Taxonomy and Phylogeny of the Genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy and Phylogeny of the Genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea Research Article Algae 2013, 28(4): 307-330 http://dx.doi.org/10.4490/algae.2013.28.4.307 Open Access Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea Bomi Choi1, Misun Son2, Jong Im Kim1 and Woongghi Shin1,* 1Department of Biology, Chungnam National University, Daejeon 305-764, Korea 2Yeongsan River Environment Research Center, Gwangju 500-480, Korea The genus Cryptomonas is easily recognized by having two flagella, green brownish color, and a swaying behavior. They have relatively simple morphology, and limited diagnostic characters, which present a major difficulty in differen- tiating between species of the genus. To understand species delineation and phylogenetic relationships among Crypto- monas species, the nuclear-encoded internal transcribed spacer 2 (ITS2), partial large subunit (LSU) and small subunit ribosomal DNA (rDNA), and chloroplast-encoded psbA and LSU rDNA sequences were determined and used for phylo- genetic analyses, using Bayesian and maximum likelihood methods. In addition, nuclear-encoded ITS2 sequences were predicted to secondary structures, and were used to determine nine species and four unidentified species from 47 strains. Sequences of helix І, ІІ, and ІІІb in ITS2 secondary structure were very useful for the identification of Cryptomonas spe- cies. However, the helix ІV was the most variable region across species in alignment. The phylogenetic tree showed that fourteen species were monophyletic. However, some strains of C. obovata had chloroplasts with pyrenoid while others were without pyrenoid, which used as a key character in few species. Therefore, classification systems depending solely on morphological characters are inadequate, and require the use of molecular data. Key Words: Cryptomonas; Cryptophyta; morphology; phylogeny; taxonomy INTRODUCTION The genus Cryptomonas, which belongs to the class display one or two morphotypes within a clonal culture. Cryptophyceae, was established by Ehrenberg (1831). It is In the cryptomorph, the inner periplast component (IPC) distributed in freshwater habitats worldwide. Cells can be is made of hexagonal to polygonal plates, whereas in the easily recognized by two unequal biflagella, olive-brown- camphylomorph the IPC is a sheet-like layer (Faust 1974, ish to olive-greenish in color, large ejectisomes lined in Brett and Wetherbee 1986, Hill 1991, Hoef-Emden and the furrow-gullet system, and a peculiar swaying swim- Melkonian 2003, Hoef-Emden 2007). ming behavior due to the asymmetric shape, dorsally flat- Since Ehrenberg (1831, 1832) described six Crypto- tened and ventrally concave in lateral view. Cells have two monas species, many additional species were added chloroplasts originated from red algae, which contain the (Pascher 1913, Schiller 1925, 1929, 1957, Skuja 1939, 1948, accessory pigment phycoerythrin 566 of phycobiliprotein 1956, Huber-Pestalozzi 1950, Starmach 1974). Tradition- (Hill and Rowan 1989, Clay et al. 1999, Deane et al. 2002, ally, Cryptomonas species have been characterized by Hoef-Emden and Melkonian 2003). Cryptomonas species mainly morphological characters, such as cell size, cell This is an Open Access article distributed under the terms of the Received August 20, 2013, Accepted December 5, 2013 Creative Commons Attribution Non-Commercial License (http://cre- Corresponding Author ativecommons.org/licenses/by-nc/3.0/) which permits unrestricted * non-commercial use, distribution, and reproduction in any medium, E-mail: [email protected] provided the original work is properly cited. Tel: +82-42-821-6409, Fax: +82-42-822-9690 Copyright © The Korean Society of Phycology 307 http://e-algae.kr pISSN: 1226-2617 eISSN: 2093-0860 Algae 2013, 28(4): 307-330 onymized both genera Campylomonas and Chilomonas to the genus Cryptomonas. More