The James Webb Space Telescope Presentation to SEDS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nircam Optical Analysis
NIRCam Optical Analysis Yalan Mao, Lynn W. Huff and Zachary A. Granger Lockheed Martin Advanced Technology Center, 3251 Hanover St., Palo Alto, CA 94304 ABSTRACT The Near Infrared Camera (NIRCam) instrument for NASA’s James Webb Space Telescope (JWST) is one of the four science instruments to be installed into the Integrated Science Instrument Module (ISIM) on JWST. NIRCam’s requirements include operation at 37 Kelvin to produce high-resolution images in two wave bands encompassing the range from 0.6 microns to 5 microns. In addition, NIRCam is to be used as a metrology instrument during the JWST observatory commissioning on orbit, during the precise alignment of the observatory’s multiple-segment primary mirror. This paper will present the optical analyses performed in the development of the NIRCam optical system. The Compound Reflectance concept to specify coating on optics for ghost image reduction is introduced in this paper. Key words: NIRCam, JWST, Compound Reflectance, Optical analysis, ghost image 1. INTRODUCTION NIRCam is a science instrument that will make up part of the science instrument complement of the James Webb Space Telescope (JWST). The JWST will possess a large aperture of 6.5m with several times the collecting area of the Hubble Space Telescope. JWST will have a broadband IR capability that, from the vicinity of Lagrange 2 (nine hundred thousand km from earth), will allow a view into the distant history of galaxy formation. The instrument will be required to furnish high-quality infrared imaging performance while operating in a challenging cryogenic (32 - 37 Kelvin) space environment over a minimum 5-year (10 year goal) mission. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Status of the James Webb Space Telescope Integrated Science Instrument Module System
The 2010 STScI Calibration Workshop Space Telescope Science Institute, 2010 Susana Deustua and Cristina Oliveira, eds. Status of the James Webb Space Telescope Integrated Science Instrument Module System Matthew A. Greenhouse*, Michael P. Drury, Jamie L. Dunn, Stuart D. Glazer, Ed Greville, Gregory Henegar, Eric L. Johnson, Ray Lundquist, John C. McCloskey, Raymond G. Ohl IV, Robert A. Rashford, and Mark F. Voyton Goddard Space Flight Center, Greenbelt, MD 20771 Abstract. The Integrated Science Instrument Module (ISIM) of the JamesWebbSpace Telescope (JWST) is discussed from a systems perspective with emphasis on devel- opment status and advanced technology aspects. The ISIM is one of three elements that comprise the JWST space vehicle and is the science instrument payload of the JWST. The major subsystems of this flight element and theirbuildstatusare described. 1. Introduction The James Webb Space Telescope (Figure 1) is under development by NASA for launch during 2014 with major contributions from the European and Canadian Space Agencies. The JWST mission is designed to enable a wide range of science investigations across four broad themes: (1) observation of the first luminous objects after the Big Bang, (2) the evolution of galaxies, (3) the birth of stars and planetary systems, and (4) the formation of planets and the origins of life [1],[2],[3]. Integrated Science Instrument Module (ISIM) is the science payload of the JWST [4],[5],[6]. Along with the telescope and spacecraft, the ISIM is one of three elements that comprise the JWST space vehicle. At 1.4 mT, it makes up approximately 20% of both the observatory mass and cost to launch. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
Nircam: Development and Testing of the JWST Near-Infrared Camera
