Benthic Macroinvertehrate data (No. per square foot) — SLE-8 6 2if sp B sp G 8 if if if 12 10 12 32 sp A Glyptotendipes Procladius DATE 7-12-7** 8 - 9-7** 5-21-7** 3-13-7** if-26-7*f 11-16-73 10-26-73 11-30-73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. £ 8 0 0 68 24 12 20 52 14 20 TOTAL — SLW-1 O ther Parachironomus sp. 40 4 Goleoptera (Elmidae) 4 Ephemeroptera (Baetldae) 4 Oligochaeta (Limnodrilus) 6 2 Ephemeroptera (Baetidae) 2 TABLE TABLE 21 8 8 8 16 12 12 18 48 30 Procladius Ghironomus Benthic Macroinvertebrate data (No. per square foot) 2 20 20 2 48 sp A sp B sp G culiciformus plumosa Glyptotendipes /+ 7 - 19-73 12 DATE - - 9-73 - 9-15-73 3-13-74 6-28-74 8-29-74 5-28-74 4 8 - 2 - 7 4 10 10-26-73 11-16-73 11-30-73 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 0 0 12 12 32 28 50 TOTAL Other Tantytarsus sp. 8 *1 Trie*1 optera (Hydropsychidae) TABLE 22TABLE plumosa 12 2*1 28 50 Procladius Chironomus culiciformus Benthic Macroinvertebrate data (No. per square foot) — SLW-9 *1 4 sp B sp C sp A - 1 * 7 - 1 3 - 2-7*1 - DATE Glyptotendipes 8 3 6-28-7*1 8-29-7*1 4-12-7*1 5-28-7*f l i -30-73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDIX B

ZOOPLANKTON DATA

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 11?

FIGURE 23

Key for unidentified cyclopoid copepods

Eg and E^ : Eg has 6 segmented antenna, E^ has ? segmented antenna The rest of the characteristics are identical

Legs 1-3 have 2 segmented rami

Leg 4 has a 1 segmented rami (and therefore doesn't fit key)

Size: head to caudal rami is 0.41-50 mm terminal setea is 0.20-0.26 mm very spur midwayadway 4 I// thick, stout (on He­ } caudal rami

5th leg, under oil lens

Bq and B9 Bg has 8 segmented antenna, B^ has 9 segmented antenna

The rest of the characteristics are identical

Legs 1-3 have 2 segmented rami

Leg 4 has a 1 segmented rami distal segment is Size: head to caudal rami is ; broad, but armed with 0.65-0.75mm only 2 setae and terminal setea is 0.26- 0 . 30mm

spur on ^ lower third some very fin e h a irs

Caudal rami 5th leg, under oil lens

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ft < 0- O O VO CC C N O n (V ^ o CC ON O CO CN NO NO -3* CM O*- VO CM p H ______rH pH F ilin ia ON ^ ON ^ o o lo n g ise ta rH a Brachionus ^ ^ Os ON H urceolares p H rH C O t) uniden­ t if ie d

Ghvdorus 20< a snhaericus m ft •g -3- CO o n c c C^ I p< Danhnia o ft XO NO -d £>- rH ft o c n U N rH m o o 'O < •3* on ft ft Plantomus co o < cn -d ft 7" c a 0) o CCS ft M ft c-» o! ft < o as 00 UN MO UN M ft CO > ON v d CM v d CM e C£3 CO < - v ft ffi ft on CM p H a c ffl < 'd ft cS < o os ‘-‘n - d ON CN- ON m bO ft I CM < ft t- t O -3- UN ■3’ CM X CO a t e 6 c5 m ft 03 u o CM M0 CM -P o a ■a c3 ft a •h Q o ft >! o c B„ O UN rH CN c v C o o ft 9 o a CN CM 00 - d 00 ■p ft CM os c ft o 0) ft rH VO CM CO O o pH o Ck ft -3* ON v d r 3 oN o H o CM rH o a! ft NO -3* VO N3 ft a 9 edax o CN rH £N- 00 rH p H

NO ON rH CC sp. • • • • p H UN vO CN. co CM rH 9 e x c ilis CN -3- vO c c pH 1 o NO co CM £ S >> CM ON o v ern a lis > - ■d- c - •sf CN CM CO -d v d ON ON UN CN

ON ON ON •3* Hj- -3- &q o - C ^ CN- Cv- Cv- C^ CV- c - 1 1 1 1 1 I ! 1 1 5 vO ON VO rH rH CM vO ON o Q CM rH CM rH pH CM CM 1 1 i■ 1 1 1 1 1 1 o rH rH u n \ 0 0 - CO CO rH pH pH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE Z k P CO 63 •H A iS3 P •p rH -p C o eg o J eg CO 6 U o eg c C fcO Q> o eg P I ! I h >* C“* o s s > £ M o 00 65 63 < PQ M s P < o PH O rH O < ■g P rH P o eg >: c li Cg eg c o o o, U eg o CO eg O p h h P o H S M O < <5 a O « < X 6 < P-. o < u o a 3 1 £ o o <=> X 03 o >* a P H P 3 6 < H h P P rH •H P - •rH f. •H d ' s o rH C eg M >> e P CO c o 0) 05 o o O o to p >> O . lnia ilin F urceolares Brachionus Q B T? Diantomus Danhnia Ghydorus sphaerlcus d ie tif uniden­ longiseta sp* r alis ern v edax sp. ilis c x e 9 6 7 3 X SO X--3- rH rH H !A N 1A 4- ON N n \ o H cn O'- j o >A o O v CM a c o • « • • • • 1 1 i : V H CV2 W H O o OUN CO N U Hr CM rH rH n u o CN -V o CM s rH Cs2 rH UN - r\ r r-i • • • • I o CV CM rH CM c c rH rH ’ P O v O CM CM CM cA A C N rH « • • • 1 1 MD C \ NO CA NO 3- -3 NO NO CM rH CO CM ' S rH rH UN N'A ' CN rH Ao cA rH rH CN - o rH cA CM rH CN- 1 o o OO NO d . d - ACO CA ^ c o NO rH A * CO . S O MCA C CM rH CM CN MCM CM A- 1 1 I 1 1 - p \ o c\ d a- -a NO t H CM rH ON 3- .3 CM rH cA CM - d HCM rH CO rH CN UN NO ON cA -3* c c CM rH rH CO rH CA - p CN UN O CM O rH cA CM CO CM rH rH C"- 1 120

cc c \ n - w n ffi n vo cn ft O N N H ft ft cc cn vo

F llln la lo n g ise ta a Ha Brachionus urceolares s uniden­ t if ie d

Cnvdorus ft S3 snhaericus w a o o cc ■g Q i ft < Danhnia n ir, n cm a u ftO cn cn, vO ft »n e S3 ft : 2 aC -D B. cm sO pfr c O a • • o flS ft cA c^- r \ - p U o X aS o c PH n v O v O rH rH II ft

-< 1 . 1 d v O v O o pH CM CN u s CM C\ sp.

cm 6 . 8 c A CO VO w rH CM ft o v O u s i—! ft e x c ilis o c A 9 . 0 o CN >5 pH CM o v ern a lis •3* v O VO o

0 . 2 o c A CO ON

rH 1 2 .r 0 s C~\

^3" -3 - f t c^- Cv- Cv*. c^- C'- i | i i I• i* 1 vO r- f rH cm vO On o CM CM rH rH CM I I i t CM t ? i i I t Ho US v O Cv» O- CO CC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ft \o >n ov 4- £ v C v C v O CM 0C < NCM ^iAN O N cJ-04 CN r - i r-i oa ca cm cm ca vo

F i l l n i a lo n g is e ta 63 ft l-l B rachionus cn u rc e o la re s o uniden­ c\ co t i f i e d o ft

Chydorus -of CM VO -Of ft ca sn h aeric u s o O O CM vO rH ■g 8 CM I p< < Danhnia oo nt 0\ CM vO MO VO 3: 03 ft ft ft u CN C^- ft PA cv- -d- UA cn o CN! ft ft CA i u i < ft O O ft ft CO cn o < Diantomus u 2 c u UA vO Ov CA Cv. u O a -p ft «* < o as CM ft ft ca > H o vO E 63 CV2 CO K < ft ft ft 63 c ft < ft o: < O ' C3o re - i CA CN ^ to § o CM O o ft o ft ft c E, Cv Cv aS 63 a -p 2 .§ 6 CM o aS f t ft ftp? c o = B- vO vO C o o CA o -p to ■M ft C o o aS ft UA [ v (A rH o O sp. ft ft CM O CM o o o & ft 8 cn ft o g edax Cv- UA CC s O CM o

sp. UA O CA w mo d ft d ft e x c ilis Cv UA CA Cv >» o o o o o v e r n a lis CM CM VO ft o o CM

.A. CA CA -3- nfr nj- -3- -3" CN C v o - C ^ C"- c t Cv. CV- C v C v

1 -IT 61 1 1 1 1 1 1 1 I 63 VO SO CO CO ON CM UA Cv CM rH rH CS2 CM ft ft CM S2 1 i i 1• 1 1 1 q O rH UA vO Cv- 00 CO CO ft rH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 122

CO ^ o CO «•••••» SO 4- s o u W p sO H CO H ON s CC

F ilin la lon giseta Brachlonus urceolares uniden­ t if ie d

Chydorus IN O s o o sphaericus O h O i W u p CP CM sO Os O 1 P Daphnia 3 CD CM IN rH up IN O PI P h OP rH OP CO 0 C3 1f 1 *3 Dlaptomus N so OP CSJ CO CO O O SO rH rH co op u c O UP rH o o d - p M rH £h d rH < O CP M in to > il O CM £ C=J (0 0 5 < •H up C « < CO n d < a < P o C-l O Eh >i Os SS o -PSi n rH c o CM %- p 2 CP rH CO Os P. o rH O o O 5h o d -O OS CO SO N Oh r-i o o o CM

up Pi- CP M CM rH d P h o e x c llis o n

vern alis i en . i 0 .3 CV 2 . 1 6

cn -d’ -d -d’ -d- -d- -d £V cv cv c^ Cn- c- i 1 i 1 i 1 i nO CO cc O n cv ON cv cv cv rH rH CV 1 1 i 1 1 1 o \D e'­ CO CO 00 rH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 123

O' CC H -3- C\ »A rv C"* \ o N ^ O n H Cn N O OCV2 rH U>

F illn ia lo n g iseta Braehionus urceolares

uniden­ cv t if ie d H

Chydorus -3- cv O CA \ 0 snhaericus CO o o rH - d CV 0 *8 1 Pi Dauhnia CA \C ON \o CC r-i -3* \D 3 r o Pi W H i N r ! CV h o i CD o rH cv cv o Diautomus {V Cn- CO O CA CO o 25 c O CV O NO ^ oo s a N c a < •H cq« H C rH ^ -3 - 05 o • • pp UO -ot rH o < P o Eh h o C CN. CN cn. JM B 05 &Q CV o d -P SC 05 &3s Pt P. ON cv ca O o d o oC u -p 10 c p ctJ o rHft rH sp. o o o u Pi 8 edax on cv cv cv ca

sp. o NT> cc ca cv o o P< h e x c ilis c a cc NO CA o ------>3 cv h o o o v ern alis cv 0 . 5 d 0 . 6 o

c a c a -3 - -3 - -•3 * -S’-3 - £n - Cn- IV tv C'- c v C*- NO oo CC CN CV NA O n CV rH cv cv rH rH cv -II I O NO C^ 00 CC cc rH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDIX C

PHYTOPLANKTON AND JBOTOZOAN DATA

12k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 125

PLANKTON SUMMARY — ( O rg a n is m s /m l)

1 1 - 9 - 7 3 S L E -1 @ 1 f t . TOTAL = 1 0 6 2 .4 /m l

DIATOMS 83*3 Pennate — 83.3 Nitzschia nr. palae I 69.3 Centric — 27*7 Cyclotella nr. meneghiniana; 141.6 Melosira granulata CHLOROPHYTA 809.8 — 13*9 Chlamydomonas sp. A .; 782.0 C h lo rella nr. pyrenoidosa; 13*9 C. nr. vulgaris

SLE-8 @ 1 f t . TOTAL = 2055.7/ml

DIATOMS 55*6 Pennate — 41.7 Nitzschia nr. palae; 13.9 Navicula sp. B. CHLOROPHYTA 1*972.3 - - 27.8 Chlamydomonas sp. A .; 902.8 C. sp. B.j 1,027.8 Chlorella nr. pyrenoidosa; I 3.9 Scenedesmus nr. quadricauda var. parvus EUGLENOPKYTA 27.8 — 27.8 Phacus sp. C.

SLV-1 @ 1 f t . TOTAL = 180.6/ml

DIATOMS 13.9 Pennate — 13*9 Nitzschia nr. palae 13.9 Centric -- 13.9 Melosira granulata CHLOROPHYTA 13.9 — 13.9 Scenedesmus nr. quadricauda var. parvus EUGLENOPHYTA 27.8 — 27.8 Phacus sp. C. MASTIGOPHORA 111.1 — 69.4 Bodo sp. A.; 41.7 B. sp. B.

SLW-9 @ 1 f t . TOTAL = 333.3 /ml

DIATOMS 41.7 Pennate -- 41,7 Nitzschia nr. palae 27.8 Centric — 27.8 Melosira granulata EUGLENOPHYTA 27.8 -- 27.8 Phacus sp. C. MASTIGOPHORA 236.0 — 152.7 Bodo sp. A.; 55*5 B« sp. B.; 27.8 Cryptomonas nr. ovata

11-16-73 SLE-1 @ 1 f t . TOTAL = 1166.7/ml

DIATOMS 27.8 Pennate — 13*9 Nitzschia nr. palae; 13.9 Synedra ulna 152.? Centric — 69.4 Cyclotella nr. meneghiniana; 83*3 Melosira granulata CHLOROPHYTA 152.8 — 13.9 Chlamydomonas sp. A .; 111.1 C. sp. D .; 27.8 Chlorella nr. vulgaris

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 126

PLANKTON SUMMARY — ( O r g a n is m s /m l)

11-16-73 SLE-1 @ 1 ft. c o r r t.... CYANOPHYTA 69*5 13*9 O scillatoria nr. limosa; 55*6 0. tennis EUGLENOPHYTA 27.8 — 27*8 Phacus sp. C. MASTIGOPHORA 736.1 — 736.1 Bodo sp. A.

SLE-8 @ 1 f t . TOTAL = 638 . 8 / a l

DIATOMS 83.4 Pennate — 55*6 Nitzschia nr. palae; 27.8 Eragilaria nr. construens 13.8 Centric — 13*8 Melosira granulata CHLOROPHYTA 430.6 — 277*8 Chlorella nr. vulgaris; 83*3 Chlaay- domonas sp. D .; 13.9 Scenedesmus nr. quadricauda var. parvus; 13*9 Closterium sp. A.; 13.9 Pediastrum nr. integrum; 27.8 Oocystis nr. elliptica var. minor CYANOPHYTA 13.9 — 13*9 Oscillatoria tenuis EUGLENOPHYTA 13.9 — 13*9 Phacus sp. C. MASTIGOPHORA 83.3 — 83.3 Bodo sp. A.

SL¥-1 @ 1 ft. TOTAL = 1430.5/ml

DIATOMS 27.8 Pennate — 27.8 Nitzschia nr. palae CHLOROPHYTA 111.1 — 111.1 Chlorella nr. vulgaris EUGLENOPHYTA 222.2 -- 13*9 Phacus sp. C.; 208*3 Euglena sp. C. MASTIGOPHORA 1069.4 — 597-2 Bodo sp. A.; 166.? B. sp. B.; 305.5 Chroomonas nordstedtii

SLW-9 @ 1 f t . TOTAL « 1208.4/ml

DIATOMS 55.6 Pennate — 27*8 Nitzschia nr. palae; 27.8 Fragilaria nr. construens 55.6 Centric — 13*9 Melosira granulata; 41.7 Gomphonema n r. olivaceum CHLOROPHYTA 125.0 — 69.4 Chlorella nr. vulgaris; 55.6 Chlamydomonas sp. D. MASTIGOPHORA 958.3 — 694.4 Bodo sp. A.; 111.1 B. sp. B.; 152.8 Chroomonas nordstedtii CILIOPHQRA 13.9 — 13*9 Glaucoma sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 12?

PLANKTON SUMMARY — (O r g a n is m s /m l)

1 1 - 3 0 - 7 3 S L E -1 @ 1 f t . TOTAL = 2 0 8 . 4 / ® !

DIATOMS 83«4 Pennate -- 41.7 Nitzschia nr. palae; 41.7 Fragilaria nr. construens 69-4 Centric — 69.4 Melosira granulata CHLOROPHYTA 13*9 — 13*9 Oocystis nr. elliptica var. minor CYANOPHYTA 27.8 — 27.8 Oscillatoria nr. limosa ROTIFERA 13.9 — 13*9 Brachionus urceolares

SLE-8 @ 1 f t . TOTAL = 194. 6/m l

DIATOMS 55*6 Centric — 55*6 Melosira granulata CHLOROPHYTA 111.2 — 55*6 C h lo rella nr. v u lg a ris; 27*8 Chlamy­ domonas sp. D.; 13.9 Scenedesmus nr. quadricauda var, parvus; 13.9 Oocystis nr. elliptica var. minor EUGLENOPHYTA 27-8 — 27.8 Trachelomonas sp. D.

SLE-1 @ 1 f t . TOTAL = 5 9 ?.l/m l

DIATOMS 305.5 Pennate — 125-0 Nitzschia nr. palae; 69.4 Gomphonema nr. olivaeeum; 111.1 Navicula nr. cryptocephala 69-4 Centric — 69*4 Cyclotella nr. meneghiniana CHLOROPHYTA 18 0.5 — 13.9 Chlorella nr. vulgaris; 69*4 Scene­ desmus nr. abundans; 83.3 S. nr. quadri­ cauda var. parvus; 13*9 Oocystis nr. elliptica var. minor EUGLENOPHYTA 41.7 — 27.8 Trachelomonas sp. D.; 13*9 Phacus sp.C.

SLE-9 @ 1 f t . TOTAL = 763. 8 /ml

CHLOROPHYTA 749.9 — 749.9 Chlorella nr. vulgaris MASTIGOPHORA 13.9 — 13.9 Bodo sp. A.

12-21-73 SLE-1 @ 1 f t . TOTAL = 1555. 7/m l

DIATOMS 41.7 Centric — 41.7 Cyclotella nr. meneghiniana CHLOROPHYTA 1402.8 — 805*6 Chlorella nr. vulgaris; 583.3 Chlamydomonas sp. C .; 13*9 Oocystis nr. elliptica var. minor CYANOPHYTA 69.5 — 41.7 Chroococus nr. minor; 13*9 Spirulina laxa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 2 8

PLANKTON SUMMARY — ( O r g a n is m s /m l)

12-21-73 SLE-1 © 1 f t . c o n t.. . .

CILIOPHORA 41.7 — 41*7 Glaucoma sp.

SLE-8 © 1 f t . TOTAL = 55.6/m l

CHLOROPHYTA 55*6 — 41.7 Chalmydomonas sp. A .; 13.9 Chlorella nr. vulgaris

SLW-1 © 1 f t . TOTAL = 986.2/ml

DIATOMS 55*8 Pennate — 41.7 N avicula nr. cryptocephala; 13.9 Synedra ulna 152.8 Centric — 138*9 Cyclotella nr. meneghiniana; 13.9 Melosira granulata CHLOROPHYTA 777*8 — 555.6 Chlamydomonas sp. A.; 208.3 Chlorella nr. vulgaris; 13*9 Ankistrodesmus convulutus

SLE-9 © 1 f t . TOTAL = 308.4/m l

DIATOMS 69.5 Pennate — 41.7 Navicula nr. dryptocephala; 27-8 Nitzschia nr. palae 125*0 C entric - - 69*4 C y clo tella nr. meneghiniana; 55*8 Stephanodiscus nr. invisatatus CHLOROPHYTA 58.3 — 27.8 Chlorella nr. pyrenoidosa; 13*9 C. nr. vulgaris; 27.8 Ankistrodesmus falcutus; I 3.9 A. convulutus MASTIGOPHORA 55*8 — 55*8 Bodo sp. A.

1-2-74 SLW-1 © 1 f t . TOTAL = 10777* 7/ml

DIATOMS 305.5 Centric — 305*5 Cyclotella nr. meneghiniana CHLOROPHYTA 9333*3 “ 811.1 Chlamydomonas sp. A .; 8722.2 Chlorella nr. vulgaris CYANOPHYTA 263*0 — 55*8 Chroococus nr. minor; 208.3 0. dlspersus MASTIGOPHORA 875*0 -- 430.6 Bodo sp. A.; 208.3 Cryptomonas nr. ovata; 236.1 Chilomonas nr. paramecium SLW-9 © 1 f t . TOTAL = 847.4/m l

DIATOMS 55*8 Centric — 55*6 Cyclotella nr. meneghiniana CHLOROPHYTA 430.6 — 388.9 Chlorella nr. vulgaris; 41.7 Chlamydomonas sp. C,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 2 9

PLANKTON SUMMARY — (O r g a n is m s /m l)

1-2-7** SLV-9 @ 1 f t . c o n t ....

CYANOPHYTA 69.5 — 55*6 Chroococus nr. minor; 13*9 C. dispersus MASTIGOPHORA 291.7 — 166.7 Bodo sp. A .; 83.3 Cryptomonas nr. ovata; 41.7 Chilomonas nr. paramecium

1-16-74 SLE-1 @ 1 f t . TOTAL = 2657. 8 /ml

DIATOMS 41.7 Centric — 41.7 Cyclotella nr. meneghiniana CHLOROPHYTA 2532.8 — 366. I Chlamydomonas sp. A .; 111.1 C. sp. D .; 2055*6 Chlorella nr. vulgaris CYANOPHYTA 83.3 — 69.4 Chroococus nr. minor; 13*9 C. dispersus

SLE-1 @ 3 ft. TOTAL = 1287.5/ml

DIATOMS 138.9 Centric — 138.9 Cyclotella nr. meneghiniana CHLOROPHYTA 1079*1 — 134.7 Chlamydomonas sp. A .; 944.4 Chlorella nr. vulgaris CYANOPHYTA 69.5 41.7 Chroococus nr. minor; 27.8 C. dispersus

1-30-74 SLE-1 @ 1 f t . TOTAL = 3543. 8 /ml

DIATOMS 250.0 Centric — 152.0 Cyclotella nr. meneghiniana; 97*2 Stephanodiscus nr. astrea CHLOROPHYTA 3071.5 ““ 2502.0 Chlamydomonas sp. A .; 41.7 C. sp. C.; 347*2 Chlorella nr. vulgaris; 180.6 C. nr. pyrenoidosa CYANOPHYTA 97*3 — 41.7 Chroococus nr. minor; 55*6 C. dispersus MASTIGOPHORA 27*8 — 27*8 Bodo sp. A. CILIOPHORA 97*2 — 97*2 Vorticella sp.