recently, Hoef-Emden (2007) revised the genus Cryptomonas again, and pro- vided a secondary structure of the nuclear internal tran- scribed spacer 2 (ITS2) as a good marker to identify Cryp- tomonas species. In addition, she emended five species based on molecular signatures as diagnostic characters. In this study, we report unrecorded Korean Cryptomo- nas species isolated from freshwaters. We infer phylo- genetic relationships among species using a combined nuclear-encoded ITS2, partial large subunit ribosomal DNA (LSU rDNA), and small subunit ribosomal DNA (SSU rDNA), and chloroplast-encoded psbA (photosys- tem II protein D1) and LSU rDNA sequence data. We also predicted the ITS2 secondary structure of Cryptomonas Fig. 1. Distributions of the genus Cryptomonas species from Korea. species. MATERIALS AND METHODS shape, and internal organization (Bourelly 1970). Howev- er, it is difficult to delimit Cryptomonas species due to the Algal cultures and microscopy paucity of morphological characters and the less-than- adequate visibility of living cells using light microscopy Specimens were collected from freshwater habitats in (Pringsheim 1968). For example, an early attempt to orga- Korea (Fig. 1). Live cells were isolated by Pasteur capillary nize photosynthetic cryptomonad taxonomy was carried pipette and were brought into a unialgal culture. The cells out by Ehrenberg (1838), who included several unrelated were cultivated in f/2 medium (Guillard and Ryther 1962, genera in the family Cryptomonadina with original short Guillard 1975) with soil extract. The clonal cultures were diagnosis. Later, Dujardin (1841) described two families maintained under a light : dark regime of 14 : 10 at 20- (Xanthodiscaceae and Chilomonaceae) within the or- 22°C using cool-white fluorescence lamps with illumina- der Cryptomonadineae. In his classification system, the tions of 30 µmol protons m-2 s-1. The morphology was ex- family Chilomonadaceae consisted of four genera (Chi- amined by differential interference contrast with a 100X lomonas, Rhodomonas, Cryptomonas, and Cyanomonas). oil immersion lens (Carl Zeiss Co., Göttingen, Germany). These genera were characterized by nutritional mode, Calibration of magnification was done with grated mi- number and color of chloroplast. Butcher (1967) orga- crometer. The shape and length of cells, length of the nized main photosynthetic genera of the Cryptophyceae fullow-gullet system, color and number of chloroplasts, into three families (Hilleaceae, Hemiselmidaceae, and presence / absence and number of pyrenoids were exam- Cryptomonadaceae) based on complexity of furrow- ined. Cellular dimensions were determined by measuring gullet system with or without ejectisome. He also used 20-25 cells of each taxon from photographic images. Light number of ejectisome rows in the furrow-gullet system to micrographs were taken with an Axio CamHRc (Carl Zeiss discriminate between each genus, and thus, described 12 Co.) photomicrographic system attached to the micro- new Cryptomonas species from salt water. scope. Hill (1991) revised the broad generic definition of the genus Cryptomonas recognized by Butcher (1967) and DNA isolation, polymerase chain reaction (PCR), erected four new genera based on their furrow-gullet and sequencing system, periplast structure, plastidial complex and rhi- zostyle; Campylomonas, Geminigera, Storeatula, and Approximately 10 mL of cultures in exponential growth Teleaulax. Recently, molecular work (Marin et al. 1998, were harvested by centrifugation (4,500 ×g, model 5415; Deane et al. 2002) has shown that Cryptomonas species Eppendorf, Hamburg, Germany) for 1 min at room tem- grouped together with species of Campylomonas and perature and washed three times with sterilized distilled Chilomonas. Hoef-Emden and Melkonian (2003) syn- water. Total genomic DNA was extracted from the pellet http://dx.doi.org/10.4490/algae.2013.28.4.307 308 Choi et al. Taxonomy of the Genus Cryptomonas