NIRCam: Development and Testing of the JWST Near-Infrared Camera Thomas Greenea, Charles Beichmanb, Michael Gully-Santiagoc,DanielJaffec, Douglas Kellyd, John Kriste,MarciaRieked, and Eric H. Smithf aNASA’s Ames Research Center, MS 245-6, Moffett Field, CA, USA; bNExScI, Caltech 100-22, Pasadena, CA, USA; cUniversity of Texas Department of Astronomy, Austin, TX, USA; dSteward Observatory, University of Arizona, Tucson, AZ, USA; eJet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, USA; fLockheed Martin Advanced Technology Ctr., 3251 Hanover St., Palo Alto, CA USA ABSTRACT The Near Infrared Camera (NIRCam) is one of the four science instruments of the James Webb Space Telescope (JWST). Its high sensitivity, high spatial resolution images over the 0.6 − 5 μm wavelength region will be essential for making significant findings in many science areas as well as for aligning the JWST primary mirror segments and telescope. The NIRCam engineering test unit was recently assembled and has undergone successful cryogenic testing. The NIRCam collimator and camera optics and their mountings are also progressing, with a brass-board system demonstrating relatively low wavefront error across a wide field of view. The flight model’s long-wavelength Si grisms have been fabricated, and its coronagraph masks are now being made. Both the short (0.6 − 2.3 μm) and long (2.4 − 5.0 μm) wavelength flight detectors show good performance and are undergoing final assembly and testing. The flight model subsystems should all be completed later this year through early 2011, and NIRCam will be cryogenically tested in the first half of 2011 before delivery to the JWST integrated science instrument module (ISIM). -
The Mid-Infrared Instrument for JWST I
When there is a discrepancy between the information in this technical report and information in JDox, assume JDox is correct. The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction G. H. Rieke1,G.S.Wright2,T.B¨oker3,J.Bouwman4, L. Colina5, Alistair Glasse2,K.D. Gordon6,7,T.P.Greene8,ManuelG¨udel9,10, Th. Henning4,K.Justtanont11,P.-O. Lagage12,M.E.Meixner6,13, H.-U. Nørgaard-Nielsen14,T.P.Ray15,M.E.Ressler16,E.F. van Dishoeck17,&C.Waelkens18. –2– ABSTRACT MIRI (the Mid-Infrared Instrument for the James Webb Space Telescope (JWST)) operates from 5 to 28.5 μm and combines over this range: 1.) unprece- dented sensitivity levels; 2.) sub-arcsec angular resolution; 3.) freedom from atmospheric interference; 4.) the inherent stability of observing in space; and 1Steward Observatory, 933 N. Cherry Ave, University of Arizona, Tucson, AZ 85721, USA 2UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 3European Space Agency, c/o STScI, 3700 San Martin Drive, Batimore, MD 21218, USA 4Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany 5Centro de Astrobiolog´ıa (INTA-CSIC), Dpto Astrof´ısica, Carretera de Ajalvir, km 4, 28850 Torrej´on de Ardoz, Madrid, Spain 6Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 7Sterrenkundig Observatorium, Universiteit Gent, Gent, Belgium 8Ames Research Center, M.S. 245-6, Moffett Field, CA 94035, USA 9Dept. of Astrophysics, Univ. of Vienna, T¨urkenschanzstr 17, A-1180 Vienna, Austria 10ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Str. 27, CH-8093 Zurich, Switzerland 11Chalmers University of Technology, Onsala Space Observatory, S-439 92 Onsala, Sweden 12Laboratoire AIM Paris-Saclay, CEA-IRFU/SAp, CNRS, Universit´e Paris Diderot, F-91191 Gif-sur- Yvette, France 13The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. -
James Webb Space Telescope Is Expected to Have As Profound and Far-Reaching an Impact on Astrophysics As Did Its Famous Predecessor
JWST Peter Jakobsen & Peter Jensen Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands nspired by the success of the Hubble Space Telescope, NASA, ESA and the Canadian I Space Agency have collaborated since 1996 on the design and construction of a scientifically worthy successor. Due to be launched from Kourou in 2013 on an Ariane-5 rocket, the James Webb Space Telescope is expected to have as profound and far-reaching an impact on astrophysics as did its famous predecessor. Introduction Astronomers cannot conduct experi- ments on the Universe, instead they must patiently observe the night sky as they find it, teasing out its secrets only by collecting and analysing the light received from celestial bodies. Since the time of Galileo, the foremost tool of astronomy has been the telescope, feeding first the human eye, and later increasingly sensitive and sophisticated instruments designed to record and dissect the captured light. With the coming of the Space Age, astronomers soon began sending their telescopes and instrumentation into orbit, to operate above the constraining window of Earth’s atmosphere. One of the most successful astronomical esa bulletin 133 - february 2008 33 Science Who was James Webb? James E. Webb (1906-92) was NASA’s second administrator. Appointed by President John F. Kennedy in 1961, Webb organised the fledgling space agency and oversaw the development of the Apollo programme until his retirement a few months before Apollo 11 successfully landed on the Moon. Although an educator and lawyer by training, with a long career in public service and industry, Webb can rightfully be considered the father of modern space science. -