SLE-1 @ 3 ft. TOTAL = 2930.5/ml

DIATOMS 486.1 Centric — 236.1 Cyclotella nr. meneghiniana; 125.0 Stephanodiscus nr. astrea CHLOROPHYTA 2319.4 — 1972.2 Chlamydomonas sp. A .; 69*4 C. sp. D.; 277*8 Chlorella nr. vulgaris CILIOPHORA 125.0 — 111.1 Vorticella sp.; 13*9 Glaucoma sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 30

PLANKTON SUMMARY — ( O r g a n is m s /m l)

1-30-74 cont.« SLE-8 @ 1 f t . TOTAL = 1388.6/ml

DIATOMS 83.3 Centric — 83*3 Cyclotella nr. meneghiniana CHLOROPHYTA 1152.7 — 944.4 Chlamydomonas sp. A.; 13.9 C. sp. C. 5 194.4 Chlorella nr. vulgaris CYANOPHYTA 152.6 — 83*3 Chroococus nr. minor; 13«7 C. disper­ su s; 27*8 Nostoc n r. comminutum; 27.8 N. nr. caeruleum

SLE-8 @ 3 f t . TOTAL = 1722.3/nd

DIATOMS 27.8 Centric — 27*8 Cyclotella nr. meneghiniana CHLOROPHYTA 1569.5 — 1222.2 Chlamydomonas sp. A.; 27.8 C. sp. C.; 27.8 C. sp. D.; 291.7 Chlorella nr. v u lg a ris CILIOPHORA 125.0 — 97*2 Vorticella sp.; 27.8 Glaucoma sp.

SLW-1 @ 1 f t . TOTAL « 7888.8/m l

DIATOMS 430.6 Centric — 430.6 Cyclotella nr. meneghiniana CHLOROPHYTA 719^.4- — 7083.3 Chlamydomonas sp. A .; 111.1 Chlorella nr. vulgaris MASTIGOPHORA 152.7 — 69.4 Bodo sp. A .; 83.3 Cryptomonas nr. ovata CILIOPHORA 111.1 — 27*8 Vorticella sp.; 83 .3 Glaudoma sp.

SLW-9 @ 1 f t . TOTAL = 2611.4/m l

DIATOMS 138.9 Centric — 138.9 Cyclotella nr. meneghiniana CHLOROPHYTA 1736.0 — 1666.6 Chlamydomonas sp. A.; 69*4 Chlorella nr. vulgaris CYANOPHYTA 680.9 — 250.0 Chroococus nr. minor; 430.9 C. d isp ersu s MASTIGOPHORA 41.7 — 27.8 Bodo sp. A .; 13.9 B. sp. B. CILIOPHORA 13.9 — 13*9 Cyclidium sp.

2-13-74 SLE-1 @ 1 f t . TOTAL = 3 6 l.2 /m l

CHLOROPHYTA 263.9 — 138.9 Chlamydomonas sp. A .; 27.8 C. sp. C.; 97*2 C. sp. D. CYANOPHYTA 13.9 — I 3.9 Chroococus nr. minor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 131

PLANKTON SUMMARY — ( O r g a n is m s .m l)

2-13-7** SLE-1 @ 1 f t . c o n t ....

MASTIGOPHORA 41.7 — 4 1.? Bodo sp. A. CILIOPHORA 41.7 — 27.8 V o rtic e lla s p . ; 13*9 Glaucoma sp.

SLE-1 @ 3 f t . TOTAL = 152.8/m l

DIATOMS 13.9 Centric 13*9'Cyclotella nr. meneghiniana CHLOROPHYTA 97.2 — 97*2 Chlamydomonas sp. C. CILIOPHORA 27.8 — 27.8 Glaucoma sp. ROTIFERA 13.9 — 13.9 Notholca sp.

SLE-8 @ 1 f t . TOTAL = l l l . l / m l

CHLOROPHYTA 83.3 — 69*4 Chlamydomonas sp. A .; 13.9 C h lo rella nr. vulgaris CYANOPHYTA 13.9 — 13.9 Chroococus nr. minor CILIOPHORA 13.9 — 13*9 Vorticella sp.

SLE-8 @ 3 f t . TOTAL = 97* 3 M

CHLOROPHYTA 97*3 — 55*6 Chlamydomonas sp. A .; 13.9 C. sp. D.j 27*8 Chlorella nr. vulgaris

SLV-1 @ 1 f t . TOTAL = 9472.3 /n l

DIATOMS 13.9 Pennate — 13*9 Nitzschia nr. palae CHLOROPHYTA 9319.4 — 222.2 Chlamydomonas sp. A .; 9083*3 C hlorel­ la nr. vulgaris 1 13*9 Oocystis nr. elliptica var. minor MASTIGOPHORA 97.3 — 41.7 Bodo sp. A . 5 27.8 B. sp. B.; 27.8 Cryptomonas nr. ovata CILIOPHORA 41.7 — 27*8 Cyclidium sp .; 13*9 Glaucoma sp.

SLtf-9 @ 1 f t . TOTAL = 4458.4/ral

DIATOMS 41.7 Centric — 41.7 Melosira granulata CHLOROPHYTA 4333.3 — 125.0 Chlamydomonas sp. A.; 4208.3 Chlorella nr. vulgaris CILIOPHORA 83.4 — 55.6 Cyclidium sp .» 27.8 Glaucoma sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 3 2

PLANKTON SUMMARY — (O r g a n is m s /m l)

2-13-74 cont. SLV-9 @ 3 ft. TOTAL = 2277.8/ml

DIATOMS 27.8 Centric — 27*8 Melosira granulata CHLOROPHYTA 2180.5 — 152.8 Chlamydomonas sp. A.; 2027.7 Chlorella nr. vulgaris MASTIGOPHORA 41*7 — 41.7 Cryptomonas nr. ovata CILIOPHORA 27.8 — 27.8 Cyclidium sp.

2-27-74 SLE-1 @ 1 f t . TOTAL *= 5 9 ?.l/m l

CHLOROPHYTA 444.4 — 83.3 Chlamydomonas sp. A .; 83.3 C. sp. C.; 27.8 C. sp. D.} 138.9 Chlorella nr. pyrenoidosa; 13*9 Cosmarium sp ,; 97.2 Oocystis nr. elliptica var. minor CYANOPHYTA 152.7 — 69.4 Chroococus nr. minor; 83.3 Nostoe coaminutum

SLE-8 @ 1 f t . TOTAL = 833 . 4/ml

CHLOROPHYTA 833.4 — 41.7 Chlamydomonas sp. A .; 13.9 C. sp. C.; 763.9 Chlorella nr. pyrenoidosa; 13*9 Cosmarium sp.

SLW-1 @ 1 f t . TOTAL = 10402.8/ml

CHLOROPHYTA 9291.7 — 805.6 Chalmydomonas sp. A.; 8402.8 Chlorella nr. vulgaris; 83.3 C. n r. pyrenoidosa CILIOPHORA 527.8 — 527.8 Cyclidium sp.

SLW-9 @ 1 f t . TOTAL = 11277.7/ml

CHLOROPHYTA 11277*7 — 972.2 Chlamydomonas sp. A .; 69.4 C. sp. C.; 41.7 C. sp. D.; 9998.8 Chlorella nr. vulgaris; 182.6 C. nr. pyrenoidosa; 13*9 Oocystis nr. elliptica var. minor

3-13-74 SLE-1 @ 1 ft. TOTAL = 1013.8/ml

CHLOROPHYTA 833*3 — 583.3 Chlamydomonas sp. A .; 111,1 C. sp. C.; 138.9 C. sp. D. CYANOPHYTA 13.9 — 13.9 Oscillatoria nr. rubescans

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PLANKTON SUMMARY — (O r g a n is m s /m l)

3 -1 3 -7 4 - SLE-1 @ 1 ft. c o n t . . . .

CILIOPHORA 166.6 — 83-3 V o rtic e lla s p . ; 83*3 Glaucoma sp.

SLE-1 @ 3 ft. TOTAL = 1152.9/ml

CHLOROPHYTA 916.7 — 666.7 Chlamydomonas sp. A .; 111.1 C. sp. C. 83.3 G. sp. D.; 55*6 Chlorella nr. vulgaris CYANOPHYTA 27.8 — 27.8 Oscillatoria nr. rubescans CILIOPHORA 208.4- -- 13-9 StromMdium sp. j 138.9 Vorticella sp.; 55*6 Glaucoma sp.

SLE-8 @ 1 ft. TOTAL « 21125.0/ml (Sample milky colored due to Chlorella bloom)

CHLOROPHYTA 21013.9 — 138.9 Chlamydomonas sp. A .; 4-1.7 C. sp. C.; 20833*3 Chlorella nr. pyrenoidosa CILIOPHORA 111.1 — 111.1 Glaucoma sp.

SLE-8 @ 3 f t . TOTAL = 8222.2/ml

CHLOROPHYTA 7999.9 — 4-99*9 Chlamydomonas sp. A .; 55.6 C. sp. C. 222.2 Chlorella nr. vulgaris; 7222.2 Chlorella nr. pyrenoidosa MASTIGOPHORA 27.8 — 27.8 Chilomonas nr. paramecium CILIOPHORA 194-.5 — 138.9 V o rtic e lla s p .; 55*8 Glaucoma sp.

SLW-1 @ 1 f t . TOTAL = 14-388.9/ml

DIATOMS 27.8 Pennate — 27*8 Navicula sp. A. CHLOROPHYTA 14-333.3 — 194-.4 Chlamydomonas sp. A .; 4-1.7 C. sp. D .; I 3888 .O Chlorella nr. vulgaris; 208.3 C. n r. pyrenoidosa CILIOPHORA 27.8 -- 27.8 Cyclidium sp.

SLW-1 @ 3 f t . TOTAL = 11375* 0/1111

DIATOMS 69.5 Pennate — 4-1.7 N avicula sp. A .; 27*8 Synedra ulna 13.9 Centric — 13.9 Melosira nr. varians CHLOROPHYTA 11277.7 — 277.8 Chlamydomonas sp. A .; 10916.6 Chlorella nr. vulgaris; 83*3 C. nr. pyrenoidosa CILIOPHORA 13.9 — 13*9 Glaucoma sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 13^

PLANKTON SUMMARY ~ ( O r g a n is m s /ml)

3-13-74 cont. SLW-9 @ 1 f t . TOTAL = 333. 4/ml

DIATOMS 13.9 Pennate — 13*9 Synedra ulna CHLOROPHYTA 277*8 — 263*9 Chlorella nr. vulgaris j 13*9 Closterium sp. CILIOPHORA 41.7 — 41.7 Glaucoma sp.

SLW-9 @ 3 ft. TOTAL « 472.3/ml

DIATOMS 55*6 Pennate — 27*8 Nitzschia nr. palae; 27.8 Synedra ulna CHLOROPHYTA 388.9 — 13*9 Chlamydomonas sp. C .; 3^7*2 C h lo rella nr. vulgaris; 27.8 C. nr. pyrenoidosa CILIOPHORA 27*8 — 27.8 Glaucoma sp.

3-29-74 SLE-1 @ 1 f t . TOTAL = 4 l6 .7 /m l

DIATOMS 13*9 Pennate — 13*9 Navicula sp. A. CHLCROPHYTA 375*0 — 194.4 Chlamydomonas sp. A .; 55*6 C. sp. C .; 27.8 C. sp. D.; 27.8 Chlorella nr. vulgaris; 69*4 C. nr. pyrenoidosa MASTIGOPHORA 27.8 — 27*8 Chilomonas nr. paramecium

SLE-8 @ 1 f t . TOTAL = 1 5 5 6 9 . 3/m l

DIATOMS 27.8 Pennate — 27*8 Navicula sp. A. 13*9 Centric — 13*9 Melosira nr. varians CHLOROPHYTA 153^7.0 — 2833*3 Chlamydomonas sp. A.; 12499.9 Chlorella nr. pyrenoidosa; 13*8 Scenedesmus nr. quadricauda var. parvus CYANOPHYTA 152.8 — 83*3 Chroococus nr. minor; 55*6 C. disper­ sus; 13.9 Oscillatoria tenuis MASTIGOPHORA 27*8 — 27.8 Bodo sp. A.

SLE-8 @ 3 f t. TOTAL *= 12222.4/ml

DIATOMS 41.7 Pennate — 13»9 Navicula sp. A.; 27.8 Synedra ulna 13*9 Centric — 13*9 Melosira nr. varians CHLOROPHYTA 11861.2 — 1833*3 Chlamydomonas sp. A .; 13*9 C. sp. D .; 9666.7 Chlorella nr. pyrenoidosa;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PLANKTON SUMMARY — ( O r g a n is m s /m l)

3 - 2 9 - 7 4 SLE- 8 @ 3 ft. cont ......

CHLOROPHYTA c o n t.. 291*7 C. nr. vulgaris; *+1.7 Ankistrodes­ mus f a lc u tu s ; 13*9 Cosmarium sp. MASTIGOPHORA *+1.7 — I3»9 Cryptononas nr. ovata; 27.8 Chilomonas nr. paramecium CILIOPHORA 13.9 — 13*9 Glaucoma sp.

SLW-1 @ 1 f t . TOTAL = 3527.8 /ml

CHLOROPHYTA 3444.4 — 69.4 Chlamydomonas sp. A .; 2 7.8 C. sp. C .; 3333*3 Chlorella nr. vulgaris; 13.9 Scenedesmus nr. abundans CYANOPHYTA 41.7 — 13*9 Chroococus nr. minor; 27*8 C. dispersus CILIOPHORA 41.7 — 27*8 Cyclidium sp .; 13*9 Glaucoma sp.

SLW-1 @ 3 f t . TOTAL = 5708.4/m l

DIATOMS 27.8 Pennate — 27.8 Synedra ulna CHLOROPHYTA 5513*9 — 83.3 Chlamydomonas sp. A .; 5416.7 C h lo rella nr. vulgaris; 13*9 Scenedesmus nr. abundans CYANOPHYTA 27.8 — 27.8 Anabaena sp. MASTIGOPHORA 27.8 — 27*8 Cryptomonas nr. ovata CILIOPHORA 111.1 — 111.1 Glaucoma sp.

SLW-9 @ 1 f t . TOTAL = 957.0/m l

CHLOROPHYTA 457.0 — 125.0 Chlamydomonas sp. C .; 41.7 C. sp. D .; 291.7 Chlorella nr. vulgaris; 69*4 C. nr. pyrenoidosa; 41.7 Oocystis nr. elliptica v a r. minor CYANOPHYTA 27.8 — 27.8 Chroococus nr. minor CILIOPHORA 472.2 — 111.1 Vorticella sp.; 138.9 Glaucoma s p . ; 222.2 unidentified genera of family Holophryidae

SLW-9 @ 3 f t . TOTAL = 708.3/ml

CHLCROPHYTA 291.6 — 97.2 Chlamydomonas sp. C .; 69.4 C. sp. D .; 97.2 Chlorella nr. vulgaris. 27.8 C. nr. pyrenoidosa CYANOPHYTA 13.9 — 13*9 Anabaena sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 3 6

PLANKTON SUMMARY — ( O r g a n is m s /m l)

3-29-74 SLW-9 @ 3 ft. cont....

CILIOPHORA 402.8 — 166.? Vorticella sp.; 83*3 Glaucoma sp.; 152.8 unidentified genera of family Holophryidae

4-12-74 SLE-1 @ 1 ft. TOTAL » 819.4/ml

CHLOROPHYTA 555.5 — 250.0 Chlamydomonas sp. A ,; 111.1 C. sp. C .; 27.8 C. sp. D .; 83.3 Chlorella nr. vulgaris; 83*3 C. nr. pyrenoidosa PYRROPHYTA 13*9 — 13*9 Peridinium nr. cinctum SARCODINA 83.3 — 83.3 A ssulina n r. muscorum CILIOPHORA 166.7 — 13*9 Vorticella sp.; 13*9 Glaucoma sp.; 138.9 unidentified genera of family Holophryidae

SLE-1 e 3 f t . TOTAL = 907.7/m l

CHLQROPHYTA 768.8 — 366. I Chlamydomonas sp. A .; 138.9 C. sp. C .; 83.3 C. sp. D. 5 69.4 Chlorella nr. vulgaris? 111.1 C. nr. pyrenoidosa CILIOPHORA 138.9 -- 138.9 Glaucoma sp.

SLE-8 ® 1 f t . TCTAL - 652. 8 /ml

CHLOROPHYTA 583.3 — 208.3 Chlamydomonas sp. A.? 69.4 Chlorella nr. vulgaris; 291*7 C. nr. pyrenoidosa; 13.9 Scenedesmus nr. ahundans CILIOPHORA 69.5 — 55.6 Vorticella sp.? 13»9 Cyclidium sp.

SLE-8 @ 3 f t . TOTAL - ?64.0/m l

CHLOROPHYTA 764.0 — 416.7 Chlamydomonas sp. A .; 41.7 C. sp. D .; 55.6 Chlorella nr. vulgaris; 250.0 C. nr. pyrenoidosa

SLV-1 @ 1 f t . TOTAL = 10487.6/ml

DIATOMS 500.1 Pennate — 83 .3 Navicula nr. cryptocephalaj 166.7 Fragilaria nr. construens; 138.9 Nitzschia nr. palae; 41.7 Synedra ulna; 64.5 Nitzschia sp. 55.6 Centric — 55.6 Cyclotella nr. aeneghiniana

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 3 ?

PLANKTON SUMMARY — ( O r g a n is m s /m l)

4 - 1 2 - 7 4 SLV-1 @ 1 ft. c o n t .. . .

CHLOROPHYTA 9862.4 — 305*5 Chlamydomonas sp. A .; 9556.9 Chlorella nr. vulgaris CYANOPHYTA 69.5 “ 41.? Chroococus nr. minor; 27.8 C. dispersus

SLW-1 @ 3 f t . TOTAL =* 6736.2/ml

DIATOMS 83.4 Pennate — 13*9 Navicula nr. cryptocephala; 13.9 Fragilaria nr. construens; 27.8 Nitzschia nr. palae; 13*9 N. sp.; 13.9 Synedra ulna 27.8 Centrie — 27.8 Cyclotella nr. meneghiniana CHLCEOPHYTA 6486.1 - - 222.2 Chlamydomonas sp. A .; 27*8 C. sp. C .; 6222.2 Chlorella nr. vulgaris; 13.9 Closterium sp. A. CYANOPHYTA 125.0 — 69.4 Chroococus nr. minorj 55*6 C. dispersus CILIOPHORA 13.9 — 13*9 Vorticella sp.

SLW-9 @ 1 f t . TOTAL - 7646.8/ml

DIATOMS 83.4 Pennate — 55.6 Fragilaria nr. construens; 13.9 Nitzschia nr. palae; 13.9 Synedra ulna CHLOROPHYTA 7480.0 ^ 305.5 Chla^rdooonas-sp. A. 7174.5 Chlorel­ la nr. vulgaris CYANOPHYTA 55.6 — 27.8 Chroococus nr. minor; 27.8 C. dispersus CILIOPHORA 27*8 — 27.8 Cyclidium sp.

SLW-9 @ 3 f t . TOTAL “ 8445.8/ml

DIATOMS 36I.I Pennate — 41.7 Navicula nr. cryptocephala; 180.6 Fragilaria nr. construens; 69.4 Nitzschia nr. palae 55.6 Centric — 41.7 Cyclotella nr. Aeheghiniana; I 3.9 Meloslra nr. varians CHLOROPHYTA 8001.3 — 347.2 Chlamydomonas sp. A .; 7612.4 C hlorel­ la nr. vulgaris; 13*9 Scenedesmus nr. ahundans; 13.9 S. nr. quadricauda var. parvus; 13*9 Closterium sp. A. CYANOPHYTA 13.9 — 13.9 Anataena sp. MASTIGOPHQRA 13.9 — 13.9 Chilomonas nr. parameciura

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 138

PLANKTON SUMMARY — (O r g a n is m s /m l)

4 - 2 6 - 7 4 S L E -1 @ f f t . TOTAL = 4 9 3 . 0 / m l

DIATOMS 20.8 Pennate — 6.9 Navicula nr. cryptocephala; 13*9 Nitzschia nr. palae 20.8 Centric — 13*9 Cyclotella nr. meneghinianaj 6.9 Melosira nr. granulata CHLOROPHYTA 451.5 — 416.7 Chlaaydononas sp. A.; 27.8 C. sp. C.; 6.9 Scenedesmns nr. abundans

SLE-1 <® i f f t . TOTAL = 360. 8 /ml

DIATOMS 41.7 Pennate — 13.9 Navicula nr. cryptocephala; 27.8 Nitzschia nr. palae 27.7 Centric — 20.8 Cyclotella nr. meneghiniana; 6.9 Melosira granulata CHLOROPHYTA 222.1 - - 187.5 Chlamydomonas sp. A .; 6.9 C. sp. C .; 13.9 Chlorella nr. vulgaris. 6.9 Scenedes- mus nr. abundans; 6.9 S. nr. quadricauda var. parvus CYANOPHYTA 13.8 — 6.9 Chroococus nr. minor; 6.9 C. dispersus PYRROPHYTA 6.9 — 6.9 Peridinium nr. cinctum MASTIGOPHORA 6.9 — 6.9 Chroomonas nr. nordstedtii CILIOPHCRA 41.7 — 41.7 Vorticella sp.

SLE-5 @ f f t . TOTAL « 555* 3/ml

DIATOMS 6.9 Pennate — 6.9 Navicula nr. cryptocephala CHLCROPHYTA 520.7 — 319*4 Chlamydomonas sp. A .; 145.8 C. sp. C .; 13.9 C. sp. D.; 3^*7 Chlorella nr. vulgaris; 6.9 Scened4smus nr. quadricauda var. parvus CILIOPHORA 27.7 — 20.8 Vorticella sp .5 6.9 Glaucoma sp.