using the Dokdo-Prep Blood Genomic DNA Purification The alignment for each gene sequence was aligned by the Kit (Elpis-Biotech Inc., Daejeon, Korea) following the eye, and was edited using the Genetic Data Environment manufacturer’s blood sample protocol. PCR was per- (GDE 2.4) program (Smith et al. 1994). Unalignable nucle- formed using specific primers for nuclear ITS2, nuclear otides were excluded from phylogenetic analyses. SSU rDNA, chloroplast psbA and chloroplast LSU rDNA (Table 1). The PCR amplification was performed on a to- Strain identification tal volume of 25 µL, containing 0.15 µL of TaKaRa Ex Taq DNA polymerase (TaKaRa Bio Inc., Otsu, Japan), 2 µL Nuclear ITS2 is likely a suitable marker to identify spe- of each dNTP, 2.5 µL of 10× Ex Taq buffer, 1 µL of each cies according to its degree of conservation (Hoef-Emden primer, and 1-10 ng of template DNA. The nuclear ITS2, 2007), and nuclear ITS2 as well as partial LSU rDNA se- nuclear SSU rDNA, chloroplast psbA, and chloroplast quences were used to examine groups of genetically iden- LSU rDNA were amplified using a PTC-0150 Minicycler tical strains and to identify species of the strains. (MJ Research, Perkin-Elmer Co., Norwalk, CT, USA) with the following program: 94°C for 5 min, 30 cycles of 94°C Phylogenetic analyses for 1 min, 37-55°C for 1 min, and 72°C for 4 min, 72°C for 10 min and a 4°C hold. The PCR products were ~1.5 kb Phylogenetic trees were constructed using Bayesian for nr ITS2 partial LSU rDNA, 1.7 kb for nr SSU rDNA, 1.0 analysis (BA). Before the BA, we performed a likelihood kb for cp psbA, and 2.7 kb for cp LSU rDNA and were pu- ratio test using Modeltest, version 3.7 (Posada and Cran- rified using the Dokdo-Prep PCR Purification Kit (Elpis- dall 1998) to determine the best model
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Development of Molecular Probes for Dinophysis (Dinophyceae) Plastid: a Tool to Predict Blooming and Explore Plastid Origin
    Development of Molecular Probes for Dinophysis (Dinophyceae) Plastid: A Tool to Predict Blooming and Explore Plastid Origin Yoshiaki Takahashi,1 Kiyotaka Takishita,2 Kazuhiko Koike,1 Tadashi Maruyama,2 Takeshi Nakayama,3 Atsushi Kobiyama,1 Takehiko Ogata1 1School of Fisheries Sciences, Kitasato University, Sanriku, Ofunato, Iwate, 022-01011, Japan 2Marine Biotechnology Institute, Heita Kamaishi, Iwate, 026-0001, Japan 3Institute of Biological Sciences, University of Tsukuba, Tennoh-dai, Tsukuba, Ibaraki, 305-8577, Japan Received: 9 July 2004 / Accepted: 19 August 2004 / Online publication: 24 March 2005 Abstract Introduction Dinophysis are species of dinoflagellates that cause Some phytoplankton species are known to produce diarrhetic shellfish poisoning. We have previously toxins that accumulate in plankton feeders. In par- reported that they probably acquire plastids from ticular, toxin accumulation in bivalves causes food cryptophytes in the environment, after which they poisoning in humans, and often leads to severe eco- bloom. Thus monitoring the intracellular plastid nomic damage to the shellfish industry. density in Dinophysis and the source cryptophytes Diarrhetic shellfish poisoning (DSP) is a gastro- occurring in the field should allow prediction of intestinal syndrome caused by phytoplankton tox- Dinophysis blooming. In this study the nucleotide ins, including okadaic acid, and several analogues of sequences of the plastid-encoded small subunit dinophysistoxin (Yasumoto et al., 1985). These tox- ribosomal RNA gene and rbcL (encoding the large ins are derived from several species of dinoflagellates subunit of RuBisCO) from Dinophysis spp. were belonging to the genus Dinophysis (Yasumoto et al, compared with those of cryptophytes, and genetic 1980; Lee et al., 1989). Despite extensive studies in probes specific for the Dinophysis plastid were de- the last 2 decades, little is known about the eco- signed.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • Ocean Acidification and High Irradiance Stimulate Growth of The