SLE-5 @ i f f t . TOTAL ■ 270.8/ml

DIATOMS 13.9 Pennate — 13*9 Navicula sp. B. 6.9 Centric — 6.9 Cyclotella nr. meneghiniana CHLOROPHYTA 194.4 — 104.2 Chlamydomonas sp. A.; 62.5 C. sp. C.; 13.9 Chlorella nr. vulgaris; 6.9 Scenedes- mus nr. quadricauda var. parvus; 6.9 S. nr. incrassatulus CILIOPHORA 55.6 — 55*6 Vorticella sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 3 9

PLANKTON SUMMARY — (O r g a n is m s /m l)

4 - 2 6 - 7 4 corrt.. SLE- 8 @ j f t . TOTAL = 1 9 6 .2 / m l

DIATOMS 34.7 Pennate — 13*9 Navicula sp. B.; 6.9 Fragilaria nr. construens; 13.9 Nitzschia nr. palae CHLOROPHYTA 124.9 — 69.4 Chlamydomonas sp. A. j 41.7 C. sp. D.; 6.9 Scenedesmus nr. quadricauda var. par­ vus; 6.9 Gomphosphaeria nr. aponina var. g e latin o sa EUGLENOPHYTA 6.9 — 6.9 Trachelomonas sp. D. MASTIGOPHORA 6.9 —* 6.9 Bodo sp. A. CILIOPHORA 22.8 — 22.8 Vorticella sp.

SLE-8 @ j ft. TOTAL = 71.3/ml

DIATOMS 20.8 Pennate — 20.8 Nitzschia nr. palae CHLOROPHYTA 36.7 — 22.8 Chlamydomonas sp. A .; 13.9 C. sp. C. MASTIGOPHORA 6.9 — 6.9 Bodo sp. A. CILIOPHORA 6.9 — 6.9 Vorticella sp.

SLW-1 <§ 1 f t . TOTAL = 2340.0/ml

DIATOMS 13.8 Pennate — 6.9 Navicula nr. cryptocephala; 6.9 Nitzschia nr. palae 34.7 Centric — 34.7 Cyclotella nr. meneghiniana CHLOROPHYTA 2277.7 — 34.7 Chlamydomonas sp. C .; 2222.2 C hlorel­ la nr. vulgaris; 6.9 Ankistrodesmus sp.; 13.9 A. convulutus CYANOPHYTA I 3.8 — 6.9 Chroococus nr. minor; 6.9 C. sp.

SLW-1 @ 2j ft. TOTAL = 1666.5/ml

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae 48.6 Centric — 27.8 Cyclotella nr meneghiniana; 20.8 C. nr. m ichiganiana CHLOROPHYTA 1590.2 — 13.9 Chlamydomonas sp. C .; 1562.5 ChloreL la nr. vulgaris; 6.9 Ankistrodesmus falcutus; 6.9 A. sp.; 6.9 Cosmarium EUGLENOPHYTA 13.9 — 13.9 Trachelomonas sp. D. MASTIGOPHORA 6.9 — 6.9 Bodo sp. B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 4 0

PLANKTON SUMMARY — ( O r g a n is m s /m l)

4 - 2 6 - 7 4 c o n t . . SLW- 5 @ 1 f t . TOTAL - 3 0 8 0 .2 /m l

DIATOMS 34.7 Pennate — 6.9 Navicula sp. A.; 13.9 Nitzschia nr. palaes 13.9 Fragilaria nr. construens 69.5 Centric — 27*8 Stephanodiscus nr. invisitatus; 41.7 Cyclotella nr. meneghiniana CHLOROPHYTA 2923.5 — 97*2 Chlamydomonas sp. A. 5 62.5 C. sp. C .; 2743.0 Chlorella nr. vulgaris? 13.9 Ankistrodesmus falcutus; 6.9 Scenedesmus nr. inerassatulus EUGLENOPHYTA 62.5 — 62.5 Trachelomonas sp. D.

SLW-5 @ 2y f t . . TOTAL = 4120.l/m l

DIATOMS 85.3 Pennate — 13*3 Navicula nr. cryptocephala; 34.7 Fragilaria nr. construens; 13.9 Nitzschia nr. palae; 22.8 Synedra ulna 138.9 Centric — 41.7 Stephanodiscus nr. invisitatus; 62.5 Cyclotella nr. meneghiniana; 34.7 C. hr; mlehiganianfe,' CHLOROPHYTA 3861.2 — 201.4 Chlamydomonas sp. A.; 62.5 C. sp. C.; 3527*8 Chlorella nr. vulgaris; I 3.9 Ankistrodesmus falcutus; 55.6 A. sp. MASTIGOPHCRA 34.7 — 34.7 Cryptomonas nr. ovata

SLW-9 @ 1 f t . TOTAL = 4951.l/m l

DIATOMS 27.7 Pennate — 6.9 Navicula nr. cryptocephala; 20.8 Fragilaria nr. construens 111.1 Centric — 69.4 Cyclotella nr. meneghiniana; 41.7 C. n r. m ichiganiana CHLOROPHYTA 4791.6 — 208.3 Chlamydomonas sp. A.; 4437.5 Chlorella nr. vulgaris; 97*2 C. nr. pyrenoidosa; 41.7 Ankistrodesmus sp .; 6 .9 Cosmarium CYANOPHYTA 6.9 — 6.9 Chroococus nr. minor MASTIGOPHCRA 6.9 — 6.9 Chilomonas nr. paramecium CILIOPHORA 6.9 — 6.9 Glaucoma sp. SLW-9 @ 3 f t . TOTAL * 3680.4/ml

DIATOMS 34.7 P ennate — 6.9 N avicula sp. B .;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 4 1

PLANKTON SUMMARY — ( O r g a n is m s /m l)

i<~26-?4 SL¥-9 @ 3 ft. cont....,

DIATOMS c o n t.. 2?.8 Fragillaria nr. construens 111.1 Centric — 69.4 Cyclotella nr. meneghiniana; 41.7 C. n r. m ichiganiana CHLOROPHYTA 3506.9 — 25O.O Chlamydomonas sp. A .; 3159*7 C hlorel­ la nr. vulgaris; 90.3 Ankistrodesmus sp.; 6.9 Cosmarium CYANOPHYTA 13.9 — 13*9 Chroococcus nr. minor MASTIGOPHORA 6.9 — 6.9 Chilomonas nr. paramecium CILIOPHORA 6.9 — 6.9 Glaucoma sp.

5-7-74 SLE-1 @ f- f t . TOTAL = I 378 . 9 M

DIATOMS 27.8 Pennate — 27.8 Nitzschia nr. palae 27.7 Centric — 6.9 Cyclotella nr. meneghiniana; 13.9 Melosira nr. varians; 6.9 M. granulata CHLOROPHYTA 1154.8 — 770.8 Chlamydomonas sp. A .; 22.8 C. sp. C.» 55*6 Chlorella nr. pyrenoidosa; 305.6 Golenkina paucispina CYANOPHYTA 20.8 — 20.8 Oscillatoria nr. suhbrevis EUGLENOPHYTA 13.9 — 13.9 Trachelomonas sp. D. MASTIGOPHCRA 36.7 — 13.9 Bodo sp. A .; 22.8 Chroomonas nr. nordstedtii CILIOPHORA 97*2 — 97*2 Glaucoma sp.

SLE-1 @ !-§• f t . TOTAL = 874.9/ml

DIATOMS 20.8 Centric — 6.9 Cyclotella nr. meneghiniana; 13.9 Melosira nr. varians CHLOROPHYTA 680.5 — 486.1 Chlamydomonas sp. A .; 13.9 C. sp. C .; 13.9 S. sp. D.; 6.9 Ankistrodesmus sp .; 159.7 Golenkina paucispina CYANOPHYTA 6 .9 — 6.9 Oscillatoria nr. subbrevis MASTIGOPHORA 48.6 — 13.9 Bodo sp. A.; 13*9 B. sp. B .; 20.8 Chroomonas nr. nordstedtii CILIOPHORA 118.1 — 118.8 Glaucoma sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PLANKTON SUMMARY — ( O r g a n is m s /m l)

5-7-74 cont.. SL E -5 @ J f t . TOTAL ■= 1 1 1 .0 /m l

CHLOROPHYTA 62.4 — 3^*7 Chlamydomonas sp. A .; 6.9 C. sp. D .; 13*9 Golenkina paucispina; 6.9 Tetraedron sp. EUGLENOPHYTA 48.6 -- 48.6 Trachelomonas sp. D.

SLE-5 @ i f ft. TOTAL = 124.8/ml

CHLOROPHYTA 76.3 — 20.8 Chlamydomonas sp. A .; 13.9 C. sp. C.; 6.9 Scenedesmus nr. abundans; 3^*7 Golen­ kina paucispina EUGLENOPHYTA 6.9 — 6.9 Trachelomonas sp. D. MASTIGOPHORA 6.9 — 6.9 Bodo sp. A. ; CILIOPHORA 34.7 — 34*7 Glaucoma sp.

SLE-8 @ j ft. TOTAL = 486.0/rai

DIATOMS 13.9 Centric — 13*9 Cyclotella nr. michiganiana CHLOROPHYTA 187.4 — 69.4 Chalmydomonas sp. A.; 20.8 C. sp. C. 13.9 Chlorella nr. vulgaris; 83-3 Golen­ kina paucispina EUGLENOPHYTA 201.4 — 48.6 Trachelomonas sp. D.; 41.7 T. sp. A. 13.9 T. sp. B.; I 3.9 T. sp. C.; 69.4 Euglena sp. A.; 13*9 Phacus sp. C. MASTIGOPHORA 76.4 — 76.4 Chroomonas n r. n o rd ste d tii CILIOPHORA 6.9 — 6.9 Glaucoma sp.

SLE-8 @ l i f t . TOTAL = 249.8/m l

CHLOROPHYTA 131.9 13*9 Chlamydomonas sp. A .; 34.7 C h lo rella nr. vulgaris; 20.8 C. nr. pyrenoidosa; 6.9 Scenedesmus nr. quadricauda var. parvus; 55.6 Golenkina paucispina CYANOPHYTA 13.9 — 6.9 Chroococus nr. minor; 6.9 Anabaena sp. EUGLENOPHYTA 13.9 — 13.9 Trachelomonas sp. C. MASTIGOPHORA 27.7 — 20.8 Chroomonas n r. n o rd s te d tii; 6.9 Cryptomonas nr. ovata CILIOPHORA 62.5 — 41.7 Vorticella sp.; 20.8 Glaucoma sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 4 3

PLANKTON SUMMARY — ( O r g a n is m s /m l)

5 - 1 4 - 7 4 SLW-1 @ 1 f t . TOTAL = 5 6 2 .3 / m l

DIATOMS 13.8 Pennate — 6.9 Nitzschia sp.; 6.9 Fragilaria nr. construens 194.4 Centric -- 131*9 Cyclotella nr. meneghiniana; 62.5 C. nr. michiganiana CHLOROPHYTA 76.3 — 69.4 Chlorella nr. vulgaris; 6.9 Phacotus nr. lenticularis EUGLENOPHYTA 83.3 — 83.3 Euglena sp. B. MASTIGOPHCRA 194.5 — 13.9 Bodo sp. A.; 90.3 Chroomonas nr. nordstedtii; 90*3 Cryptomonas nr. ovata

SLW-1 @ 3 ft. TOTAL - 437/6/ml

DIATOMS 34.7 Pennate — 20.8 Nitzschia nr. palae; 13.9 Gomphonema sp. 166.7 Centric — 104.2 Cyclotella nr. meneghiniana; 62.5 C. nr. michiganiana CHLOROPHYTA 62.5 — 34.7 Chlorella nr. vulgaris; 27*8 Ankistrodesmus sp .; EUGLENOPHYTA 41.7 — 41.7 Euglena sp. B. MASTIGOPHORA 118.1 — 62.5 Chroomonas nr. nordstedtii; 55.6 Cryptomonas nr. ovata CILIOPHORA 13.9 — 13*9 Holophrya sp.

SLW-9 @ 1 f t . TOTAL = 326. 3/m l

DIATOMS 48.6 Centric — 3^*7 Cyclotella nr. meneghiniana; 13.9 C. nr. michiganiana CHLOROPHYTA 104.1 — 83.3 Chlorella nr. vulgaris; 13*9 Chlamy' domonas sp. C .; 6.9 Cosmarium EUGLENOPHYTA 83.3 “ 20.8 Euglena sp. B.; 62.5 E. sp. C. MASTIGOPHORA 90.3 — 27.8 Chroomonas nr. nordstedtii; 55.6 Cryptomonas nr. ovata; 6.9 C hilo- monas n r. paramecium

SLW-9 @ 3 f t . TOTAL = 604. l/m l

DIATOMS 13.9 Pennate — 13*9 Gomphonema sp. 152.8 Centric — 97.2 Cyclotella nr. meneghiniana; 55.6 C. n r. m ichiganiana CHLOROPHYTA 48.6 — 48.6 Chlorella nr. vulgaris

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. i*+*+

PLANKTON SUMMARY — ( O r g a n is m s /m l)

5-l*+-7*+ SLW-9 ® 3 ft. cont....

EUGLENOPHYTA 166.6 — 83*3 Euglena sp. B.; 62.5 E. sp. C.; 20.8 Phacus sp. B. MASTIGOPHCRA 152.8 — 97*2 Chroomonas nr. nordstedtii; *+1.7 Cryptomonas nr. ovata; 13*9 Bodo sp. B. CYANOPHYTA *+8.6 — *+8.6 Chroococus nr. minor CILIOPHORA 20.8 — 20.8 Cyclidium sp.

5-21-7*+ SLE-1 @ j f t . TOTAL = 631.9 NOTE: sample ------extremely turbid

DIATOMS 27.8 Centric — 6.9 Melosira granulata; 20.9 M. nr. varians CHLOROPHYTA 138.9 ■— 76.*+ Chlamydomonas sp. A .; 55.6 C. sp. D .; 6*9 • sp. C. EUGLENOPHYTA 333*3 — 277.8 Trachelomonas sp. D.; *+8.6 Euglena sp. A.; 6.9 Trachelomonas sp.,B. CILIOPHORA 131.9 — 131*9 Glaucoma sp.

SLE-1 @ l i f t . TOTAL «= 69*+.*+/ml

DIATOMS 83.3 Centric — 13*9 Cyclotella nr. meneghiniana; 3*+.7 C. nr. m ichiganiana; 20.8 Melosira nr. varians; 13.9 M. granulata CHLOROPHYTA 90.3 — 90.3 Chlamydomonas sp. A. CYANOPHYTA X3 .8 — 6.9 Chroococus nr. minor; 6.9 Oscillatoria nr. limosa EUGLENOPHYTA *+02.8 — 3*+0.3 Trachelomonas sp. B.; 20.8 Phacus sp. B.; *+1.7 Euglena sp. A.; CILIOPHORA 10*+.2 — 90.3 Glaucoma sp. j 13*9 Holophrya sp.

SLE-5 @ i f t . TOTAL = 3*+*7/al

DIATOMS 13.9 Pennate — 13.9 Navicula sp. A. CHLOROPHYTA 13.9 — 13.9 Chlamydomonas sp. A. EUGLENOPHYTA 6.9 — 6.9 Trachelomonas sp. D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 4 5

PLANKTON SUMMARY — (O r g a n is m s /m l)

5-21-74 cont.. S L E -5 @ i f f t . TOTAL - 1 1 3 .2 /m l

CHLOROPHYTA 62.5 —27.8 Chlamydomonas sp. A .; 27*8 C. sp. C. j 6.9 Chlorella nr. vulgaris EUGLENOPHYTA 48.8 — 48.8 Trachelomonas sp. D. MASTIGOPHORA 13.9 — 13*9 Bodo sp. A.

SLE-8 @ f f t . TOTAL = 34. 6/m l

CHLOROPHYTA 20.8 — 20.8 Chlamydomonas sp. A. EUGLENOPHYTA 6.9 — 6.9 Trachelomonas sp. D. CILIOPHCRA 6.9 — 6.9 Glaucoma sp.

SLE @ i f f t . TOTAL - 13. 8 / a l

CHLOROPHYTA 6.9 — 6 .9 Chlamydomonas sp. A. EUGLENOPHYTA 6.9 — 6.9 Trachelomonas sp. D.

5-28-74 SLW-1 @ 1 f t . TOTAL = 458.2/m l

DIATOMS 6.9 Pennate — 6.9 Navicula sp. A. CHLOROPHYTA 20.8 — 13.9 Golenkina paucispina; 6.9 Cosmarium sp. EUGLENOPHYTA 55.5 — 6.9 Trachelomonas sp. D.; 6.9 T. sp. E . ; 41.7 Phacus sp. B. CILIOPHCRA 250.0 — Holophyra sp.; 27.8 Cyclidium sp.; 194.5 Glaucoma sp.

SLW-1 @ 3 ft. TOTAL - 131.8/ml

DIATOMS 6.9 Pennate — 6.9 Navicula sp. A. EUGLENOPHYTA 13.9 — I 3.9 Phacus sp. B. MASTIGOPHCRA 69.4 — 69.4 Chroomonas nr. nordstedtii CILIOPHCRA 41.6 — 6.9 Holophyra sp. 5 34.7 Glaucoma sp.

SLE-5 @ 1 f t . TOTAL « 229 . 3/ml

DIATOMS 13.9 Pennate — 13-9 Navicula sp. A. Chlorophyta 41.7 — 13.9 Chlamydomonas sp. A.; 27.8 Golenkina pau cisp in a EUGLENOPHYTA 41.7 — 41.7 Phacus sp. B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 4 6

PLANKTON SUMMARY — (O r g a n is m s /m l)

5-28-74 SLW-5 @ 1 ft. cont....

MASTIGOPHORA 27.8 —< 27.8 Chroomonas nr. nordstedtii CILIOPHORA 104.2 — 90.3 Glaucoma sp. j 13* 9 Holophrya sp.

SLW-5 e 3 f t . TOTAL = 194 . 3/ml

DIATOMS 6.9 Pennate — 6.9 Navicula nr. cryptocephala CHLOROPHYTA 20.8 — 20.8 Chlamydomonas sp. A. EUGLENOPHYTA 48.6 — 13*9 Trachelomonas sp. D.; 34.7 Phacus sp. B. MASTIGOPHORA 34.7 — 13-9 Chroomonas nr. nordstedtii{ 20.8 Cryptomonas nr. ovata CILIOPHCRA 83.3 — 76.4 Glaucoma sp .; 6.9 Holophrya sp.

SLW-9 @ 1 f t . TOTAL - 145.7/ml

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae CHLOROPHYTA 27.8 — 6.9 Chlamydomonas sp. A .; 20.8 Golenkina paucispina EUGLENOPHYTA 20.8 — 6.9 Phacus sp. B.; I 3.9 P. sp. A. MASTIGOPHORA 6.9 — 6.9 Chilomonas nr. paramecium CILIOPHORA 83.3 — 53*5 Glaucoma sp .; 27.8 Holophrya sp.

SLW-9 e 3 f t . TOTAL - 69.4/m l

CHLOROPHYTA 6.9 — 6.9 Golenkina paucispina EUGLENOPHYTA 13.9 — 13.9 Phacus sp. B. CILIOPHORA 48.6 — 27.8 Glaucoma sp .; 20.8 Holophrya sp.

6-11-74 SLE-1 @ i f t . TOTAL ■= 265. 6/ml

DIATOMS 27.7 Pennate — 6.9 Navicula nr. cryptocephala; 20.8 Nitzschia nr. palae CHLOROPHYTA 71.4 — 22.8 Chlamydomonas sp. A .; 13.9 G. sp. C .; 34.7 Chlorella nr. vulgaris CYANOPHYTA 6.9 — 6.9 Oscillatoria tenuis EUGLENOPHYTA 76.3 — 69.4 Trachelomonas sp. D. j 6.9 Phacus sp. B. CILIOPHORA 83.3 — 76.4 Vorticella sp. j 6.9 Glaucoma sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PLANKTON SUMMARY — ( O r g a n is m s /m l)

6 - 1 1 - 7 4 c o n t.. SLE-1 @ l | f t . TOTAL = 250.0/m l

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae CHLOROPHYTA 83*3 — 27.8 Chlamydomonas sp . A .; 20.8 C h lo rella nr. vulgaris; 3^*7 Golenkina paucispina EUGLENOPHYTA 27.8 27.8 Trachelomonas sp. D. CILIOPHORA 132.0 — 104.2 Vorticella sp .; 27*8 Glaucoma sp.

SLE-5 @ -f- f t . TOTAL = 76. 3/m l / _ ^ V 1^M—_ 1 DIATOMS 6.9 Pennate — 6.9 Fragillaria nr. construens CHLOROPHYTA 6.9 — 6 .9 Chlamydomonas sp. A. EUGLENOPHYTA 48.6 — 13*9 Trachelomonas sp. D . ; 27*8 T. sp. B . 5 6.9 Euglena sp. C. CILIOPHORA 13.9 — 13*9 Vorticella sp.

SLE-5 @ i f f t . TOTAL = 4 l6 .6 /a l

DIATOMS 83.3 Pennate — 83.3 Nitzschia nr. palae CHLOROPHYTA 118.0 — 48.6 Chlamydomonas sp. A .; 27*8 C. sp. C. 3*. 7 Chlorella nr. vulgaris; 6.9 C. nr. pyrenoidosa EUGLENOPHYTA 138.9 ~ 62.5 Trachelomonas sp. D. ; 76.4 T. sp. B. CILIOPHCRA 76.4 — 62.5 V o rtic e lla s p .; 13*9 Glaucoma sp.

SLE-8 @ | f t . TOTAL = 367. 8 /ml

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae CHLOROPHYTA 1 7 3 .4 — 1 3 .9 Chlamydomonas s p . A.; 20.8 C h lo rella nr. vulgaris; 131.8 C. nr. pyrenoidosa; 6 .9 Cosmarium sp. CYANOPHYTA 20.8 ■— 20.8 Chroococus nr. minor EUGLENOPHYTA 76.4 — 48.6 Trachelomonas sp. B. ; 27*8 Phacus sp. B. CILIOPHORA 90.3 — 76.4 Vorticella sp.; 13*9 Cyclidium sp.

SLE-8 @ l i f t . TOTAL * 263. 7/ml

DIATOMS 41.6 Pennate — 6.9 Navicula nr. cryptocephala; 34.7 Nitzschia nr. palae

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 4 8

PLANKTON SUMMARY — (O r g a n is m s /m l)

6 - 1 1 - 7 4 SLE-8 @ if ft. cont..’..

CHLOROPHYTA 1041. — 34*7 Chlamydomonas sp. A .; 69.4 C hlorella nr. pyrenoidosa EUGLENOPHYTA 48.6 «— 13.9 Trachelomonas sp. D.; 34.7 T. sp. B. CILIOPHORA 69.4 — 55*6 Vorticella sp.; 6.9 Glaucoma sp.; 6.9 Holophrya sp.