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-97 Manuscript under review for journal Biogeosciences Discussion started: 26 March 2019 c Author(s) 2019. CC BY 4.0 License. Ocean acidification and high irradiance stimulate growth of the Antarctic cryptophyte Geminigera cryophila Scarlett Trimborn1,2, Silke Thoms1, Pascal Karitter1, Kai Bischof2 5 1EcoTrace, Biogeosciences section, Alfred Wegener Institute, Bremerhaven, 27568, Germany 2Marine Botany, Department 2 Biology/Chemistry, University of Bremen, Bremen, 28359, Germany Correspondence to: Scarlett Trimborn ([email protected]) Abstract. Ecophysiological studies on Antarctic cryptophytes to assess whether climatic changes such as ocean acidification 10 and enhanced stratification affect their growth in Antarctic coastal waters in the future are lacking so far. This is the first study that investigated the combined effects of increasing availability of pCO2 (400 and 1000 µatm) and irradiance (20, 200 and 500 μmol photons m−2 s−1) on growth, elemental composition and photophysiology of the Antarctic cryptophyte Geminigera cryophila. Under ambient pCO2, this species was characterized by a pronounced sensitivity to increasing irradiance with complete growth inhibition at the highest light intensity. Interestingly, when 15 grown under high pCO2 this negative light effect vanished and it reached highest rates of growth and particulate organic carbon production at the highest irradiance compared to the other tested experimental conditions. Our results for G. cryophila reveal beneficial effects of ocean acidification in conjunction with enhanced irradiance on growth and photosynthesis. Hence, cryptophytes such as G. cryophila may be potential winners of climate change, potentially thriving better in more stratified and acidic coastal waters and contributing in higher abundance to future 20 phytoplankton assemblages of coastal Antarctic waters.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Lista Florística Y Bibliográfica De Criptoficeas (Cryptophyceae) Y Dinoflagelados (Dinophyceae) Continentales De España
    ASOCIACION ESPAÑOLA DE LIMNOLOGIA Lista florística y bibliográfica de Criptoficeas (Cryptophyceae) y Dinoflagelados (Dinophyceae) continentales de España M. ALVAREZ COBELAS F. J. HAERING J. ZARCO LISTAS DE LA FLORA Y FAUNA DE LAS AGUAS CONTINENTALES DE LA PENINSULA IBERICA PUBLICACION N2 6 - 1989 1 J , . , LISTA FLORISTICA Y BIBLIOGRAFICA DE ASQCIACION ÉSPAÑQLA CRIPTOFICEAS (CRYPTOPHYCEAE) Y OBJETIVO La Asociación Española de Limnología está constituida con el fin de füme11tái/ estudios que hagan referencia a las aguas no marinas iberobaleares y macaronésicJ, ?.";rr . DINOFLAGELADOS (DINOPHYCEAE) La Asociación pretende. el conocimiento mutuo .de los investigadores que esnidiáii~I~ [agua's . continentales bajó diferentes enfoques que comprenden, entre otros.los de .la quÍimca:,Jísié~ CONTINENTALES DE ESPAÑA hidrología, microbiología y ecología, los cuales se consideran incluidos dentro de la.Liínrtologíi En este mismo sentido es de interés para laAsociaciónel condcimiento de losprogram:as ele trá15a:jos· en curso en centros de investigación y de los especialistas en todo elamplio campo de la Limnología; el apoyo a actividades e iniciativas relacionadas con el agua; lasrelaciones con otras sociedades extranjeras dedicadas al mismo tema y laparticipación en faconservación y gestióri de los ecosistemas acuáticos continentales. SOCIOS Pueden pertenecer a la AEL, todas. las personás interesadás en temas :relacionados con laLimno­ por logía y que soliciten su ingreso a la directiva:. Además de los socips numm-arios la Asoci.ación admite socios corporativos o estudiantes así como socios protectores y nombrasocfos de honora persona­ M. Alvarez Cobelas lidades que se hayan distinguido en el campo de la Limnología o en su apoyo a láAsodación; La c.uota Centro de Investigaciones del Agua.