6-28-74 SLW-1 @ 1 f t . TOTAL =* 166. 5/m l

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae 20.8 Centric — 6.9 Cyclotella nr. meneghiniana; 13.9 Melosira nr. varians CHLOROPHYTA 41.7 — 13*9 Ankistrodesmus falcutus; 27.8 A. sp. CYANOPHYTA 6.9 — 6.9 Anabaena sp. EUGLENOPHYTA 62.4 — 48.6 Phacus sp. A.; 6.9 Euglena sp. B.; 6.9 E. sp. C. MASTIGOPHORA 27.8 — 27.8 Chroomonas nr. nordstedtii

SLW-1 @ 3 f t . TOTAL « 33 3 -l/m l

DIATOMS 13.8 Centric — 6.9 Cyclotella nr. meneghiniana; 6.9 Melosira nr. varians CHLOROPHYTA 145.7 — 83.3 Chlamydomonas sp. A.; 20.8 C. sp. D.; 20.8 Chlorella nr. pyrenoidosa; 13.9 Ankistrodesmus sp.; 6.9 Phacotus nr. lenticularis CYANOPHYTA 6.9 — 6.9 Anabaena sp. EUGLENOPHYTA 132.0 — 118.1 Phacus sp .; A.; 13.9 Euglena sp. C. MASTIGOPHORA 34.7 — 34-7 Chroomonas nr. nordstedtii

SLW-5 @ 1 ft. TOTAL = 2 4 9 .9/m l

DIATOMS 6.9 Centric — 6.9 Melosira granulata CHLOROPHYTA 104.1 — 48.6 Chlamydomonas sp. A.; 6.9 C. sp. C.; 6.9 Chlorella nr. vulgaris; 41.7 C. nr* pyrenoidosa; 20.8 Cosmarium sp. CYANOPHYTA 20.8 — 13.9 Chroococus nr. minor; 6.9 Aphanocapsa r i v u l a r i s EUGLENOPHYTA 104.2 — 27.8 Trachelomonas sp. D.; 27.3 Phacus sp. B.; 27.8 P. sp. A.; b.9 Euglena sp. B.;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 4 9

PLANKTON SUMMARY — (O r g a n is m s /m l)

6 - 2 8 - ? 4 SLW-5 @ 1 ft. cont....

EUGLENOPHYTA cont.... 13.9 S. sp. C. MASTIGOPHORA 13*9 — 13*9 Cryptomonas nr. ovata

SLW-5 @ 3 f t . TOTAL = 270.6/m l

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae 20.8 Centric — 13*9 Melosira granulata; 6.9 M. nr. varians CHLOROPHYTA 76.3 — 20.8 Chlamydomonas sp. A.; I3.9 Chloro- gonium sp.; 34-7 Ankistrodesmus sp.; 6.9 Cosmarium sp. EUGLENOPHYTA 90.2 — 6.9 Trachelomonas sp. D.; 48.6 Phacus sp. A.5 6.9 sp. B.; 13.9 Euglena sp. B.> 13.9 E. sp. C. MASTIGOPHORA 76.4 — 41.7 Chroomonas nr. nordstedtii; 34.7 Cryptomonas nr. ovata

SLW-9 @ 1 f t . TOTAL = 194.3/m l

DIATOMS 6.9 Centric — 6.9 Melosira granulata CHLOROPHYTA 27-7 — 20.8 Ankistrodesmus sp.; 6.9 Golenkina p au cisp in a EUGLENOPHYTA 41.6 — 6.9 Trachelomonas sp. D.; 6.9 Euglena sp. B.; 27-8 E. sp. C. MASTIGOPHCRA 90.3 — 41.7 Chroomonas nr. nordstedtii; 41.7 Cryptomonas nr. ovata; 6.9 Chilomonas nr. paramecium CILIOPHORA 27-8 — 13-9 Vorticella sp. B.; 13.9 Cyclidium sp.

SLW-9 @ 3 f t . TOTAL = 201.2/m l

DIATOMS 13.9 Pennate — 13*9 Nitzschia nr. palae 13.9 Centric ~ 13*9 Melosira nr. varians CHLOROPHYTA 48.5 — 6.9 Chlamydomonas sp. A.; 6.9 Chloro- gonium sp.; 2?.8 Ankistrodesmus sp .; 6.9 Cosmarium sp. CYANOPHYTA 13.9 — 13*9 Aphanocapsa rivularis EUGLENOPHYTA 83*3 — 34.7 Trachelomonas sp. D.; 13*9 Phacus sp. B.; 13*9 Euglena sp. B. 5 20.8 E. sp. C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 5 0

PLANKTON SUMMARY — ( O r g a n is m s /m l)

6-28-74 SLW-9 @ 3 ft. cont....

MASTIGOPHORA 27.7 — 20.8 Chroomonas nr. nordstedtii; 6.9 Cryptomonas nr. ovata

7-12-74 SLE-1 @ -§■ f t . TOTAL = 791.6/m l

DIATOMS 6.9 Centric — 6.9 Cyclotella nr. meneghiniana CHLOROPHYTA 41.6 — 20.8 Chlamydomonas sp. A.; 20.8 Chlorella nr. pyrenoidosa EUGLENOPHYTA 159-8 — 90.3 Trachelomonas sp. D.; 13*9 Fhacus sp. C.; 55*6 Euglena nr. acus MASTIGOPHORA 76.4 — 27.8 Bodo sp. A. 5 48.6 Chroomonas nr. nordstedtii CILIOPHORA 506.9 — 6.9 Vorticella sp. ; 13-9 Holophrya s p .; 486.1 Glaucoma sp.

SLE-1 @ ft. TOTAL = 758.8/ml

DIATOMS 13.9 Pennate — 13-9 Synedra ulna 13.9 Centric — 13*9 Melosira nr. varians CHLOROPHYTA 131.9 — 34.7 Chlamydomonas sp. A.; 97-2 Chlorella nr. pyrenoidosa CYANOPHYTA 34.7 — 13*9 Chroococus s p . ; 2 0 .8 Anabaena sp. EUGLENOPHYTA 62.5 — 48.6 Trachelomonas sp. D.; 13*9 Phacus sp . D. MASTIGOPHORA 20.8 — 20.8 Bodo sp. A. CILIOPHORA 439.5 — 22.8 Vorticella sp.; 416.7 Glaucoma sp. ROTIFERA 41.6 — 6.9 Brachionus urceolares; 34-7 Filinia longiseta

SLE-5 @ j ft. TOTAL = 764.l/ml

CHLOROPHYTA 6 .9 — 6 .9 Golenkina paucispina CYANOPHYTA 41.7 — 41.7 Anabaena sp. EUGLENOPHYTA 409.6 — 138.9 Trachelomonas sp. D.; 159-7 Phacus sp. B.; 97.2 P. sp. A.; 6.9 Euglena nr. acus; 6.9 E. sp. C. MASTIGOPHORA I 67.O — 6 .9 Bodo sp. B.; 55.9 Chroomonas nr. nordstedtii; 104.2 Cryptomonas nr. ovata

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 5 1

PLANKTON SUMMARY — ( O r g a n is m s /m l)

? - 1 2 - ? 4 SLE-5 @ j ft. cont....

CILIOPHCRA 138.9 — 138.9 Glaucoma sp.

SLE-5 @ if ft. TOTAL = 666.5/ml

DIATOMS 13-9 Pennate — 13*9 Navicula sp. B. CHLOROPHYTA 159.6 — 3^.7 Chlamydomonas sp. A.; 34.7 C. sp. E .; 13.9 Chlorella nr. pyrenoidosa? 69.4 Ankistrodesmus sp.; 6.9 Golenkina p a u cisp in a EUGLENOPHYTA 83.3 — 34.7 Trachelomonas sp. A.; 41.7 Phacus sp. B .; 6.9 Euglena sp. C. MASTIGOPHORA 326.4 — 48.6 Bodo sp. A.; 27.8 B. sp. B.; 104.2 Chroomonas nr. nordstedtii; 145.8 Cryptomonas nr. ovata CILIOPHCRA 76.4 — 20.8 Holophrya sp .; 62.5 Glaucoma sp.

SLE-8 @ 7 ft. TOTAL = 367.9/ml

DIATOMS 13.9 Pennate — 13*9 Nitzschia nr. palae 2 7 . 8 Centric — 27-8 Stephanodiscus nr. invisitatus UNIDENTIFIED 41.7 — 41.7 spheres, light colored, granular surface, dark spot CHLOROPHYTA 48.5 — 20.8 Chlamydomonas sp. A.; 20.3 Chlorella nr. pyrenoidosa; 6.9 Golenkina paucispina EUGLENOPHYTA 69.4 — 27.8 Trachelomonas sp. D. ; 3^*7 Phacus sp. B.; 6.9 Euglena nr. acus MASTIGOPHORA 104.2 — 55.6 Chroomonas nr. nordstedtii; 48.6 Cryptomonas nr. ovata SARCODINA 20.8 — 20.8 Trimastigamoeba sp. CILIOPHCRA 41.6 — 20.8 Vorticella sp.; 6.9 Cyclidium sp .; 34.7 Glaucoma sp.

SLE-8 @ i f f t . TOTAL = 388. 8/ml

DIATOMS 20.8 Centric — 20.8 Stephanodiscus nr. invisitatus UNIDENTIFIED 69.4 — 69.4 spheres, light colored, granular surface, dark spot CHLOROPHYTA 55.6 — 55.6 Chlamydomonas sp. A. EUGLENOPHYTA 90.3 — 62.5 Trachelomonas sp. D. ; 27.8 Phacus sp . B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 5 2

PLANKTON SUMMARY — (O r g a n is m s /m l)

7-12-74 SLE-8 @ !-§• f t . con t....

MASTIGOPHORA 131.9 — 6.9 Bodo sp. A.; 69.4 Chroomonas nr. nordstedtii; 55*6 Cryptomonas nr. ovata SARGODINA 13-9 — 13*9 Trimastigamoeba sp. CILIOPHORA 76.3 — 20.8 Vorticella sp.; 20.8 Cyclidium sp.; 6.9 Holophrya sp.; 2 7 . 8 Glaucoma sp.

7-19-7** SLW-1 © !-§- f t . TOTAL « ? 5 0 . 0 / m l

DIATOMS 27.8 Pennate — 27*8 Nitzschia nr. palae 34.7 Centric — 27*8 Melosira nr. varians; 6.9 M. granulata CHLCROPKYTA 381.9 — 55*8 Chlamydomonas sp. A.; 319*4 Chlorella nr. pyrenoidosa; 6.9 Ankistrodesmus fal­ cu tu s CYANOPHYTA 264.0 — 55.6 Chroococus nr. minor; 13*9 C. dis­ persus; 3^.7 Aphanacapsa rivularis; 4 1.7 N ic ro c y stis aeru g in o sa; 118.5 Ana­ baena constricta MASTIGOPHORA 34.7 — 13-9 Bodo sp. B. 5 6.9 Chroomonas nr. nordstedtii; 13*9 Cryptomonas nr. ovata CILIOPHORA 6.9 — 6.9 Glaucoma sp.

SLW-1 @ 3 f t . TOTAL = 465.1/m l

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae 41.7 Centric -4 41.7 Melosira nr. varians CHLOROPHYTA 263.9 — 20.8 Chlamydomonas sp. A.; 173*8 Chlorella nr. pyrenoidosa; 27.8 Ankistrodesmus fal­ cutus; 41.7 A. sp. CYANOPHYTA 131.9 — 27.8 Chroococus nr. minor; 6.9 C. dis­ persus; 20.8 Aphanacapsa rivularis; 13.9 Microcystis aeruginosa; 62.5 Ana­ baena constricta EUGLENOPHYTA 6.9 — 6.9 Trachelomonas sp. D. MASTIGOPHCRA 6.9 — 6.9 Cryptomonas nr. ovata CILIOPHORA 6.9 — 6.9 Cyclidium sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 5 3

PLANKTON SUMMARY — ( O r g a n is m s /m l)

7-19-74 cont. . SLW-5 @'l|- ft. TOTAL = 888.9/ml

DIATOMS 20.8 Pennate — 20.8 Nitzschia nr. palae 27.8 Centric — 27*8 Melosira nr. varians CHLCROPHYTA 604.2 — 55.6 Chlamydomonas sp. A.; 222.2 C h lo rella nr. pyrenoidosa; 34*7 Chlamydomonas sp . E .; 13.9 Ankistrodesmus falcutus; 277*8 A.-sp. CYANOPHYTA 208.3 — 27.8 Chroococus nr. minor; 13-9 Aphana­ * capsa rivularis; 20.8 Nicrocystis aeru­ ginosa; 145.8 Anabaena constricta MASTIGOPHORA 13.9 — 13.9 Cryptomonas nr. ovata CILIOPHORA 13.9 — I 3.9 Vorticella sp.

SLW-5 @ 3 ft. TOTAL = 971.8/ml

DIATOMS 13.9 Pennate — 13*9 Nitzschia nr. palae 27.7 Centric — 6.9 Stephanodiscus nr. invisitatus; 6.9 Melosira granulata; 13*9 M. nr. v a ria n s CHLOROPHYTA 611.0 — 20.8 Chlamydomonas sp. A. 5 312*5 Chlorella nr. pyrenoidosa; 20.8 Ankistrodesmus fal­ c u tu s ; 256.9 A. sp. CYANOPHYTA 284.7 — 13.9 Chroococus nr. minor; 6.9 C. dis­ persus; 20.8 Aphanacapsa rivularis; 27.8 Microcystis aeruginosa; 215*3 Ana­ baena constricta EUGLENOPHYTA 6.9 — 6.9 Trachelomonas sp. E. MASTIGOPHCRA 13.8 — 6.9 Cryptomonas nr. ovata; 6.9 Chilomonas nr. paramecium SARCODINA 6.9 — 6.9 Trimastigamoeba sp. CILIOPHCRA 6.9 — 6.9 Vorticella sp.

SLW-9 @ l i f t . TOTAL * 360.9/m l

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae 27.8 Centric — 27.8 Melosira nr. varians CHLOROPHYTA 125.0 — 27.8 Chlamydomonas sp E.; 97*2 C h lo re lla nr. pyrenoidosa CYANOPHYTA 125.1 — 41.7 Chroococus nr. minor; I3.9 C. dis­ persus; 27.8 Aphanacapsa rivularis; 41.7 Nicrocystis aeruginosa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 154

PLANKTON SUMMARY — (O r g a n is m s /m l)

7 - 1 9 - 7 4 SLW-9 @ l i ft. c o n t....

EUGLENOPHYTA 13.8 — 6.9 Trachelomonas sp. D.; 6.9 Euglena sp. C. MASTIGOPHCRA 34.6 — 6.9 Bodo sp. A.; 20.8 Cryptomonas nr. ovata; 6.9 Chilomonas nr. paramecium SARCODINA 6.9 — 6.9 Trimastigamoeba sp. CILIOPHORA 20.8 — 13*9 Vorticella sp .; 6.9 Glaucoma sp.

SLW-9 @ 3 f t . TOTAL = 3 6 l.0 /m l

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae 48.6 Centric — 34-7 Nelosira nr. varians; 13*9 M. granulata CHLCROPHYTA 131.9 — 6.9 Chlamydomonas sp. C.; 104.2 Chlorella nr. pyrenoidosa; 13*9 Ankistrodesmus fal­ cutus; 6.9 A. sp. CYANOPHYTA 138.9 — 55*6 Chroococus nr. minor; 13-9 C. dis­ persus; 34.7 Aphanacapsa rivularis; 34.7 Microcystis aeruginosa EUGLENOPHYTA 13*9 — 13'9 Euglena sp. C. MASTIGOPHORA 6.9 — 6.9 Cryptomonas nr. ovata SARCODINA 13.9 — 13.9 Trimastigamoeba sp.

7-26-74 SLE-1 @ | f t . TOTAL = 8 1 2 .2/m l

DIATOMS 27.7 Centric — 20.8 Stephanodiscus nr. invisitatus; 6.9 Cyclotella nr. meneghiniana CHLOROPHYTA 138.7 — 69.4 Chlamydomonas sp. A .; 6.9 C h lo rella nr. pyrenoidosa; 34.7 Ankistrodesmus fal­ cu tu s; 6.9 A. sp.; 6.9 Kirchneriella nr. lunaris; 13-9 Golenkina paucispina EUGLENOPHYTA 27.7 — 6.9 Trachelomonas sp. D.; 13-9 Phacus sp. B.; 6.9 Euglena sp. C. PYRROPHYTA 41.7 — 41,7 Gymnodinium sp. MASTIGOPHORA 277.8 — 13.9 Bodo sp. A .; 55.6 Chroomonas nr. nordstedtii; 208.3 Cryptomonas nr. ovata SARCODINA 20.8 — 20.8 Trimastigamoeba sp. CILIOPHORA 277.8 — 131.9 Vorticella sp.; 41.7 Glaucoma sp.; 48.6 Holophrya sp..; 55-6 Euplotes sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PLANKTON SUMMARY — ( O r g a n is m s /m l)

7-26-74 cont. . S L E -1 @ i f f t . TOTAL = 8 8 8 .6 / m l

DIATOMS 27.5 Centric — 13*9 Stephanodiscus nr. invisitatus; 13*9 Cyclotella nr. meneghiniana CHLOROPHYTA 145.8 — 55.6 Chlamydomonas sp. A.; 6.9 C hlorella nr. vulgaris; 27.8 C. nr. pyrenoidosa; 48.6 Ankistrodesmus falcutus; 6.9 A. s p .; 27.8 Xirchneriella nr. lunaris CYANOPHYTA 27.8 — ;3*9 Spirulina laxa; 13*9 Anabaena sp. EUGLENOPHYTA 62.4 — 6.9 Trachelomonas sp. D.; 20.S Phacus sp. B.; 13.9 P. longicauda; 20.8 Euglena sp. C. PYRROPHYTA 48.6 — 48.6 Gymnodinium sp. MASTIGOPHORA 236.O — 13.9 Bodo sp. B .; 6 .9 Chroomonas nr. nordstedtii; 194.4 Cryptomonas nr. ovata; 20.8 Chilomonas nr. paramecium SARCODINA 27.8 — 27.3 Trimastigamoeba sp. CILIOPHORA 298.5 — 173.6 Vorticella sp .; 69*4 Glaucoma sp. ; 20.8 Holophrya sp .; 3^*7 Euplotes sp. ROTIFERA 13.9 — 13*9 Syncheta sp.

SLE-5 @ 2 ft. TOTAL = 978.8/ml

DIATOMS 13 .8 Centric — 6 .9 C yclotella nr. meneghiniana; 6 .9 C. nr. michiganiana CHLOROPHYTA 124.9 — 2 0.8 Chlamydomonas sp. A.; 13«9 C. sp. D.; 48 .6 Ankistrodesmus falcutus; 6 .9 A. s p .; 27-8 Kirchneriella nr. lunaris; 6 .9 Scene­ desmus nr. abundans CYANOPHYTA 166.7 — 27.8 Chroococus nr. minor; 133.9 Anabaena sp. EUGLENOPHYTA 166.6 — 48.6 Trachelomonas sp. A .; 111.1 Phacus sp. B.; 6 .9 P. longicauda PYRROPHYTA 27.8 — 27.8 Gymnodinium sp. MASTIGOPHORA 368.0 — 69.4 Chroomonas nr. nordstedtii; 298.6 Cryptomonas nr. ovata SARCODINA 6.9 — 6 .9 Trimastigamoeba sp. CILIOPHORA 104.1 — 104.1 Glaucoma sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PLANKTON SUMMARY — ( O r g a n is m s /m l)

7-26-74 cont. . S L E -5 @ I f f t . TOTAL = 7 2 8 .8 / m l

DIATOMS 20.8 Pennate — 20.8 Navicula sp. B. 6.9 Centric — 6.9 Cyclotella nr. michiganiana CHLOROPHYTA 124.9 — 62.5 Chlamydomonas sp. A.; 48.6 Ankistro­ desmus falcutus; 6.9 Scenedesmus nr. ahundans; 6-9 Cosmarium sp. CYANOPHYTA 55*5 — 6-9 Chroococus nr. minor; 6.9 Chlorococcum humicola; 41.7 Anabaena sp. EUGLENOPHYTA 62.5 — 62.5 Phacus sp. PYRROPHYTA 13-9 — 13*9 Gymnodinium sp. MASTIGOPHORA 374.9 — 69.4 Chroomonas nr. nordstedtii; 298.6 Cryptomonas nr. ovata; 6.9 Chilo- monas nr. paramecium SARCODINA 20.8 — 20.8 Trimastigamoeba sp. CILIOPHORA 48.6 — 13*9 Vorticella sp.; 34.? Glaucoma sp.

SLE-8 @ 10 inches TOTAL = 1187-1

DIATOMS 13-8 Centric — 6-9 Stephanodiscus nr. invisitatus; 6.9 Cyclotella nr. michiganiana UNIDENTIFIED 13.9 — 13-9 spheres, light colored, granular surface, dark spot CHLOROPHYTA 166.7— 48. -6 Chlorella nr. vulgaris; 55-6 Ankis­ trodesmus falcutus; 13«9 A. convulutus; 27-8 Kirchneriella nr. lunaris; 6 .9 Scene­ desmus nr. abundans; 13-9 S. nr. quadri­ cauda var. parvus CYANOPHYTA 76.4 — 76.4 Anabaena sp. EUGLENOPHYTA 249.9 — 34-7 Trachelomonas sp. A.; 83-3 T- sp. D.; 41.7 Phacus sp. B.; 27.8 P. sp. C.; 20.8 P. longicauda; 20.8 Euglena sp. C.; 20.8 E. nr. acus PYRROPHYTA 97.2 — 97.2 Gymnodinium sp. MASTIGOPHORA 437.5 — 145.8 Chroomonas nr. nordstedtii; 291-7 Cryptomonas nr. ovata SARCODINA 76.4 — 76.4 Trimastigamoeba sp. CILIOPHORA 55.3 — 55.3 Glaucoma sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 5 7

PLANKTON SUMMARY — (O r g a n is m s /m l)

7-26-7**- cont. . S L E -8 @ I t f t . TOTAL = 1 2 5 6 .8 /m l

DIATOMS 6 .9 Pennate — 6 .9 Nitzschia nr. palae 6.9 Centric — 6.9 Cyclotella nr. meneghiniana UNIDENTIFIED 62.5 — 62.5 spheres, light colored, granular surface, dark spot GKLOROPHYTA *1-8.6 — 6.9 Chlamydomonas sp. D.; 27*8 Ankistro­ desmus falcutus; 13-9 Kirchneriella nr. lu n a ris CYANOPHYTA 13.9 — 13.9 Anabaena sp. EUGLENOPHYTA 10**-.2 — 55-6 Trachelomonas sp. D. ; 6.9 T. sp. B. ; 13-9 Phacus sp. 3.; 13-9 P. longicauda; I3.9 Euglena sp. C. PYRROPHYTA 20.8 — 20.8 Gymnodinium sp. MASTIGOPHORA 909.7 — 250.0 Chroomonas nr. nordstedtii; 659*7 Cryptomonas nr. ovata SARCODINA 13.9 — 13*9 Trimastigamoeba sp. CILIOPHORA 69.** — 69.**- Glaucoma sp.