    [Show full text]
  • Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea
    Baltic Sea Environment Proceedings No.106 Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Baltic Sea Environment Proceedings No. 106 Biovolumes and size-classes of phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Authors: Irina Olenina, Centre of Marine Research, Taikos str 26, LT-91149, Klaipeda, Lithuania Susanna Hajdu, Dept. of Systems Ecology, Stockholm University, SE-106 91 Stockholm, Sweden Lars Edler, SMHI, Ocean. Services, Nya Varvet 31, SE-426 71 V. Frölunda, Sweden Agneta Andersson, Dept of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Norbert Wasmund, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Susanne Busch, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Jeanette Göbel, Environmental Protection Agency (LANU), Hamburger Chaussee 25, D-24220 Flintbek, Germany Slawomira Gromisz, Sea Fisheries Institute, Kollataja 1, 81-332, Gdynia, Poland Siv Huseby, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Maija Huttunen, Finnish Institute of Marine Research, Lyypekinkuja 3A, P.O. Box 33, FIN-00931 Helsinki, Finland Andres Jaanus, Estonian Marine Institute, Mäealuse 10 a, 12618 Tallinn, Estonia Pirkko Kokkonen, Finnish Environment Institute, P.O. Box 140, FIN-00251 Helsinki, Finland Iveta Ledaine, Inst. of Aquatic Ecology, Marine Monitoring Center, University of Latvia, Daugavgrivas str. 8, Latvia Elzbieta Niemkiewicz, Maritime Institute in Gdansk, Laboratory of Ecology, Dlugi Targ 41/42, 80-830, Gdansk, Poland All photographs by Finnish Institute of Marine Research (FIMR) Cover photo: Aphanizomenon flos-aquae For bibliographic purposes this document should be cited to as: Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I.
    [Show full text]
  • Chloroplast Structure of the Cryptophyceae
    CHLOROPLAST STRUCTURE OF THE CRYPTOPHYCEAE Evidence for Phycobiliproteins within Intrathylakoidal Spaces E . GANTT, M . R . EDWARDS, and L . PROVASOLI From the Radiation Biology Laboratory, Smithsonian Institution, Rockville, Maryland 20852, the Division of Laboratories and Research, New York State Department of Health, Albany, New York 12201, and the Haskins Laboratories, New Haven, Connecticut 06520 ABSTRACT Selective extraction and morphological evidence indicate that the phycobiliproteins in three Cryptophyceaen algae (Chroomonas, Rhodomonas, and Cryptomonas) are contained within intrathylakoidal spaces and are not on the stromal side of the lamellae as in the red and blue-green algae . Furthermore, no discrete phycobilisome-type aggregates have thus far been observed in the Cryptophyceae . Structurally, although not necessarily functionally, this is a radical difference . The width of the intrathylakoidal spaces can vary but is gen- erally about 200-300 A . While the thylakoid membranes are usually closely aligned, grana- type fusions do not occur. In Chroomonas these membranes evidence an extensive periodic display with a spacing on the order of 140-160 A . This periodicity is restricted to the mem- branes and has not been observed in the electron-opaque intrathylakoidal matrix . INTRODUCTION The varied characteristics of the cryptomonads (3), Greenwood in Kirk and Tilney-Bassett (10), are responsible for their indefinite taxonomic and Lucas (13) . The thylakoids have a tendency position (17), but at the same time they enhance to be arranged in pairs, that is, for two of them to their status in evolutionary schemes (1, 4) . Their be closely associated with a 30-50 A space between chloroplast structure is distinct from that of every them .