8-2-7**- SLW-1 @ i f f t . TOTAL = 722.2/m l

DIATOMS 20.8 Pennate — 20.8 Nitzschia nr. palae 76.**- Centric — 55*7 Melosira nr. varians; 20.7 M. granulata CHLOROPHYTA 305.6 — 27*8 Chlamydomonas sp. A.; 3**-.7 C. sp. E .; 111.1 Chlorella nr. vulgaris; 10**-.2 C. nr. pyrenoidosa; 13*9 Closterium sp. B. ; 13.9 Oocystis nr. elliptica var. minor CYANOPHYTA 10**-. 1 — 13.9 Aphanacapsa rivularis; 83-3 Micro­ cystis aeruginosa; 6.9 Anabaena sp. EUGLENOPHYTA I$ .6 — **-8.6 Trachelomonas sp. D.

PYRROPHYTA 13.9 — 13.9 Gymnodinium sp.

MASTIGOPHORA 13.9 — 13.9 Chilomonas nr. paramecium

SARCODINA 13.9 — 13.9 Trimastigamoeba sp. CILIOPHORA 125.0 — 10**-.2 Vorticella sp .; 20.8 Glaucoma sp.

SLW-1 @ 3 f t . TOTAL = 569 . 1/ml

DIATOMS 6.9 Pennate — 6 .9 Nitzschia nr. palae

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PLANKTON SUMMARY — (O r g a n is m s /r a l)

8-2-74 SLW-1 @ 3 ft. con t....

DIATOMS cont ... 62.5 Centric — 3^*7 Melosira nr. varians; 27-8 M. • granulata CHLOROPHYTA 374.9 — 20.8 Chlamydomonas sp. A.; I3.9 C. sp . C.; 27*8 C. sp. D.; 215*3 Chlorella nr. vul­ garis; 69.4 C. nr. pyrenoidosa; 20.8 Ankistrodesmus falcutus; 6.9 A. sp. CYANOPHYTA 48.6 — 6.9 Aphanacapsa rivularis; 41.7 Micro­ cystis aeruginosa EUGLENOPHYTA 27.7 — 20.8 Trachelomonas sp. D.; 6.9 Euglena sp. A. SARCODINA 6.9 — 6.9 Trimastigamoeba sp. CILIOPHORA 41.6 — 27*8 Vorticella sp.; 6.9 Cyclidium sp.; 6.9 Glaucoma sp.

SLW-5 @ I t f t . TOTAL - 388 . 6/ml

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae 34.7 Centric — 6 .9 Melosira granulata; 27*8 M. nr. varians CHLCROPHYTA 236.I — 13*9 Chlamydomonas sp. A. ; 159*7 Chlorella nr. vulgaris; 55*6 C. nr. pyrenoidosa; 13.9 Ankistrodesmus s p .; 6.9 Scenedesmus nr. incrassatulus CYANOPHYTA 34.7 — 34.7 Microcystis aeruginosa EUGLENOPHYTA 13.8 — 6 .9 Trachelomonas sp. D. ; 6 .9 Phacus sp. C. MASTIGOPHORA 6.9 — 6.9 Bodo sp. 3. SARCODINA 6.9 — 6 .9 Trimastigamoeba sp. CILIOPHORA 48.6 — 27*8 Vorticella sp.; 20.8 Glaucoma sp.

SLW-5 @ 3 f t . TOTAL = 668. 7/m l

DIATOMS 41.7 Pennate — 41.7 Nitzschia nr. palae 62.5 Centric — 6.9 Stephanodiscus nr. invisatatus; 27*8 Melosira granulata; 27*8 M. nr. varians CHLOROPHYTA 446.5 — 20.8 Chlamydomonas sp. A.; 3^*7 C. sp. D .; 286.8 Chlorella nr. vulgaris; 55*6 C. nr. pyrenoidosa; 13-9 Ankistrodesmus falcutus; 27.8 A. sp.; 6.9 Scenedesmus nr. incrassa­ tu lu s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 5 9

PLANKTON SUMMARY — ( O r g a n is m s /m l)

8 - 2 - 7 4 SLW-5 @ 3 co n t....

CYANOPHYTA 76.4 — I3.9 Aphanacapsa rivularis; 55*6 Micro­ cystis aeruginosa; 6.9 Anabaena sp. MASTIGOPHORA 20.8 — 6.9 Chroomonas nr. nordstedtii; 13.9 Cryptomonas nr. ovata CILIOPHORA 20.8 — 20.8 Vorticella sp.

SLW-9 ® lj ft. TOTAL - 646.2/ml

DIATOMS 111.1 Pennate — 111.1 Nitzschia nr. palae 69.4 Centric — 6.9 Cyclotella nr. meneghiniana; 41.7 Melosira nr. varians; 20.7 M. granulata CHLOROPHYTA 389.4 — 55.6 Chlamydomonas sp. A. ; 139*4 Chlorella nr. vulgaris; 194.4 C. nr. pyrenoidosa CYANOPHYTA 55*5 — 20.8 Chroococus nr. minor; 6.9 Aphanacapsa rivularis; 13*9 Microcystis aeruginosa; 13»9 Anabaena sp. CILIOPHORA 20.8 — 13*9 Vorticella sp .; 6.9 Glaucoma sp.

SLW-9 @ 3 f t . TOTAL = 812.4/m l

DIATOMS 69.4 Pennate — 62.5 Nitzschia nr. palae; 6.9 Fragilaris nr. construens 20.8 Centric — 6.9 Melosira nr. varians; 13*9 M. granulata CHLOROPHYTA 479*1 — 20.8 Chlamydomonas sp. A.; 20.8 C. sp. D. ; 333*3 Chlorella nr. vulgaris; 104.2 C. nr. pyrenoidosa CYANOPHYTA 152.8 — 27*8 Chroococus nr. minor; 113.1 Micro­ cystis aeruginosa; 6.9 Anabaena sp. CILIOPHORA 90.3 — 55*6 Vorticella sp.; 13*9 Cyclidium sp.; 20.8 Glaucoma sp.

8-9-74 SLE-1 @ \ f t . TOTAL = 3076.5/ml

DIATOMS I 3.9 Pennate — 13*9 Nitzschia nr. palae 229.2 Centric — 229*2 Stephanodiscus nr. invisa- ta tu s UNIDENTIFIED 55*6 — 55.6 spheres, light colored, granular surface, dark spot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 160

PLANKTON SUMMARY — ( O r g a n is m s /m l)

8 - 9 - 7 4 SLE-1 @ f- ft. con t....

CHLOROPHYTA 895*8 — 243*0 Chlamydomonas sp. A.; 104.2 Chlorel­ la nr. vulgaris; 104.2 Ankistrodesmus falcutus; 138*9 A. sp.; 69.4 Kirchneriella nr. lunaris; 48.6 Scenedesmus nr. abundans; 90.3 S. nr. quadricauda var. parvus; 90.3 S. nr. incrassatulus; 6.9 Actinastrum nr. Hantzschii CYANOPHYTA 138.9 — 111.1 Chroococus nr. minor; 2?.8 Anabaena s p . ' EUGLENOPHYTA 152.3 — 34.7 Trachelomonas sp. D. ; 27*8 Phacus sp. B .; 90.3 Euglena sp. C. MASTIGOPHORA 1298.6 — 215.3 Hodo sp. A.; 152.8 Chroomonas nr. nordstedtii; 930.5 Cryptomonas nr. ovata SARCODINA 138.9 — 138.9 Trimastigamoeba sp. CILIOPHORA 97.2 — 34.7 Vorticella sp .; 62.5 Glaucoma sp.

SLE-1 @ 1^ ft. TOTAL = 2212.2/ml

DIATOMS 203.3 Centric — 201.4 Stephanodiscus nr. invisa- tatus; 6-9 Cyclotella nr. mene­ g h in ian a UNIDENTIFIED 62.5 — 62.5 spheres, light colored, granular surface, dark spot CHLOROPHYTA 520.9 — 138.9 Chlamydomonas sp. A.; 111.1 Ankis­ trodesmus falcutus; 152.8 A. sp.; 27.8 Scenedesmus nr. abundans; 55.6 S. nr. quadricauda var. parvus; 13*9 Closterium sp. B.; 20.8 Golenkina paucispina CYANOPHYTA 76.4 — 76.4 Chlorococcum humicola EUGLENOPHYTA 104.2 — 55*6 Trachelomonas sp. D. ; 13.9 Phacus longicauda; 34.7 P* sp. B. MASTIGOPHORA 1173.6 — 180.6 Bodo sp. A.; 173*8 Chroomonas nr. nordstedtii; 819*4 Cryptomonas nr. ovata SARCODINA 6.9 — 6.9 Trimastigamoeba sp. RCTIFERA 6.9 — 6.9 Brachionus urceolares

SLE-5 @ | ft. TOTAL = 1284.5/ml

DIATOMS 6.9 Pennate — 6.9 Nitzschia nr. palae 173.6 Centric — 173*6 Stephanodiscus nr. invisata-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 161

PLANKTON SUMMARY — (O r g a n is m s /m l)

8 - 9 - 7 4 SLE-5 © I ft. c o n t....

DIATOMS cont. tus; 27.8 Cyclotella nr. mene- g h in ian a UNIDENTIFIED 125.0 — 125.0 spheres, light colored, granular surface, dark spot CHLOROPHYTA 2020.8 — 222.2 Chlamydomonas sp. A.; 9O.3 Chlorel- la nr. vulgaris; 131*9 Ankistrodesmus falcutus; 493.1 A. sp.; 569.4 Kirch- neriella nr. lunaris; 145-8 Scenedes- mus n r. atu ndans; 90.3 S. n r. q u a d ri- cauda var. parvus; I87.5 S. nr. incras- satulus; 48.6 Golenkina paucispina; 41.7 Phacotus nr. lenticularis CYANOPHYTA 118.0 — 34.7 Ghroococus nr. minor; 83-3 Chloro- coccum humicola EUGLENOPHYTA 319.4 — 90.3 Trachelomonas sp. D. ; 145-8 Fhacus sp. B.; 48.6 Euglena sp. C.; 34*7 E. nr. acus PYRROPHYTA 62.5 — 62.5 Gymnodinium sp. KASTIGOPHORA 826.4 — 41.7 Bodo sp. A.; 131*9 Chroomonas nr. nordstedtii; 541* 7 Cryptomonas nr. ovata; 111.1 Chilomonas nr. paramecium SARCODINA 236.1 — 236.I Trimastigamoeba sp. CILIOPHORA 236.1 — 27*3 Vorticella sp.; 208.3 Glaucoma sp.

SLE-8 @ j f t . TOTAL = 5499.7/ml

DIATOMS 27*8 Pennate — 27*8 Nitzschia nr. palae 243*0 Centric — 243*0 Stephanodiscus nr. invisa- ta tu s UNIDENTIFIED 76.4 — 76.4 spheres, light colored, granular surface, dark spot CHLOROPHYTA 1569.3 — 270.8 Chlamydomonas sp. A . 5 652.7 C hlorel- la nr. vulgaris; 152 .8 Ankistrodesmus falcutus; 187*5 A. sp .; 145*8 Kirchneri- ella nr. lunaris; 90*3 Scenedesmus nr. incrassatulus; 34.7 Golenkina paucispina; 34.7 Phacotus nr. lenticularis CYANOPHYTA 90.2 — 20.8 Chroococus nr. minor; 69.4 Spirulina nr. lax a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 162

PLANKTON SUMMARY — (O r g a n is m s /m l)

8 - 9 - 7 4 SLE-8 @ f ft. con t.. ..

EUGLENOPHYTA 527.8 — 48.6 Trachelomonas sp. D.5 375.0 Phacus sp. B.; 27.8 P. sp. C.; 76.4 P. longi- cauda MASTIGOPHQRA 2125.1 — 215.3 Bodo sp. A.; 326.4 Chroomonas nr. nordstedtii; 1277*8 Cryptomonas nr. ovata; 305*8 Chilomonas nr. paramecium SARCODINA 229*1 — 229.1 Trimastigamoeha sp. CILIOPHQRA 590.2 — 83*3 Vorticella sp.; 159-7 Cyclidium sp.; 347.2 Glaucoma sp. RCTIFERA 20.8 — 20.8 Brachionus urceolares

SLE-8 @ if ft. TOTAL = 5428.5/ml

DIATOMS 138.9 Pennate — 138.9 Nitzschia nr. palae 868.0 Centric — 798.6 Stephanodiscus nr. invisa- tatus; 69-4 Cyclotella nr. mene- g h in ian a UNIDENTIFIED 34.7 — 34.7 spheres, light colored, granular surface, dark spot CHLOROPHYTA 2317*4 — 777*7 Chlamydomonas sp. A.; 177-2 Chlor- ella nr. vulgaris; 27-8 Ankistrodesmus nr. falcutus; 173*6 A. sp.; 3^*7 Kirch- neriella nr. lunaris; 201.4 Scenedesmus nr. abundans; 3^*7 S. nr. quadricauda var. parvus; 48.6 S. nr. incrassatulus; 41.7 Golenkina paucispina CYANOPHYTA 173.6 — 76.4 Chroococus nr. minor; 97*2 Anabaena sp. EUGLENOPHYTA 138.9 — 62.5 Trachelomonas sp. D.; 76.4 Phacus sp. B. MASTIGOPHQRA I368.I — 388.9 Chroomonas nr. nordstedtii; 798.0 Cryptomonas nr. ovata; 180.6 Chilo­ monas nr. paramecium SARCODINA 312.5 — 312.5 Trimastigamoeha sp. CILIOPHORA 76.4 — 76.4 Glaucoma sp.

8-15-74 SLW-1 @ i f f t . TOTAL = 1124.8/m l

DIATOMS 222.2 Centric — 13*9 Cyclotella ne. meneghiniana;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 163

PLANKTON SUMMARY — ( O r g a n is m s /m l)

8-15-7** SLV-1 @ T§- f t. con t....

DIATOMS co n t. 83*3 Melosira granulata; 125.0 M. nr. varians CHLOROPHYTA 722.1 — 138.7 Chlamydomonas sp. A.; 166.7 Chlor- e l l a nr. v u lg a ris ; *+16.7 C. n r. p y ren o i- dosa CYANOPHYTA 173.6 — 55*6 Chroococus nr. minor; 6.9 C. dis- persus; 20.8 Aphanocapsa rivularis; 27.8 Microcystis aeruginosa; 3***? Aphani- zomenon flos-aquae; 13-9 Anabaena sp. 5 13.9 Oscillatoria nr. limosa CILIOPHQRA 6.9 — 6.9 Vorticella sp.

SLW-1 @ 3 f t . TOTAL = 1027.6/m l

DIATOMS 326.3 Centric — 6.9 Cyclotella nr. meneghiniana; 166.7 Melosira granulata; 152.7 M. nr. varians CHLOROPHYTA 548.6 — 90.3 Chlamydomonas sp. A.; 104.2 Chlorella nr. vulgaris; 354.1 C. nr. pyrenoidosa CYANOPHYTA 118.0 — 20.8 Chroococus nr. minor; 13-9 Aphano­ capsa rivularis; 6.9 Microcystis aeru­ ginosa; 62.5 Aphanizomenon flos-aquae; I3.9 Anabaena sp. MASTIGOPHQRA 20.8 — 6.9 Cryptomonas nr. ovata; 13*9 Chilomonas nr. paramecium CILIOPHQRA 13.9 — I3.9 Vorticella sp.

SLtf-5 @ l j ft. TOTAL = 1201.0/ml

DIATOMS 250.0 Centric — 97.2 Melosira granulata; 152.8 M. nr. varians CHLOROPHYTA 6^2.8 — 69.4 Chlamydomonas sp. A.; 90.3 Chlorella' nr. vulgaris; 430.6 C. nr. pyrenoidosa; I3.9 Chlamydomonas sp. D.; 27.8 C. sp. E .; 20.8 Ankistrodesmus falcutus CYANOPHYTA 187.2 — 20.8 Chroococus nr. minor; 6.9 C. nr. dispersus; 2?.8 Aphanocapsa rivularis; 90.0 Aphanizomenon flos-aquae; 13*9 Anabaena sp.; 27.8 O scillatoris nr. lim osa EUGLENOPHYTA 83.3 — 83.3 Euglena sp. B.;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 6 4

PLANKTON SUMMARY — (O r g a n is m s /r a l)

8 - 1 5 - 7 4 SLW-5 © i f f t . c o n t ------

CILIOPKORA 27.7 — 6.9 Vorticella sp.; 13-9 Cyclidium sp.; 6.9 Glaucoma sp.

SLW-5 @ 3 f t . TOTAL = 1152.7/m l

DIATOMS 277.8 Centric — 119.1 Melosira granulata; 158.7 M. nr. varians CHLOROPHYTA 7150 — 41.7 Chlamydomonas sp. A.; 62.5 Chlorella nr. vulgaris; 611.1 C. nr. pyrenoidosa CYANOPHYTA 138.8 — 20.8 Aphanocapsa rivularis; 76.4 Aphanizo­ menon flos-aquae; 6.9 Anabaena constricta; 6.9 A. sp.; 27.8 Oscillatoria nr. limosa MASTIGOPHORA 6.9 — 6.9 Cryptomonas nr. ovata CIIIOPHORA 13.9 — 13*9 Cyclidium sp.

SLW-9 © I t ft. TOTAL = 958.2/ml

DIATOMS 180.6 Centric — 62.5 Melosira granulata; 118.1 M. nr. varians CHLOROPHYTA 152.7 — 20.8 Chlamydomonas sp. A.; 27*8 Chlorella nr. vulgaris; 569-4 C. nr. pyrenoidosa CYANOPHYTA 152.7 — 20.8 Aphanocapsa rivularis? 83*3 Aphanizo­ menon flos-aquae; 34.7 Anabaena sp .; 13.9 OscillatOria nr. limosa CILIOPKORA 6.9 — 6.9 Vorticella sp.

SLW-9 © 3 f t . TOTAL = 875.0/m l

DIATOMS 138.9 Centric ~ 55*5 Melosira granulata; 83-4 M. nr. varians CHLOROPHYTA 534.7 — I3.9 Chlamydomonas sp. A.; 27.8 Chlorella nr. vulgaris; 493*0 C. nr. pyrenoidosa CYANOPHYTA 180.6 — 20.8 Aphanocapsa rivularis; 90.3 Aphani­ zomenon flos-aquae; 41.7 Anabaena sp .; 27.8 Oscillatoria nr. limosa SARCODINA 6.9 — 6.9 Trimastigamoeha sp. CILIOPHQRA 13.9 — 13.9 Vorticella sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 6 5

PLANKTON SUMMARY — (O r g a n is m s /m l)

8 - 2 0 - 7 4 SLE-1 @ f f t . TOTAL = 22809.9/ml

DIATOMS 69.4 Pennate — 69.4 Nitzschia nr. palae 8062.5 Centric — 7930.6 Stephanodiscus nr. invisa- tatus; 131.9 Cyclotella nr. michiganiana UNIDENTIFIED 569-4 — 569*4 spheres, light colored, granular surface, dark spot CHLOROPHYTA 5299.7 — 312.5 Chlamydomonas sp. A.; 513*9 Chlorel­ la nr. vulgaris; 659-7 C. nr. pyrenoidosa; 187-5 Ankistrodesmus falcutus; 2229.2 A. sp. 5 277-8 Kirchneriella nr. lunaris; 472.2 Scenedesmus nr. ahundans; 166.? S. nr. quadricauda var. parvus; 826.4 S. nr. incrassatulus; 166.7 Tetraedron sp. CYANOPHYTA 364.4 — 104.2 Chlorococcum humicola; 62-5 Anabaena sp.; 194.4 Oscillatoria tenuis EUGLENOPHYTA 1791.7 — 472.2 Trachelomonas sp. A.; 35^.2 T. sp. D. ; 236.1 T. sp. E .; 35^*2 Phacus sp. B.; 222.2 P. sp. A.; 1$2.8 P. longicauda MASTIGOPHQRA 4895*8 — 138.9 Bodo sp. A.; 472.2 B. sp. B.; I652.8 Chroomonas nr. nordstedtii; 2361.1 Cryptomonas nr. ovata; 125-0 Chilomonas nr. paramecium; 145-8 Crypto- monas n r. ero sa SARCODINA 708.3 — 708.3 Trimastigamoeha sp. CILIOPHQRA 1048.7 — 250.0 Vorticella sp .; 104.2 Cyclidium sp.; 590.3 Glaucoma sp .; 104.2 Holophrya sp.

SLE-1 @ if ft. TOTAL = 17756.8/ml

DIATOMS 6958.3 Centric — 6875*0 Stephanodiscus nr. invi- satatus; 27.8 Cyclotella nr. michiganiana; 3^*7 C. nr. glo- merata; 20.8 Melosira nr. varians UNIDENTIFIED 409.7 — 409.7 spheres, light colored, granular surface, dark spot CHLOROPHYTA 3819.5 — 277-8 Chlamydomonas sp. A.; 145*8 C. sp. C. 5 138.9 Chlorella nr. vulgaris; 8681. C. nr. pyrenoidosa; 118.1 Ankistro­ desmus falcutus; 1805.6 A. sp.; 48.6 Kirchneriella nr. lunaris; 69.4 Scene­ desmus nr. ahundans; 194.4 S. nr. quadri­ cauda var. parvus; 97.2 S. nr. incrassa-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PLANKTON SUMMARY — ( O r g a n is m s /m l)

8 - 2 0 - 7 4 SLE-1 © if ft. con t.. ..

CHLOROPHYTA cont.. tulus; 55*6 Chlorogonium sp. CYANOPHYTA 500.0 — 138.9 Chroococus nr. minor; 104.2 Chloro- coccum humicola; 208.3 Anabaena sp .; 48.6 Oscillatoria tenuis EUGLENOPHYTA 1791*6 — 444.4 Trachelomonas sp. A.; 138.9 T. sp. D.; 326.4 Phacus sp. B.; 104.2 P. sp. A. 20.8 P. sp. C.; 20.8 P. longicauda; 666.7 Euglena sp. B.; 69-4 E. nr. acus MASTIGOPHQRA 3374.9 — 812.5 Chroomonas nr. nordstedtii; 2222.2 Cryptomonas nr. ovata; 208.3 C. nr. erosa; 131*9 Chilomonas nr. parame­ cium CILIOPHQRA 902.8 — 215*3 Vorticella sp.; 666-7 Glaucoma sp .; 20.8 Strombidium sp.