    [Show full text]
  • Phytoref: a Reference Database of the Plastidial 16S Rrna Gene of Photosynthetic Eukaryotes with Curated Taxonomy
    Molecular Ecology Resources (2015) 15, 1435–1445 doi: 10.1111/1755-0998.12401 PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy JOHAN DECELLE,*† SARAH ROMAC,*† ROWENA F. STERN,‡ EL MAHDI BENDIF,§ ADRIANA ZINGONE,¶ STEPHANE AUDIC,*† MICHAEL D. GUIRY,** LAURE GUILLOU,*† DESIRE TESSIER,††‡‡ FLORENCE LE GALL,*† PRISCILLIA GOURVIL,*† ADRIANA L. DOS SANTOS,*† IAN PROBERT,*† DANIEL VAULOT,*† COLOMBAN DE VARGAS*† and RICHARD CHRISTEN††‡‡ *UMR 7144 - Sorbonne Universites, UPMC Univ Paris 06, Station Biologique de Roscoff, Roscoff 29680, France, †CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff 29680, France, ‡Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK, §Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK, ¶Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy, **The AlgaeBase Foundation, c/o Ryan Institute, National University of Ireland, University Road, Galway Ireland, ††CNRS, UMR 7138, Systematique Adaptation Evolution, Parc Valrose, BP71, Nice F06108, France, ‡‡Universite de Nice-Sophia Antipolis, UMR 7138, Systematique Adaptation Evolution, Parc Valrose, BP71, Nice F06108, France Abstract Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongo- ing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that
    [Show full text]
  • A Reference Database of the Plastidial 16S Rrna Gene Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-UNICE PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy Johan Decelle, Sarah Romac, Rowena F Stern, El Mahdi Bendif, Adriana Zingone, St´ephane Audic, Michel D Guiry, Laure Guillou, D´esir´eTessier, Florence Le Gall, et al. To cite this version: Johan Decelle, Sarah Romac, Rowena F Stern, El Mahdi Bendif, Adriana Zingone, et al.. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Molecular Ecology Resources, Blackwell, 2015, 15 (6), pp.1435-1445. <10.1111/1755-0998.12401>. <hal-01149047> HAL Id: hal-01149047 http://hal.upmc.fr/hal-01149047 Submitted on 6 May 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Received Date : 12-Nov-2014 Revised Date : 20-Feb-2015 Accepted Date : 02-Mar-2015 Article type : Resource Article PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy Johan Decelle1,2, Sarah Romac1,2, Rowena F. Stern3, El Mahdi Bendif4, Adriana Zingone5, Stéphane Audic1,2, Michael D.
    [Show full text]
  • HIGH-THROUGHPUT SEQUENCING REVEALS UNEXPECTED PHYTOPLANKTON PREY of an ESTUARINE COPEPOD a Thesis Submitted to the Faculty of Sa
    HIGH-THROUGHPUT SEQUENCING REVEALS UNEXPECTED PHYTOPLANKTON PREY OF AN ESTUARINE COPEPOD A Thesis submitted to the faculty of San Francisco State University In partial fulfillment of z o l i the requirements for OL the Degree • Hk ^ Master of Science In Biology: Ecology, Evolution, and Conservation Biology by Ann Elisabeth Holmes San Francisco, California Copyright by Ann Elisabeth Holmes 2018 CERTIFICATION OF APPROVAL I certify that I have read High-throughput sequencing reveals unexpected phytoplankton prey of an estuarine copepod by Ann Elisabeth Holmes, and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirement for the degree Master of Science in Biology: Ecology, Evolution and Conservation Biology at San Francisco State University. Wim Kimmerer, PhD Professor Jopathon Stillman, PhD Professor Andrea Swei, PhD Assistant Professor HIGH-THROUGHPUT SEQUENCING REVEALS UNEXPECTED PHYTOPLANKTON PREY OF AN ESTUARINE COPEPOD Ann Elisabeth Holmes San Francisco, California 2018 Selective feeding by copepods has important ecological implications such as food web length, nutrient limitation, and control of algal blooms. Traditional methods for investigating copepod feeding in natural waters (e.g. stable isotope and fatty acid tracers or microdissection) have low taxonomic specificity or significant biases. We used high- throughput genetic sequencing (HTS) to identify in situ the phytoplankton prey of Pseudodiaptomus forbesi (Copepoda: Calanoida) in the San Francisco Estuary. Amplicons of the 16s rRNA gene were sequenced on an Illumina MiSeq. Cyanobacteria were the most frequently detected prey taxon, a result not predicted due to expected low nutritional value. In contrast, prey taxa expected to have high nutritional value for copepods (diatoms and cryptophytes) were not detected as frequently as anticipated based on the expectations generated using traditional approaches.
    [Show full text]