SLE-5 @ | ft. TOTAL = 17020.7/ml

DIATOMS 90.3 Pennate — 90*3 Nitzschia nr. palae 6444.4 Centric — 5819.4 Stephanodiscus nr. in- visatatus; 548.6 Cyclotella nr. meneghiniana; 76.4 C. nr. michi­ ganiana UNIDENTIFIED 145.8 — 145.8 spheres, light colored, granular surface, dark spot CHLOROPHYTA 8256.8 — 125*0 Chlamydomonas sp. A.; 131*9 C. sp. C.; 284.7 Chlorella nr. vulgaris; 5569*4 C. nr. pyrenoidosa; 27*8 Ankis­ trodesmus falcutus; 1236.1 A. sp.; 69.4 Kirchneriella nr. lunaris; 222.2 Scenedesmus nr. abundans; 173*6 S. nr. quadricauda var. parvus; 138.9 S. in­ crassatulus; 222.2 Tetraheadron sp .; 55*6 Cosmarium sp. CYANOPHYTA 680.6 — 34.7 Chroococus nr. minor; 118.1 Chloro- coccum humicola; 486.1 Anabaena sp .; 41.7 Oscillatoria tenuis EUGLENOPHYTA 361.1 — 62.5 Phacus longicauda; 159*7 P* sp. B .; 27.8 P. sp. C.; 111.1 Euglena nr. acus MASTIGOPHQRA 805.6 — 69.4 Bodo sp. B .; 180.6 Chroomonas nr. nordstedtii; 513*9 Cryptomonas nr. ovata; 4 1 .7 C. n r. ero sa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 6 7

PLANKTON SUMMARY — ( O r g a n is m s /m l)

8 - 2 0 - 7 4 S L E -5 @ j f t . c o n t....

SARCODINA 152.8 — 152.8 Trimastigamoeha sp. CILIOPHORA 83.3 — 13*9 Vorticella sp.; 69.4 Glaucoma sp.

SLE-5 @ I t ft. TOTAL = 13833-1/ml

DIATOMS 33^7-2 Centric — 3131-9 Stephanodiscus nr. in- visatatus; 97-2 Cyclotella nr. meneghiniana; 90-3 C. nr. michi­ ganiana; 27.8 Melosira nr. vari­ ans UNIDENTIFIED 527.8 — 527-8 spheres, light colored, granular surface, dark spot CHLOROPHYTA 7333-3 — 159-7 Chlamydomonas sp. A.; 159-7 C. sp. C .; 125.0 C. sp. D.; 472.2 Chlorella nr. vulgaris; 4034.7 G- nr. pyrenoidosa; 256.9 Ankistrodesmus falcutus; 1305.6 A. sp .; 3^0-3 Scenedesmus nr. abundans; 2I5.3 S. nr. quadricauda var. parvus; 104.2 S. nr. incrassatulus; 125-0 Tetra- headron sp.; 3^-7 Closteridium nr. lunula CYANOPHYTA 826.4 — 145.8 Chroococus nr. minor; 173-6 Chloro- coccum humicola; 465-3 Anabaena sp .; 41.7 Oscillatoria tenuis EUGLENOPHYTA 493.0 — 6.9 Trachelomonas sp. A.; 152.8 T. sp. D.; 34.7 Phacus sp. A.; 83-3 P- sp. B.; 97-2 P. sp. C.; 13*9 P. longicuada; 104.2 Euglena nr. acus PYRROPHYTA 43.6 — 48.6 Gymnodinium sp. MASTIGOPHORA 847.1 — 194.4 Bodo sp. 3.; 131-9 Chroomonas nr. nordstedtii; 5°0.0 Cryptomonas nr. ovata; 20.8 C. n r. ero sa SARCODINA 145.8 — 145.8 Trimastigamoeha sp. CILIOPHORA 263.9 — 55-6 Borticella sp.; 97-2 Glaucoma sp.; 1 1 1 .1 Holophrya sp.

SLE-8 @ j ft. TOTAL = 26706.8/ml

DIATOMS 76.4 Pennate — 76.4 Nitzschia nr. palae 6819.4 C entric — 6388.9 Stephanodiscus nr. in- visatatus; 256.9 Cyclotella nr. meneghiniana; 138.9 C. nr. mich-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 6 9

PLANKTON SUMMARY — ( O r g a n is m s /m l)

S-20-74 S L E -8 @ j f t . c o n t....

DIATOMS co n t. iganiana; 3^-7 Melosira nr. varian s UNIDENTIFIED 255.6 — 255*6 spheres, light colored, granular surface, dark spot CHLOROPHYTA 10736.1 — 90*3 Chlamydomonas sp. A.; 326.4 C. sp. D.; 625.O Chlorella nr. vulgaris; 5562.5 C. nr. pyrenoidosa; 41.7 Ankis­ trodesmus falcutus; 2069.4 A. s p .; 69.4 Kirchneriella nr. lunaris; 1187-5 Scenedesmus nr. abundans; 263.9 S. nr. quadricauda var. parvus; 291-7 S. nr. incrassatulus; 20.8 Actinastrum Hantzschii; 187-5 Tetraheadron sp. CYANOPHYTA 1236.1 — 159-7 Chroococus nr. minor; 97*3 Chloro- coccum humicola; 979-2 Anabaena sp. EUGLENOPHYTA 1402.7 — 284.7 Trachelomonas sp. A.; 520.8 T. sp. D.; 222.2 Phacus sp. B.; 62.5 F- sp. C.; 76.4 P. longicauda; 159-7 Euglena sp. C.; 76.4 E. nr. acus PYRROPHYTA 111.1 — 111.1 Gymnodinium sp. MASTIGOPHCRA 4944.4 — 861.1 Bodo sp. B . 5 I 368.O Chroomonas nr. nordstedtii; 2715-3 Cryptomonas nr. ovata SARCODINA 937-5 — 137-5 Trimastigamoeha sp. CILIOPHORA 187.5 — 125-0 Cyclidium sp.; 62.5 Glaucoma sp.

SLE-8 @ l | f t . TOTAL = 14757-0/al

DIATOMS 4889.0 Centric — 4777.8 Stephanodiscus nr. in- visatatus; 55-6 Cyclotella nr. meneghiniana; 271.8 C. nr. mich­ iganiana; 27-8 Melosira nr. var­ ia n s CHLOROPHYTA 3590.2 — 76.4 Chlamydomonas sp. A.; 97-2 C. sp. D.; 513.9 Chlorella nr. vulgaris; I3.9 Ankistrodesmus falcutus; 1458.3 A. sp.; 222.2 Kirchneriella nr. lunaris; 652.8 Scenedesmus nr. abundans; 368.0 S. nr. quadricauda var. parvus; 1 1 1 .1 S. nr. incrassatulus; 76.4 Tetraheadron sp. CYANOPHYTA 541.7 — 152.8 Chroococus nr. minor; 388.9 Ana­ baena sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 170

PLANKTON SUMMARY — ( O r g a n is m s /m l)

8 - 2 0 - 7 4 SLE-8 @ if ft. co n t....

EUGLENOPHYTA 979.0 — 173.6 Trachelomonas sp. A.; 3^0*3 T. sp. D.; 180.6 Phacus sp. B. ; 131.4 P. sp. D.; 152.8 P. longicauda PYRROPHYTA 34.7 — 3^*7 Gymnodinium sp. MASTIGOPHQRA 3312.5 — 631.9 Bodo sp. B.; 590.3 Chroomonas nr. nordstedtii; 2090.3 Cryptomonas nr. ovata SARCODINA 84?.2 — 847-2 Trimastigamoeha sp. CILIOPHQRA 208.3 — 83.3 Cyclidium sp .; 125.0 Glaucoma sp.

8-29-74 SLW-1 © i f f t . TOTAL = 14270.5/ml

DIATOMS 20.8 Centric — 13-9 Melosira granulata; 6.9 M. nr. varians CHLOROPHYTA 3O83 .3 — 3076.4 Chlorella nr. pyrenoidosa; 6.9 Closterium sp. CYANOPHYTA 11131.8 — 83.3 Chroococus n r. minor; 6.9 Aphano­ capsa rivularis; 11006.9 Aphanizomenon flos-aquae; 3^-7 Anabaena sp. EUGLENOPHYTA 20.8 Trachelomonas sp. D. MASTIGOPHORA 6 .9 — 6.9 Chroomonas nr. nordstedtii CILIOPHQRA 6.9 — 6.9 Vorticella sp.

SLW-1 @ 3 f t . TOTAL = 18319.2/ml

DIATOMS 48.6 Centric — 20.8 Melosira granulata; 27.8 M. nr. varians CHLOROPHYTA 3444.4 — 90.3 Chlorella nr. vulgaris; 3333-3 G- nr. pyrenoidosa; 13-9 Ankistrodesmus falcutus; 6.9 Closterium sp. CYANOPHYTA 14805.4 — 256.9 Chroococus nr. minor; 13.9 Micro­ cystis aeruginosa.; 14499*9 Aphanizomenon flos-aquae; 3^-7 Anabaena sp. EUGLENOPHYTA 13.9 — 13.9 Trachelomonas sp. D.; CILIOPHORA 6.9 — 6.9 Vorticella sp.’ SLV-5 @ i f f t . TOTAL = 13103.9/ml

DIATOMS 6.9 Pennate — 6.9 Navicula nr. cryptocephala

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 171

PLANKTON SUMMARY — ( O r g a n is m s /m l)

8-29-74 SLW-5 @ l£ ft. c o n t....

DIATOMS co n t.. . 62.5 Centric — 6.9 Melosira granulata; 55.6 M. nr. varians CHLOROPHYTA 2979*1 — 104.2 Chlamydomonas sp. A .; 6.9 C. sp. C.; 3847*2 Chlorella nr. pyrenoidosa; I 3.9 Ankistrodesmus sp .; 6.9 Closterium sp. CYANOPHYTA 10013.8 — 277*8 Chroococus nr. minor; 69*4 Chlorococcum humicola; 6.9 Aphanocapsa rivularis; 13-9 Microcystis aeruginosa; 9618.0 Aphanizomenon flos-aquae; 27.8 Anabaena sp. EUGLENOPHYTA 13*9 — 13*9 Trachelomonas sp. D .; MASTIG0PH0RA 6.9 — 6.9 Chroomonas nr. nordstedtii CILIOPHORA 20.8 — 6.9 Vorticella sp.; 13*9 Glaucoma sp.

SLW-5 @ 3 ft. TOTAL = 13576.1/ml

DIATOMS 41.6 Centric — 20.8 Melosira granulata; 20.8 M. nr. varians CHLOROPHYTA 38B8.6 — 27.8 Chlamydomonas sp. A .; 3853*9 Chlorella nr. pyrenoidosa; 6.9 Closterium sp. B. CYANOPHYTA 9604.4 — 104.2 Chroococus nr. minor; 9444.4 Aphanizomenon flos-aquae; 55*8 Anabaena sp. EUGLENOPHYTA 20.8 — 13*9 Trachelomonas sp. D.; 6.9 Euglena sp. B. SARCODINA 13.9 — 13*9 Trimastigamoeha sp. CILIOPHORA 6.9 — 8.9 Glaucoma sp. (NOTE: sample also included 1 midge larvae, Glyptotendipes)

SLW-9 @ i f f t . TOTAL = 1106l.5/m l

DIATOMS 41.7 Centric — 6.9 Melosira granulata; 34.8 M. nr. v arian s CHLOROPHYTA 2679.6 — 6.9 Chlamydomonas sp. A .; 20.8 C h lo rella nr. vulgaris; 2638 .0 C. nr. pyrenoidosa; 13*9 Closterium sp. B. CYANOPHYTA 8270.8 — 20.8 Chlorococcum humicola; 8194.4 Aphanizomenon flos-aquae; 55*8 Anabaena sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 172

PLANKTON SUMMARY — ( O r g a n is m s /m l)

8 - 2 9 - 7 4 SLW-9 @ I t ft. cont....

EUGLENOPHYTA 13.9 — 13-9 Trachelomonas sp. D. SARCODINA 27.8 — 27.8 Trimastigamoeha sp. CILIOPHORA 27.7 — 20.8 Vorticella sp.; 6.9 Holophrya sp.

SLW-9 @ 3 f t . TOTAL = 9208.2/ml

DIATOMS 41.7 Centric — 41.7 Melosira nr. varians CHLOROPHYTA 2694.4 — 13.9 Chlorella nr. vulgaris; 2673*8 C. nr. pyrenoidosa; 6.9 Closterium sp. B. CYANOPHYTA 6451.4 — 41.7 Chroococus nr. minor; 20.8 Chloro­ coccum humicola; 13*9 Aphanocapsa rivu­ l a r i s ; 6305.6 Aphanizomenon flos-aquae; 69.4 Anabaena sp. SARCODINA 6.9 — 6.9 Trimastigamoeha sp. CILIOPHQRA 13.8 — 6.9 Vorticella sp.; 6.9 Holophrya sp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDIX D

CHLOROPHYLL a AND PHAEOPHYTIN DATA

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. p / 3-17 0.33 1.64 2.84 0.42 2.25 4.02 c 4.52 4.21 **** 1.594 3.552 3.432 2.860 2.596 PHAE 4.154 5.087 4.829 4.094 -9 .6 0 9 (MG/M3) WEST CHL 7.192 8.910 0.864 2.052 (MG/M3) 14.449 11.439 11.499 11.619 57.841 -12.124 42.986 ) 13.185 ) ) ) ) 1 1 1 1 1 ( ( ( ( (1) (1) (1) (1) ( (1 ) (1)

STATION SLW-1 SLW-9 SLW-9 SLW-9 SLW-1 SLW-1 ET (FT.)DEPTH SLW-5 SLW-1 SLW-9 SLW-1 = Chlorophyll to Phaeophytin Ratio c/p .36 1.59 0.59 0.42 0.20 0.13 0.37 0.24 0.46 0.30 O 0.34 C/P 0.2 6 SLW-9 TABLE TABLE 2 9 KEY TO KEY ABBREVIATIONS 1.130 1.918 3.071 3 >542 3 3.380 0.93 3.880 0.843 0.751 6.082 2.171 0.771 PHAE **.698 Chlorophyll a and Phaeophyiin Data CHL EAST 3.132 0.216 0.454 2.095 7.**52 0.799 1.747 0.778 0.389 2.549 0.648 0.416 0.270 0.259 ) ) ) ) ) 1) 1 1 l ) 1) 3) 1) 1 1 1 1) FT.) (MG/M3) (MG/M3) 1) 3) -8 -8

SLE SLE-1 SLE-1 SLE-5 SLE-8 SLE-1 SLE-8 STATION SLE-8 DEPTH SLE-1 SLE SLE-1 SLE-1 SLE-8 CHL >= ChlorophyllCHL >= a = PHAE Phaeophytin

DATE DATE LAGOON 2-13-7*1 11- 9-73 11-30-73 10-26-73 11-16-73 tn Reproduced with permission of the copyright owner. Further reproduction prohibited without (/) Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission. ithout w prohibited reproduction Further owner. copyright the of permission with Reproduced

TABLE 29 CONTINUED p sg o o z E ta Pi < h M a c E- = 'V X 3= E * * * O O W < A V O S P DA h h

O A C P O A » A C M M M CM - O CM CM CM \ K •VL p \ x < A AC CA CA CA Q CA eh s CC M 0 o o o Ah O ia X J S o < m pH < o E M X S '— S 1 - h ta Ah R ta M w to @ , s r s ta P S a c s ca s a A C o o o o o s ta

— , NO O N CC CO I P I P P P 3 H r H r O * CM rH rH A C A > rH A i A c A » A C * * * * * CM d O O O 0 ■a V ( [a CM CM V rH v t -V 1 = 1 1 1 I 1 . • • 1 1 • • • • • n . / cc CO CO 3 V C H r A v rH o\ * CM rH A C * A C P A C A C V C — 3 a c O CO CO H t I I I : V

p CO CO CM N O 0 0 * ON * * -ar O rH * * P O O * CN- 3 00 1 n A * A l s - , 3 A » - d - - NO Op NO 3 O CM CA O rH O * * 0 A C * P 3 3 a c 1 1 - n - n n - O N - MON O CM O CM H r I P I P IS 1 O A C rH A C * * * V * * * * - d - CM 0 CA rH O A » P a c ta P IV rH 3 — A C A C 1 1 1 I • • - n 1 3 O O CA 3 H r O A C rH CA * * o o o o o o o H r A C CM O A V V V I 1 a 01 ca 01 O O S u p P P H W H n n i ' ( o a O C H r -x 1 = 1 I I II -d- CO ■d- H r 3 N O CO d V 0 v * * o a m l P CA I P A C O O VA P A C O C 1 1 1 1 1 n

CC V CO CC Hj- 1 - r N O CC 1—1 C C 3- N O 0 0 A C N O rH A > AC CA CA CA HCA C rH A C A C CM O O A V V a c O • -

-Ci" O N CO O* CO NO CO V rH N O H r ■d" V O ON i—I 3 I P 5 H r A » A C O V £ CM 01 P (x) h O >A O V I A C I • • * • . | 1 1 | n

n O N NO A N O N A C C C CM * * I P N C cv ca * H r CM O O d CM A C O P 01 3 1

Cf -C CM CO MNO N CM f i • CM H r O O A C o0 co DA P s HCA C rH A > A > O O CO CO 0 0 0 0 p IV P ta P (a h 01 1 • I I n

n NO d - -CM i- H O i-H O ACA CA V N O A * rH a c o P CM P d 0 A C V V 01 1 - • O N NO ■d- CM H r P H r H r O A C N O r-H 0 0 3 p p o cv 0 d - IV 1—1 0 cA P ta a c CA H r CM H r V -A. = 1 . I n 1 i 1

SLE-8 (l) 0.075 0.873 0*09 SLW -1 ( 3 ) 12.522 18.362 0.68 SLE-8 (3) 0.243 0.632 0.38 SLW-9 (l) 18.182 -1-385 **** SLW-9 (3) 14.208 4.973 2.86 5 7 1 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE 29 CONTINUED I I I P 3 II I 1 E 63 N r CV rH CNJ < p S3 O O h

HO O E 3: C=J E CO h h PN ■V. O ca E O E ^ ~ £P P < £ \ f r S E < Mr O O \ i P x a CC P O P CO S' o u h h h m a U

V pn pn E __ s P fe. 0 s n p s PN h /

_ o n -3- NO HC!PCN! P CN! rH CO c c O 1—1 P S CN. CC 00 ON O 0 0 N - O- O- !N A 4 ^ >A __ 1 1 1 1 • ■ • n CC |oPro P w|ro . _ —.. .— ■.__/ ONO NO P O 3 C rH CN NNO ON ON 0 O O O - NO P P : 3 CO CN UN CN UN rH N U CV ON ON CV O • • n N O NO O CN! _ O O NO CC CO C3 N U CN NON rH CN O UN __ • • - • • • • OCN NO - P r4 — P r4 rP 2= p - CO 3 r-4 CO : 3 CO P 2= (—4 CO CO 2= r-4 CO S P CO 3= CO r-4 CO 3 P Cx NO, ON O n p O PN CN I I 1.1 I I I II I • n O ' r ^—. pro pro ' r ’ 4 - CO UN, ON ' r P p P r P P PN rH PN p PN rH C'N o n p P'S - n

H r rH rH N ^ CO 0 0 N ONO NO CN! N CN! CN! r VT\ ir\ cn PN PN o d o d C P C C P • • • • - r- r- NO NO CC O-4- CO O PN CN CN! CN! HON rH PN rH cn O - n O --— NO CN! CN! PN on m n n n H r NP, rH rH pcv NO H V O CV ■■n rH O' H O O O OC rH d d o N CO N ON N £ vo v CO _£• UN UN N un ✓- h * H|r\’ n cc N

SLW-5 (3) 0.572 0.817 0 .7 0 SLW-9 ( li) 0.713 0.259 2 .7 5 6 7 1 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE 29 CONTINUED PI S3 o o Q < &H S3 E x\ x a S < J M 3 rH S P S3 z -3* o :z cn -1 P'S Pi l o ^ x &q pH COp Q £ c i X HI o e Sc&J 1 w § X — 00 00 - j v c x s o s \ o ^ c X s n < c a ( Piu o i X —i - h a sj V V S O- -t X t ,- - O CS. CV CV s - ' E a i S s -Hf\J : c p NO -3* CC 0C 000 00 CO s P 00 05 P s 3 CM C^- rH rH N H ir\ N o N W N N vO N - c o- cc c - o cv r-t o on h I I | n o v—,/ \ r rH 0 > N N u> >0 n | Vw" p rH O H ON rH CO NT> M NO CM A O V N CV3 VO »A 0 0 0 0 | 's*-^ P '•A \ r I — P 00 ON rH 1 1 " O0 OCO CO 00 p CO p ON 1 ^3- NO -3* -3- -3- so i-l -d- O'- *■9- rH ON C*- 1—< p cm CM C^- O- OS I I 1 1

-— P O O C'- CO NO o c rH rN n o ^ o n n n O O VO ( r A ( O - O O- C IT\ CC - O OS r-l 1 1 n vo in v s 3 P P P P p CS1 on — f ’ c c O00 CO 3= C'- r-f t •Hire 3: O P r n c —i ! n c c s'—' 3s 00 0 o O c^- 1 n -3- SC CO 3 CC CM P H P 00 c^- cv rH o rH o t I i

SLW-1 ( 3 ) 1.1*45 9-446 0.15 SLW-5 (if) 6.201 0.680 9-12 slw -5 ( 3 ) 2.258 13.659 0.17 178 poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE 29 CONTINUED 1-3 s? O o £ w n e-< n W < Z/i E h is is cc 2 ►a s: S s &3CA o O O O K' O P+ S < a o a \ c c rlj: EH EH O 2C'—' CC M o 5 cn rH S ca ;

rt!<\ 3 3 ■ ON 6 CM rH CO rH ON a c {N A CO A rH A HrH rH o- Cv 1 I I - h —" '— NO OCM NO DON CO CD O CM CM ON 3 A OCO CO rH rH rH A A p H | I 1 1 I w •Hjoj N—" NO NO & CM CN- HrH rH O a c a c a c p A C"- rH H Hj*'} 3 - md 4* p CO CN- MCA C CM CO A A rH O p c c A H H ON 0 rH rH rH A C CO A -V rt[fV NO 3 ■ CD 0 0 CO O CM rH 6 a c a c rH p n c Ov cn OCO CO p H H 1 - ■njrv: 3 O A < A rH A o A cc \ c ArH CA 1 « h HrH rH 3 cm (A CO 3 [ t 1 I co : -

O CM CM CC- CD 3 ON A C CO 1 = n - h NO -sfr CO CO ON Hr d rH rH *H rH MrH CM CA A ON A HrH rH A HrH rH CC A CM o cv ---- }< 1 1 1 v - ^ - N • MD NO h NO 4 CC rH rH CM a c A CO O- p H | t 1 1 n \ N—' • OA NO h -d* A CO O MCM CM a a c C O CO A A A rH NA ON n J cm n - Hf<\} N—' 43 CM CD O A CM rH CO p p A «H H H “ 179 GO O **** 0.9 8 **** **** 0.68 **** c /p ? -6 U 0 21 . . 0 -1.972 -1.0^ 3 -6.191 39.392 5 1 (MG/M3) WEST . '4-34 . 53.100 23 28.522 52.152 26.686 ^9.939 ) 3 DEPTH (FT.)DEPTH (MG/M3) SLW-1 SLW-1 ( l | ) STATION CHL PHAE SLW-I SLW-I ( SLW-9 SLW-9 (3) SLW-5 SLW-5 (3) SLW-9 ( l l ) SLW-5 SLW-5 ( 1 |) LAGOON p / c CHL CHL PHAE EAST (MG/M3) (MG/M3) (MG/M3)

DEPTH (ITDEPTH .) STATION DATE 8-29-7^ ***** ***** = due to lack of significant amount of phaeophytin, ratio is meaningless TABLE 2 9 CONTINUED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDIX E

PRODUCTIVITY DATA

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 182

TABLE 3 0

Productivity Results

DATE LAGOON EAST WEST STATION PRODUCTIVTTY STATION PRODUCTIVITY DEPTH (FT.) mg C/m2/hr DEPTH (FT.) mg C/m^/hr 5-14-74 SLW-1 ( 3) 15.02 SLW-9 (3) 14.89

5-28-74 SLW-1 (3) 9.70 SLW-5 ( 3) 17.37 SLW-9 (3) 6.10

6-11-74 SLE-1 ( |) 3.92 SLE-5 (1) 0.50 SLE-8 (f) 6.00

7-12-74 SLE-1 ( |) 410.73 SLW-1 ( 3) 61.51 SLE-5 ( |) 144.47 SLW-5 (3) 26. ?8 SLE-8 ( |) 311.81 SLW-9 (3) 45.38

7- 19-74 SLW-1 ( I f ) 903.59 SLW-1 (3) 314.13 SLW-5 (1 |) 648.53 SLW-5 (3) 362.42 SLW-9 ( l | ) 726.49 SLW-9 (3) 366. l l

7-26-?4 SLE-1 (-§-) 184.78 SLE-5 ( |) 213.36 SLE-8 ( |) 404.9?

8- 2-74 SLW-1 ( i f ) 165.60 SLW-1 ( 3) 124.41 SLW-5 ( i f ) 143.97 SLW-5 (3) 100.94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 183

TABLE 3 0 CONTINUED

DATE LAGOON EAST WEST STATION PRODUCTIVITY STATION PRODUCTIVITY DEPTH (FT.) rag C/m^/hr DEPTH (FT.) mg C/m2/hr 8- 2-74 SLW-9 (ly ) 152.87 c o n t... SLW-9 (3) 139-75

8- 9-74 SLE-1 (f ) 427.63 SLE-5 (f ) 1274.22 SLE-8 (f ) 950.46

8-15-7^ SLW-1 ( I f) 666.98 SLW-1 (3) 508.38 SLW-5 ( I f ) 571.32 SLW-5 ( 3) 461.46 SLW-9 ( I f ) 522.73 SLW-9 ( 3) 424.54

8-20-74 SLE-1 (f) 2372.01 SLE-5 (f ) 891.24 SLE-8 ( f ) II 66.38

8- 29-74 SLW-1 ( I f ) 1717.65 SLW-1 (3) 823.39 SLW-5 ( I f ) 1600.78 SLW-5 ( 3) 543.77 SLW-9 ( I f ) 1629.51 SLW-9 ( 3) 370.35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDIX F

PHYSICAL PARAMETERS

AND

TOC DATA

18«J-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 185

TABLE 31

Data for Physical Parameters and Total Organic Carbon KEY TO ABBREVIATIONS (S) = Shallow sample COND = Conductivity, micro-mhos (D) = Deep sample DISK = Secchi Disk, cm TEMP = Temperature, °C TURB = Turbidity, Formazin DO = Dissolved Oxygen, mg/l Turbidity Units BOD = Biochemical Oxygen Demand, TOC = Total Organic Carbon, mg/l mg C/l

DATE TEMP DO BOD pH COND DISK TURB TOC STATION 10-26-73 SLE-1 (S) 10.5 1.6 30.0 5 (s) 10.5 2 .4 6.0 8 (S) 10.0 5-2 8.0 SLW-1 (S) 10.0 8.3 6.0 5 (s) 10.0 8.3 4.0 9 (s) 10.0 8.7 1.0 11- 9-73 SLE-1 (S) 9-5 4 .9 31.0 10 8 (S) 9.0 11.2 7-3 30 SLW-1 (S) 9-5 11.9 4.6 51 9 (s) 9.0 11.7 4.3 81 11-16-73 SLE-1 (S) 9-0 2.7 35-0 5 8 (S) 9-0 7-7 4.0 25 SLW-1 (S) 9.0 10.3 1-3 92 9 (S) 9.0 10.8 2.0 104 11-30-73 SLE-1 (S) 8.0 4.2 54.0 5 8 (S) 7.5 9-8 11.0 23 SLW-1 (S) • 7-5 11.9 0.0 81 9 (S) 7.5 11.4 1.0 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 186

TABLE 31 CONTINUED

DATE TEMP DO BOD pH COND DISK TURB TOC STATION 12-21-73 SLE-1 (S) 1.0 1.9 5**.0 7-9 792 6 8 (S) 0.5 5-5 15.0 8.2 903 18 SLW-1 (S) 0.5 1**,9 7.0 8.0 1023 112 9 (s) 0.5 13.** 6.0 8.3 692 91 1- 2-7** SLE-8 (S) 0.5 3-9 7-9 977 23 SLW-1 (S) 0.0 13.** 9.5 271 117 9 (S) 0.0 13.8 8.2 686 1-16-7** SLE-1 (S) 2.0 0.3 13.0 7.7 860 (D) 2.0 0.2 19.0 7-7 869 8 1- 30-?** SLE-1 (S) 3.0 0.2 18.0 7.5 885 (D) 3.0 0.0 19.0 7.6 879 1** 8 (S) 1-5 **.1 9-0 7.8 323 (D) 2.0 7.7 7**6 25 SLW-1 (S) 1.0 9.9 ?.0 7.9 535 108 9 (S) 1.0 11.7 7.0 8.1 **6l 107 2-13-7** SLE-1 (S) 2.5 0.1 16.0 7-6 721 36.0 (D) 2.5 0.1 16.0 7.** 690 13 37.0

8 (S) 2.0 0.5 11.5 7-6 715 - **3.0 (D) 2.0 0.** 12.5 7.6 680 23 **0.0 SLW-1 (S) 0.5 15-7 7.0 8.5 502 117 12.0 9 (s) 1.0 11.9 8.0 8.0 526 14.0 (D) 1.0 11.0 2.0 7-8 529 105 12.0 2-2?-?** SLE-1 (S) 2.0 0.0 22.0 7-5 960 105.0 "

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 18?

TABLE 31 CONTINUED

DATE TEKP DO BOD pH COND DISK TURB TOC STATION 2-27-74 SLE-1 (D) 2.0 0.0 23.0 7-5 969 10 45.0 3 (S) 1.0 0.0 16.0 7-5 978 62.0 (D) 1.0 0.0 18.0 7-5 983 27 41.0 SLW-1 (S) 0.5 12.4 12.0 7-8 647 20.0 (D) 0.5 8.5 8.0 7-5 669 112 16.0 9 (S) 1.0 12.1 4 .0 7-8 715 15.0 (D) 1.0 11.8 3.0 7.8 729 114 15.0 3-13-74 SLE-1 (S) 4 .0 1-9 20.0 ?.6 854 28.0 (D) 4 .0 2.0 19.0 7-6 850 10 34.0 8 (3) 3-5 3-3 15.0 7.6 887 31.0 (D) 3-5 3.2 15.0 7.6 856 17 37-0 SLW-1 (S) 3-0 13.O 5 .0 8.2 562 12.0 (D) 3-0 12.9 4 .0 8.2 570 93 14.0 9 (S) 3.5 12.7 5 .0 8.2 571 12.0 (D) 3.0 12.8 4 .0 8.2 577 101 12.0 3-29-74 SLE-1 (S) 3-5 9-3 14.0 7.8 728 38.0 (D) 3-5 8.6 14.0 7.8 729 8 29.0 s (s) 2-5 6-3 15.0 7-7 760 42.0 (D) 2.5 6.1 14.0 7-7 762 14 51.0 SLW-1 (S) 1.0 15.8 6.0 8.1 506 64.0 (D) 1.0 15.4 6.0 8.1 498 76 68.0 9 (S) 2 .0 13.4 4 .0 8.0 512 64.0 (D) 2 .0 13-5 5-0 8.0 524 104 67.O 4-12-74 SLE-1 (S) 7-0 2 .4 23.O 7-7 743 75-0 (D) 6.5 2.2 21.0 7-7 742 13 38.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 188

TABLE 3 1 CONTINUED —. ■ ■ - .1 >I.

DATE TEKP DO BOD pH COND DISK TURB TOC STATION 4-12-74 SLS-8 (S) 6.5 3-9 9.0 7.7 ?60 37-5 (D) 6.5 3.6 9-0 7.7 773 15 38.0 SLW-1 (S) 6.0 10.0 9-0 7-9 558 27.0 (D) 6.0 10.0 12.0 7.7 565 84 25.0 9 (S) 6.0 ■ 10.4 6.0 7-9 561 21.5 (D) 6.0 10.5 5.0 8.0 566 66 30.0 4-26-74 SLE-1 (S) 13.O 2.3 19.0 7.9 950 28.0 105.0 (D) 13.O 2.6 20.0 7.8 953 9 27.0 58.0 5 (s) 12.0 2.5 8.0 7.8 918 15.0 35.0 (D) 12.0 2.6 8.0 7.8 919 16 15.0 85.0 8 (S) 12.0 3-7 7-0 7.9 929 15.0 44.0 (D) 12.0 3-7 7-0 7.8 921 15 16.0 36.0 SLW-1 (S) 13.5 8.4 4 .0 8.0 660 5-5 17.0 (D) 13.0 8.5 5 .0 8.0 644 81 5.0 18.5 5 (s) 13.0 9-1 5 .0 8.1 660 5.0 20.0 (D) 13.0 9-3 5 .0 8.1 653 76 5 .0 38-5 9 (s) 12.0 9-0 4 .0 8.1 653 5.0 18.5 (D) 11.0 8.9 5.0 8.1 648 84 5 .5 27.0 5 - 7-74 SLE-l (3) 13.0 4.1 15.0 7.8 1002 14.0 41.0 (D) 13.0 3-9 15.0 7-7 973 13 14.5 37.0 5 (S) 14.5 1.7 15.0 7.7 984 9-9 30.0 (D) 14.0 1.7 14.0 7.5 985 20 10.0 31.0 8 (S) 15.0 2.1 39.0 7.8 998 9.0 28.0 (D) 15.0 2.3 21.0 7-6 977 20 8.5 25.0 5_li4—7/+ SLW-1 (S) 11.0 8.8 4 .0 7.8 631 3.0 56.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 189

TABLE 3 1 CONTINUED

DATE TEMP DO BOD pH COND DISK TURB TOC STATION

SLW-1 (D) 11.0 8.9 **.0 7.8 635 91 3.0 57-0 9 (s) 11.0 8.7 6.0 7-8 627 3-0 51.0 (D) 11.0 8.8 3.0 7-8 6*+0 91 3.0 57-0 5-21-7** SLE-1 (S) 18.0 0.7 8.2 7-3 1010 3**.0 **1.0 (D) 18.5 0.** 8.2 7.5 1000 13 29.0 37-0 5 (s) 18.0 2.1 6.1 7.6 975 11.0 30.0 (D) 17.0 2.0 3.8 7-7 973 23 10.0 31.0 8 (S) 17-0 1.7 1.6 7-6 986 10.0 28.0 (D) 16.5 1.8 2.6 7-6 981 20 10.0 25.0 5-28-7** SLW-1 (S) 16.0 7-5 2.3 7-7 825 2.5 18.0 (D) 16.0 7.** 3.0 7.6 831 9** 2.3 19.0 5 (S) 16.0 7.2 3.6 7.7 836 2.** 21.0 (D) 16.0 7.0 2.6 7-6 835 9** 2.9 20.0 9 (S) 16.0 7.1 2.0 7-6 813 2.8 20.0 (D) 16.0 7-2 2.0 7-7 802 122 3.0 21.0 6-11-7** SLE-1 (S) 20.0 l . l 28.0 (D) 20.0 l . l 27.0 15 5 (s) 20.0 2.0 32.0 (D) 20.0 2.1 33.0 18 9 (s) 20.0 3-1 3**.o (D) 20.0 3.0 3**.o 18 6-28-7** SLW-1 (S) 23.5 5.6 7-0 7.9 922 (2) 23.0 5.7 8.0 7.9 917 107 5 (s) 22.5 5.2 5-5 7.9 903

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 190

TABLE 31 CONTINUED

DATE TEMP DO BCD PH COND DISK TtBB TOC STATION 6-28-74 SLW-5 (D) 22.0 5-3 6.5 7.7 901 99 9 (S) 22.0 5-3 9-0 7-9 908 (D) 21.0 5-3 7-5 7-8 901 104 7-12-74 SLE-1 (S) 28.0 0.3 20.0 7 .4 1350 4.2 27-5 (D) 27-0 0.0 28.5 7-5 1400 20 9-5 26.2 5 (S) 28.0 0 .0 13.5 7-5 1420 3.7 56.0 (2) 27.0 0.0 14.5 7-6 1410 20.,. 3-8 29.7 8 (S) 26.0 0.0 15.0 7-5 1370 4 .2 31-5 (D) 26.0 0.0 15.5 7.5 1380 20 4 .1 26.1 SLW-1 (D) 105 5 (D) 104 9 (D) 105 7-19-74 SLW-1 (S) 25-5 6 .6 4 .0 8.0 1052 6.0 (D) 25.5 5-7 5 .0 8.2 1053 74 20.9 5 (s) 25.5 7 .3 4 .0 8.2 1061 20.2 (D) 2 5-5 6 .1 3-0 8.2 1053 76 20.3 9 (S) 26.0 6 .6 3-3 8.2 1038 20.4 (D) 25.5 6.2 2.0 8.2 1026 81 20.7 7-26-74- SLE-l (S) 2 5 .O 0 .0 21.0 7-7 1340 51-3 (D) 24.5 0.0 22.0 7 .8 1340 18 43.2 5 (S) 24-. 0 0.0 15.0 7-9 1300 40.6 (D) 24.0 0 .0 15.0 7.9 1300 25 38.1 8 (S) 24.0 0.0 14.0 7-9 1300 35-3 (D) 24.0 0.0 15.0 7.9 1300 25 37.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 191

TABLE 31 CONTINUED

DATE TEMP DO BOD pH COND DISK TURB TOC STATION 8- 2-74 SLW-1 (S) 23.5 6.9 3-5 8.3 974 7.4 19.3 (D) 23.5 7.1 3.5 8-5 966 81 5.2 23.1 5 (s) 23.5 6.7 3.5 8.5 965 4.6 19.4 (D) 2 3 o 6.8 3-5 8.5 962 80 4.1 20.2 9 (S) 23.5 6.7 3-5 8.5 969 4.5 28.3 (D) 23.0 6.7 3-5 8.5 973 76 4.0 20.3 8- 9-74 SLE-1 (S) 25.0 0.3 I 8.5 7.8 1210 8.2 38.6 (D) 24.5 0.3 20.0 7.9 1200 23 7-1 28.1 5 (s) 25.0 2 .0 15.5 8.1 1139 4.6 31.0 (D) 25.0 1.8 14.5 8.0 1186 15 4.4 33.3 8 (S) 25.0 2.6 13.0 7-9 1110 6.6 25.6 (D) 25.0 2.6 14.5 8.0 1197 15 4.0 24.7 8-15-74 SLW-1 (S) 23.0 8.5 6.0 8.6 929 1.7 18.3 (D) 23.0 8.5 1.0 8.6 934 142 1.9 17.0 5 (s) 23.0 8.6 3.5 8.6 944 1-9 I 6.5 (D) 23.0 8.8 1-5 8-5 951 152 1.7 16.7 9 (s) 23.0 8.4 2.0 8.6 953 1.9 I 6.3 (D) 23.0 8.3 1-5 8.6 959 152 2.3 17.4 8-29-74 SLE-1 (S) 25.0 0.4 7.7 1280 32.0 (D) 25.0 0.3 7-7 1280 15 31.9 5 (s) 25.0 2 .6 6.2 7.9 1260 30.4 (D) 25.0 2.5 6.8 7.9 1250 15 30.5 8 (S) 25.0 4 .5 6.8 8.1 1240 30.8 (D) 25.0 4 .3 7.0 8.2 1240 23 35-0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 192

TABLE 31 CONTINUED

DATE TEMP DO BOD pH COND DISK TUR3 TOC STATION 8-29-7^ SLW-1 (S) 23.O 13.6 (D) 23.O 11.6 95 5 (s) 23.O 12.3 (D) 23.O 11-3 91 9 (S) 23.O 10.8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDIX G

NUTRIENT, ANIONS,

AND METAL DATA

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. FE 0.61 0.90 1.03 1.02 0.93 0-98 0.L0 L 2 . ZN 0 .19 1.13 0.06 0.26 0.17 0.05 0.08 L 0 . MN 0 .1 8 0.05 0.11 0 0.22 0.17 0.0L .8 .2 L 6 .7 6.8 5 .0 O.OL L 1 16.2 0.20 0 13.8 1 20 97 175 121 8.1 157 108 153 .L .L MG NA K L.L 13.7 163 15 12.9 11.7 15-7 16 15.1 L 8 67 67 68 1 75 28 CA 56 TABLE 32 2 35 L CL .28 18L 78 18L 1 160 110 KEY TO ABBREVIATIONS KEY . . Iron, FE ■» mg/l 4 L 99 89 LL 113 11 103 127 177 103 SOL .L .L Data for Nutrients, Anions, and Metals 0 3 .9 2 0.2 0.2 POL- 2 .5 2.2 2.L -N = Manganese, MN mg/l 3 NH/|-N NH/|-N Sodium, NA ■= mg/l NO .72 .65 O O 2.50 0.L7 1.00 0.L0 0.68 (S) Shallow<= (D) sample = Deep sample CL = Chloride, mg/l , Calcium, CA = Cl mg/l N03 *= N03 *= Nitrate Nitrogen, mg/l, K » Potassium, mg/l POL = POL Orthophosphate, mg/l, PO^ ZN “ Zinc, mg/l NHL «= Ailimonia Nitrogen, «= NHL mg/l, - Magnesium, MG mg/l SOL SOL = Sulfate, mg/l, SO/ .L * 0 .9 0.1 1.0 2.50 0.8 NHL- NHL- N03 0 2.8 13.0 L 7 - (S) (s ) (S) 8 9 (S) 6 9 9 (s) -1 -8 - 2-7L DATE I-I 1 12-21-73 SLW SLE-1 (S) SLE-1 (S) SLW-1 SLW-1 (S) SLE STATION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE 32 CONTINUED 3 3 63 CV X U 3 u < U CO o 13 o O fc. 3 VA 3 < x 63 3 a c 3 X Q E-> o C-l O3 VO t-, 3 X <: n i 3 3 3 - c i 1 VO 3 OvO vO 3 d vO 3 CVi 3 d V CV CVi CN o . O CA rH IN o ?—i 3 3 CVi o CV! cvi a c 3 3 3 3 3 VO, O o 3 __ 3 63 CO o' • • • « > • • • • • • • • • • 1 ^ 3 3 a c o i 1 vC VO c c 3 3 3 c c v O o cvi OO CO VA o o O o vCV rH Cv vo, VO, 3 V CC CV) o d o d >—1 1—1 VO, 3 O cvi v c ACA CA CA O O O v c o CO GO 3 63 3 • « 1 VO ---- CC CV CV v C d o d rH 1 3 Cv 3 vo, VO, CA i 3 3 3 VO, O vd, AO CA cv o cv vo. —i ' o - vO vO vO 3 3 CV v C v c 3 o CA CA VA 3 3 rH VA VC VA CV CV C3 CC CA 3 VA VA Ov o v C rH 0 0 « • ,». N,3» VO Cvi CV CD O 3 AN- N CA v c VA i NVA IN 3 AC CV CV VA O ^ C o «—1 O O ACV CA o -4. —! ' o —1 -X • n vO c c d c c -a rH rH o O o o VA Ov CD --- o o d d N 3 CA 3 IN o i -3. o 1 X rH o CO 3 OCO CO —1 1 • • • • - 3 .y v VO VO vcv cv v C d o CA CC v C N O Cv- Cv- 3 O 3 AC CA CA CA VA Cv- CA * A3 CA v C Q • • . • CO 3 CV ^ C i—1 1 o v V__/ 3 . OCO VO cv v c 3 o rH rH CV v c vCV cv 1—1 (N 3 3 VA - N Cv- AVA VA 3 i 3 Cv- O Vcv c CV AVA VA AVA VA o 3 ACO CA 63 3 — 1 • • • • • • • - I OO vO 3 - Nw** 3 cv o Cv N H3 rH 3 3 CO 3 H33 3 VA rH 3 VA 3 IN H3 rH 3 3 CA O O O O ' O O O OQC CO CO Q CO Q • • - • IN o \ - 3 V- > N . / V. V. ^ / . N V- > 43 —4 Cv O O vO VC CV -3* CM - r-H 6 rH CVJ o o rH n c CM rH o £>- H3 rH o~\ o CC’ o 3 2 • • - Oo VO v c o o o o 3 v c Cv- v c v c 3 3 rH o — 3 ,—l VA v C O v-A 3 CA 3 VA O rH CA * • • • • m -3* d v d v VC v c CD 3 - VO rH O o O rH VA o o £N CV AC.C CC CA Cv. CA Ov 3 3 3 VA * VA rH o o X 3 HOv rH CO i • • " 3 CO 3 - vO v c CC rH o o Cv o Cv CO 3 3 VA 3 3 Ov v C VA VA Ov * Ov ACA CA * * 3 3 v c 3 OvO VO rH CA CA Cv- CO CO o o i— CO CO o * Cv n • 1 JCO —J CV Cv cv IN 1 1 3 o 3 CA o v C CV vA CV 3 3 3 VA VA i—i Ov 3 VA O o vA CA 63 3 CO rH i • • / poue ih emiso o h cprgt we. ute erdcin rhbtd ihu emission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE 32 CONTINUED -3- 3 -3- E-i « < a as O c cv CO o r-J o u < O NO M fc. » n CO S-, IS H o ss -3- cv cv o- v c I I NO NO d d O O CV NO NO O cv CN, O l - r H 0 0 0 rH cv cv cv N f rH CV H r—t UN d d d o d H H O O O 'U , ON VA Vf>, UN UN Vf>, VA ON , 'U O » • n n NO O CO ONO NO CO CV 1 H H H O C rH rH rH 1 O d 1 d 1 — o rH —( —! — t n I n O d *>4 o R co n rH CV 1 cv CV CN- c H UN, H H cv o — * • n 1 n

^ r>N C^N NO _H- * * uj- co a 00 O CN CN CO 0 H 0 H * UN, ON cv d o O O NO NO NO - d ON CN, * * O cc CC 1 \ U H UN, o — d 3 - 1

NO NO NO O O CO On * d , u NO 0 rH d O UN, O H H O H CN- 1 0 0 5 3 8 0 NO NO O rH O UN * o c O H H UN, 0 UN, 0 UN, d 0 O cv 0 un d O UN, O n n , ufr N rH CN \ a r\ I H CN- W 63 I I NO NO -3" MCM CM NO CO co d O CN ON ON, H UN, d H 0 CV H H CV CV d H C*N , '0 CO O d U^ H 0 • • • •

NO . 0 0 0 C°\ cn •—1 rH cv d v c CN, rH CV cv 0 d d O un O UN, 3 - n ,

1 5 9 1 3 9 , £ NO d d NO cc NO r\ CV rH 0 cv rH O CV H UN, H 1 H H CV CO CV d CN, CN, UN \ u d O C^ O —1 n NO CM O d •3" O CN H UN 1 C^, <—! H UN C^ CN, CC CV 1 CN, UN 0 CV d H CV —1 U\ — !

CC CC NO 0 cv H CO rs co r- cv CV UN UN rH d H d C'- UN ON 0 0 O CN, O O O O H CV UN I -3- - J CD O CV CV O O O d d O H O c^- CN UN UN CO Q H O CN C'- O d H n n n - NO CC -3- CO O CV ON UN On H £V UN O O O CN H d CV UN H CN H

(D) * 0.30 * 68 87 54 18.0 75 3.7 0.06 0.14 I .56 3- 29-74 SLE-1 (S) 3.1 0.11 k.6 80 146 59 16.3 136 11.5 0 .2 2 196 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE 32 CONTINUED 3* -3 CV2 n < v O 1 1 o v vO f i OMO vO 00 OOrH O CO CO HrH rH rH Hr rH rH rH Hr rH rH rH 0 CO O O O HO v O rH rH rH rH n c O A rH CA P 0CO 00 P ££J rH 1 • • • • • • • • • • • • • • • * • • • • • o v 3* -3 VO OCC vO -= CC CO O rH n i CO OCM CO OrH CO rH n c m 0 0 rH CO v c j * • • - o v VO N t o v 3- -3 Ovo v CO c c CM rH v £ CM v rH O Cv- O Hr rH rH rH v O n c rH P OV — V • ^ v ■ d-CM - -d t n CO CO CVi * O v C m c rH O O O CO 0 m c rH MVM vM 3 r : 3 1 • - OVO VO VO CO CM Mcvi c CM v O 0 Cv. CV- m c * O O 0 m c Cv. rH m c P v c ~v --- • • • • • • • - 1 VO ■ — VO }- n CC' CM v O v O O CO * * v O CV. m v rH v O 0 m c v O • » m CO CO CO cv; * 0 0 0 OV O m v v c — rH 1—1 v C CM rH CM 0 " P * MV vO o v VO VM m c CM a • • • • ■ « • • • • 3* •3 ■^r MrH CM £>- rH 1 \ j- n OVO VO 3* -3 CO CV! CM MCV! CM CM CM rH m v Hr rH rH rH O O VO* 0 0 CM CO 0 rH rH VM CM AVM 'A rH n c CM Cv- l O &3 CO I • • O"pCO p " CO n ' VO ---- OO VO 3- -3 CV! ; K rH v c HrH rH V CV! CV! O VM MCV C CM rH Hin i rH n c rH CM rH v C O rH rH Cv- Mcvi v c CM -V • • • • . - 3 .=!- o v - — OrH CO rH 0 0 CV! 1 v C VM O O O 1 VM 1 n c VM rH CO —1 —1 IrH —I • VO —' s— 3 M VM 3 M O v cm HrH rH 0 CV! rH CC c c n c O O HrH rH Hm rH v C 0 0 rH n v rH O O O O O O MOvn}- n v O CM O n c C^- n c a a • a a • • • a w d" -d rH vO O O rH rH rH CV v O v C v C v C n CM O O O O v C VM vM O O O O 1 : 3 Ocn c CO P rH a a M1 CM 1 a a 'a O v VO CM O O O "—- ' — ' — d- -d VM O rH rH HrH rH v C rH v C VM CM VM v O MCM CM CV! a a a a OvO vO CO c c O O VM 0 0 .•w n i n i O O O O O O v C VM VM VM CM CO CM CV a « a a 'a o v OCC VO CM - 3 v C v O MCM VM VM CO vM v O v C HrH rH VM v C Mvn v VM CV! a a a j- H vO 3 w v C 1 vC VO VO CM CM O CM O ^ C HT CM rH n i rH - O O 0 CM "V- j r a rH a a a Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE 32 CONTINUED &a o S2 o P O < CO Z < ts: a: O U g z Z A §S; S2 M o 55: nfr VO nfr CV! C n I I vOOvvOCNrHArH^tCViC^CVi vOOvvOCNrHArH^tCViC^CVi - i - v O O A O Cn CC O CA CA O CC Cn O A O O v - i - O O V O VO VO VO VO NO -5- CO i—I Cv- Cn- Cn- Cv- i—I CO CV! CO P Cvj CV! CV! v C (3 CV! d d d d d o A t H A c d - A rH —! i H ( rH O v A C A C N C i V C i V C A C H r O A CN N C I—! rH I—I rH t—i rH CN d CN O C O - t i i va Hi 3- A nfr A A -3- A A A ni nj-CA A nt A }- h A v O ON CO Ov O 1 O CA A IrH —I n I CV! rH rH 1 v C CV! 0 C O O O O C A Ov Ov Ov CC CO -S' A -Hi A O A v O O CO A O rH rH A I H rH —I n n n - C N A O O O vC NO NO VO CA CN CC VO CV! l - r rH CV! CV! P o o P n c P o c P n c P O O A A O O O (—1 O O O A O CA rH rH Hfr cc O 1 CV! 1 I—( CN C ON r-H rH O rH —I - —! n 1 4 —( - O O O O C v C CC CO CO N ( VO VO d 3 -d " " -d CO ON rH rH 1 1 CVJ CV! 1 A O O 1 —! A A vO vO A A —! —[ —! —i n CO 0 0 CV! co p 1 z 0 o - C 0- 1 CN C I — r rH (—I —I ! — n 1 O n v O v O v O v O O C CO CC VO CO O T Ii 1A ITi VO IT) d Ov 0-00 0-00 0 0 0 0 0 O n C 0 C—- C— 0- 0- o v O C rH A o 0 0 0 0 ^ n CO 0 O V A A o v Cv- CN o o o o CC 1 —I -3- cvi cvi -3- V C! nfr CV!CV! C d d d d A A O O d 0 CN p ON o o v CN-ov \ c rH 1 H n 1 rH —1 VO CV! 4 -3- 0 0 O CV! o a n

nfr C CN A I n I v o VO v c VO VO c v VO o v o o O o VO A vo VO vo vo -3- CN! H r H C2 ON CV2 rH rH rH O rH A rH A rH A rH rH A A rH A C rH rH n v C r A A rH Cn Cv- Cn A 1 C CVi CV! CVi C\i 0 CV C\! H r H r H CV! rH rH rH rH rH rH rH rH rH rH rH a v A VO A A A Hj- A O A O A VO CV2 CVi 1 A A C P CO CO P CO P P O O O f A nr Hfr nfr A nfr A A N H CV! rH CN A ON v O ON v O v O A V vO Cv- o OC VA C CO &q N Cv ON —i 1 H rH —1 n n I n . C- C - C .

O A C t H A V A VO

CO H r H r rH rH rH rH rH CV! A d d O 0 v o v o cvi vO vO cvi o v o v 0 a v

v VA O A V Cv- A CV! C a v rH rH C O A 0 1 I H r rH rH —I n n n -

v C VO CC Cv- A rH H i i A V H O rH Cv- cvj d A 0

vo rH VO VO rH H O rH o O CO a v o o a v 0 C A A C IN

1 0 1 C A l r —I —I n poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE 32 CONTINUED —4 Q 0 n c 0 O < B E-» 25 0 ^ 0 a < O 25 r*p, < >3 3 f 2 25 -V 3 E-* CO < C-t H O S 53 5fr i - r - ^ c t I H * NO VO cc 0 0 I F 3 O O Vcvcv c v c CV H r a c 0 0 2 0 O O n i H f N O N O O CV 0 CO 0 O 0 0 O VCl n c v C 0 O 0 0 0 » • • • • • • • • • • • • • • • • • • • • • • * • • • • • • • • • • • • • • • ♦ / _ s O N O N O N O N —«4 - d OCC CO cz CV CO 0 P H r N O n i H r v C O N O N O n i n c m 0 O C C 0 ■t • • • n r V-rr' O N O N - d NO CO O O 0 ON O N NO NO N O - d n i C O n v HCN C rH n i n i n c 0 0 N O _ n c m O n v /2 « • « • • • • • • • • • n O N O N O N O C CO H r H r H r O CV v c HCO iH H r O 0 O CV 0 V ( O 0 0 O O n i n c 0 rH v c O O P O O O V ( • « • • n C - d CV vn v c H r H 1 1 v NO - d - d n v d N C c c fH H i HrH rH v c C N O O C &3 P \fH ^\ C 0 n c n i 3 __ /2 1 • n * n ✓ - v c v c O N NO d O CV H CV v c «H 0 0 O V C 0 0 O C n c ? e O 3 « « • • • • • • « • • • • • “ n n 0 \ O N O n i n i d d - CC v c 0 0 O 0 v c H r rH H r H i H r fH fH n c 0 n c O n i v c v t H*H rH O n i 3 m • * n N O N O N O N NO - 3 . CD d H i CV V0 CV 0 0 0 i - r n c V i CN- C Q O -A. _ > • * n NO NO d CO n c 0 0 CV v c 0 HtH t rH n c rH HtH rH j 0 0 0 CO n i NO n i v C n c p 0 v c 0 0 0 2 0 O n c n c H • m • • n . O N d v c ___ v c CO n c rH 0 v c V C 1— 1 0 1—1 n c v C v C H0 iH 0 Q « • » • • • » • • • • ✓ d 0 0 v c v C vn 1 1 NO NO d NO CO 0 v c 0 CV H t H r n i n v O v C v C n i CV n i n i 0 5 2 0 -V 2 0 P rH 1 » s m • * • • • • n O N NO Ocn00 0 n c NO d d O N NO V O N d d d CO CO rH H r H t H f 0 O 0 O O O 0 0 0 O 0 O O n v CO n c VCV CV v c v c O O O 0 0 HpP p rH v C N C n i 0 p • • • • • • • • • • fS m n T - / - V -/ V d O N O N O N O N O N NO OC CO CO CO OC c c CO CO n v v C n i N C N C N O n i n i v C 0 0 n v CO n i • • O N NO p " n • d O N c c O O O C 0 0 O n i 0 v c n i n i p O • • • _ . m n NO O N N^V d 0 CO v C 0 0 0 n c 0 0 n i n i v c O N v C — H r 1—1 0 O 0 O P n i n i 0 0 C • m m n NO N d 0 CV O P CC 0 n c C V I 3 CV v c n i O H r C N C n v ---- Q « « • * • n n n <* Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE 32 CONTINUED — o v n v i n o v s ? CvO CC a on rH cn a O a rH rH . H 0 0 CM CVJ r 0 *—1 O rH n v rH n v a rH £N fH rH V.n n c n c n c n v n v fvn v —f 1 • — VD VO vQ n v i n i n COnivnCM n v i n O CC 0 rH CM rH vOv Ov n c 0 i H O n c n c n c NCv- IN r-t rH O O O OVO VO n v cv- rH rH HrH fH T c • - — ' — ' — — i H t — 1—1 1—1 O CM CM rH CM MV, 1 n v n v n v n c m n c n c 0 rH n v n v * CV- O n v n v VO\ cn —! —i 0 • • • • • , vO VO co I n c rH rH CM HrH rH n v 1 O m NCv C CN O v Cv Cv- n c rH n v —1 —I o c 1 CM 0 CM HrH rH HrH rH CM O Hcn c rH n c c c rH rH n c n v rH 0 0 0 n v n v n v r*H cn n v —i -+ o v OmCO m vO CO MCM d CM MOO O CM rH v O rH v C O 1 n v n v n c v C Ov v C Ov n c rH 1 v C O n v n —i —i MO i n Dr n v rH CD CM v C t 1 Ov C \ vO VO ' - v vO n c i n CO O 0 0 iH CM 0 0 n v Hr rH rH rH 0 0 0 0 0 CV rH v C 0 O O n v n v v C CM Cv cn Cs a cn - 1 1 . .H- i H Mvo v CM rH d pH 0 v C v C Mcn c CM n c v c 0 0 * vOv Ov d O Q ■ — MCM CM rH 0 n v n v O vCv Cv Cv n c d * O CS- i n n v n v n v cn VC - - J n v rH 1 O O Cv rH rH HntCC’ t n rH * O 1—1 v C Cv n v d n v O rH —I ---- ' — o v i n CC i n c c v C Mcn c CM O CV n v CM rH n v n v rH 0 Cv rH v C O d rH cn 0 Ov • • d ' - v i H -3* CM CC CM O O O n v rH n c ' O rH d 0 0 O p rH vrH n v Cv CM O Q H i H CM CV rH v C 1 1 vO OvovoVO o v o v VO - CO 0 0 CM 0 Ha rH H!—t rH v C d rH n v O O O O rH rH n v a cn a cn 1—1 ---- 1 • - vO i H i H " — i H O 0 v C 0 0 a CM a Ov a co MCM CM a a a a CM VO c o v O n v n v Ov 1—1 a n v n v n v Q • • i H —■ ■— MO CM i H — 0 0 1—1 -3- vCO Ov a d O CM d O a a a a Ov c c a 1 n v Ov Mni n CM a n c a a m cn o v n c —i n v 1 VO ' — o v a a CM CM 0 Ov CM CV a m CV CM a n v n v m a 0 poue ih emiso o h cprgt we. ute erdcin rhbtd ihu pr ission. perm without prohibited reproduction Further owner. copyright the of ission perm with eproduced R

TABLE 32 CONTINUED 3 o P-L s % a co cn < o a 2; < 23 & 13 rH cv o- I I OCvj VO -x s- nfr VO vo nfr oO Cv- ON co nfr CV HrH rH vO c c d JN CO CO rH NVO JN VO o c CN ^O £3 p CC cv rH rH Hr rH rH rH rH HrH rH d CO - O HrH rH O O 0 d rH 0 0 1 • • N vO p CO c c O Cv VO c c Cv rH rH Cv o c ^O O rH vO cv cv cv rH w>, — »H - r d v c 1 nfr vrH Ov rH CN Cv- 1 1 1 O( Onfr CO (N vO nfr ca OvC NO VO 3 i-3 ca nfr CV rH CV * CO rH Cv vO Cv \ v rH O O HrH rH CO O O O O vO00OCO O 0 0 O Cv 1 ; VO nfr 3 - VO VCV CV P 00 rH cv rH rH VO * Hr rH rH rH rH HrH rH o c O O 0 * O . N v~-' ca 0 ^ 00 VOv CV Cv 1H 0 CO * O VO 'H'V v OO- O vO Cv. rH HrH rH o v CO rH O OiO iO O O 0 O O O - o d VO o c 0 O O *0 "—’ VO cv P VO CV _ * O CO Cv VO rH CO Hr HrH rH rH rH CO OV VO VO iO 0 '•O O O -fr nfr vrH Cv o c nfr vO aP ca ON f Nnfr CN nfr c c * * nfr VC d CV CV O o v d 0 Oco c CO HrH rH HrH rH CC NO ON VO Ov d d d d d vO CO d rH 0 O 0 -v N—'' f vO nfr vC o v CV - 0 O - o rH v o Hr rH * rH rH vv 0 vO Cv 0 Hr rH rH rH OOv CO 0 O 0 O O 0 0 n vO nfr CV - o - O 1 1 OvO vO vO CC CD £3 O p CO P aca ca Cv ca rH O vCC Cv HrH rH HrH rH rH rH rH O Cv - O O rH VO I • • /'"N - CvC vC vO ---- oc nfr O CV - O 1—( VCv CV ca P rH VO rH rH VO VO CN rH vo. rH O vO ’ ' — o v vo CC rH

TABLE 32 CONTINUED 3 ■at « a CO u a a 0 0 0 0 < cc o < 2 a 2 s ca < a ; : a 0 2 ; -3- CC cvj Cv I 1 \fl N \Cl vfl N N vfl \Cl N \fl v6 VO CO nj- X a o o 00 o T IT) IT; 0 0 a cv a n 0 rH rH a Cv - CO A- rH d 6 O VA CA O CA • ■

O CM CO K ^ X O O cc 1 CO VA Cv O Ov VA v v v CO Cv Cv Cv a a CA O ACA CA — - 0 1 —1 4 - 1

a ' VO CC CO -2 Cv O O Cv Cv OV O O O 0 a O 0 1 1 —! r —1 •

vO VC X •cf a O Ov O 0 Cv Cv Cv Ov 00 O CA CVJ Ov 1 O O VA 1a —1 0 10 •

^ VO VO CC 00 CV 0 Cv O 1 a O UA CA O —I • • -3- CO Cv tA- I ! vO CvO vC vO O O cv O O Cv- vo CO (N (N CO CO CO CO vo CO Cv- O O Ov O CO Cv a N \ r i IT\ ^ VTi VA + n N v u H cvj CVJ a a a a 00 vrv O O rH O A O rH rH O O 0 Cv O O 1 VA G CA O VA 1t—1 —1 I VO CC a Ov a « p rH OV CVJ CV VA a v I 00 INcv- vo n Cv CVJ CC 0 a O VA CVJH • vo vO X OX X X X' CO -i- CV a a a a UA O cvj 0 va O • OvO VO OV VO VO VO nj- VO vO 1 rH 1 1 h a Cv V CVJCVJ Ov O a Q VA 0 a O —t —1 —i • • VC CV 00 CVJ cv x a a a a a o a VA CA 0 a OV vv vO \C vC i- - X CV I—t 0 cv cv 1—1 a Cv a 0 a O .cc o Cv CA . cc via Cv a I 1 v6 vC t n X C V J VO VO n t t n VO VOCVJ a a 0 O O O 0 v o O CO' VO vo Cv A A A vjv Cv o cvj o v r ov ov ov Cv O O O 0 a cv CV 00 0 00 a a a CA a = 1 m a -2 Oc vO cc CO cc VA 0 cv cv O v v vO Ov Cv 0 O O O Cv Cv 0 a a a VA vcvj Ov vo Ht -3- cc VA a cvj rH rH 0 d 0 0 a a a O 0 VA VA d O CA CA 1 cv Cv a Q —i Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright of the permission with Reproduced

TABLE 32 CONTINUED -3- 0 x ExI < s * V z 0 < 1—t 0 0 p* 0 0 CS3 a c X z £3 z O O < z -X. O E E C Z M 00 h h CO 'A rH NN IN 1 1 O oVO co N 00 rH Hr rH rH rH a c CM CM rH CM CO 0 i h 5C CO O O O N A A A Hr NO rH rH O OvO NO O * rH CM Mr NO rH CM 0 N N O 1 • • • • • • • • • • • • vO VO CM O O CM a CN O rH CM ON rH rH C O * n 0 CA n • • -3* CO O CM 1 vO ONO NO VO CM O MO CM HrH ON rH O O MOO O CM CA CN A A Hr rH rH rH a -3- A CO 0 rH CN C HAcc c A rH rH £} CO ON n 1 . • • • • ■ . V V. / ^ v >■— / NO NO ON O Hr Hr rH rH rH rH rH CD CM CM CM O O O CM CA rH C O Hr HrH rH rH rH rH O O O VO N CN- rH A a c 0 n « » • - Ov OvO vO vO NO NO -3" NO ON A CM vCO Ov O ON a N A a rH rH rH CO X rH O O a c • CO O O O AA 'A O O rH A HrH rH C A A A * 0 0 CN rH rH NCM ON HON rH A A CN- n • . • . NO VO OA VO CO HrH rH A HO rH O O O N 'A rH * rH rH A CA O • • • • • • • « - • n NO 3 MO CM -3; ' X o c CM CM N CM rH rH rH Q O A ON A rH C N H n , . - - X CM ON V - NO NO vO vO -3* CO X ON HrH rH CM jH VA ON O VA O O O CM O VA CA * * Of*CO ft* CO Z 2 O rH X CA 1 • • OV VO VO VO NO NO OCN NO c c CM O O O O O O O * VA O rH CN AA VA O O O O O O rH ACA CA O -A- • » » • • n n • . n ON VO NO NO NO Ov HrH rH Cv- rH rH O O NC X X CD CN O MCM CM 0 CA CM O O O O C A * A n . . . . n OvO NO CCN CC X CM CM CM ON MNO CM A A O O O O A ON rH A N X CN- * • X ON rH CA 0 A rH rH O MCM CM CA CA CN. * * X ON . . • NO vO X A O CM ON rH ON rH O O O CA O A A CN- i n • n

less than 0 .1 203