The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction
The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction G. H. Rieke1,G.S.Wright2,T.B¨oker3,J.Bouwman4, L. Colina5, Alistair Glasse2,K.D. Gordon6,7,T.P.Greene8,ManuelG¨udel9,10, Th. Henning4,K.Justtanont11,P.-O. Lagage12,M.E.Meixner6,13, H.-U. Nørgaard-Nielsen14,T.P.Ray15,M.E.Ressler16,E.F. van Dishoeck17,&C.Waelkens18. –2– ABSTRACT MIRI (the Mid-Infrared Instrument for the James Webb Space Telescope (JWST)) operates from 5 to 28.5 μm and combines over this range: 1.) unprece- dented sensitivity levels; 2.) sub-arcsec angular resolution; 3.) freedom from atmospheric interference; 4.) the inherent stability of observing in space; and 1Steward Observatory, 933 N. Cherry Ave, University of Arizona, Tucson, AZ 85721, USA 2UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 3European Space Agency, c/o STScI, 3700 San Martin Drive, Batimore, MD 21218, USA 4Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany 5Centro de Astrobiolog´ıa (INTA-CSIC), Dpto Astrof´ısica, Carretera de Ajalvir, km 4, 28850 Torrej´on de Ardoz, Madrid, Spain 6Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 7Sterrenkundig Observatorium, Universiteit Gent, Gent, Belgium 8Ames Research Center, M.S. 245-6, Moffett Field, CA 94035, USA 9Dept. of Astrophysics, Univ. of Vienna, T¨urkenschanzstr 17, A-1180 Vienna, Austria 10ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Str. 27, CH-8093 Zurich, Switzerland 11Chalmers University of Technology, Onsala Space Observatory, S-439 92 Onsala, Sweden 12Laboratoire AIM Paris-Saclay, CEA-IRFU/SAp, CNRS, Universit´e Paris Diderot, F-91191 Gif-sur- Yvette, France 13The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. -
Extrasolar Planets Topics to Be Covered
3/25/2013 Extrasolar planets Astronomy 9601 1 Topics to be covered • 12.1 Physics and sizes • 12.2 Detecting extrasolar planets • 12.3 Observations of exoplanets • 12.4 Exoplanet statistics • 12.5 Planets and Life 2 What is a planet? What is a star? • The composition of Jupiter closely resembles that of the Sun: who’s to say that Jupiter is not simply a “failed star” rather than a planet? • The discovery of low-mass binary stars would be interesting, but (perhaps) not as exciting as discovering new “true” planets. • Is there a natural boundary between planets and stars? 3 1 3/25/2013 Planets and brown dwarfs • A star of mass less than 8% Luminosity “bump” due to short- of the Sun (80x Jupiter’s lived deuterium burning mass) will never grow hot Steady luminosity due to H burning enough in its core to fuse hydrogen • This is used as the boundary between true stars and very large gas planets • Object s b el ow thi s mass are called brown dwarfs • The boundary between BD and planet is more controversial – some argue it should be based on formation – other choose 0.013 solar masses=13 Mj as the boundary, as objects below this mass will never reach even deuterium fusion 4 Nelson et al., 1986, AJ, 311, 226 5 Pulsar planets • In 1992, Wolszczan and Frail announced the discovery of a multi‐ Artist’s conception of the planet planet planetary system around the orbiting pulsar PSR B1257+12 millisecond pulsar PSR 1257+12 (an earlier announcement had been retracted). -
Meteor Csillagászati Évkönyv
Ár: 3000 Ft 2016 meteor csillagászati évkönyv csillagászati évkönyv meteor ISSN 0866- 2851 2016 9 770866 285002 meteor 2016 Távcsöves Találkozó Tarján, 2016. július 28–31. www.mcse.hu Magyar Csillagászati Egyesület Fotó: Sztankó Gerda, Tarján, 2012 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER meteor csillagászati évkönyv 2016 Szerkesztette: Benkõ József Mizser Attila Magyar Csillagászati Egyesület www.mcse.hu Budapest, 2015 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER Az évkönyv kalendárium részének összeállításában közremûködött: Bagó Balázs Kaposvári Zoltán Kiss Áron Keve Kovács József Molnár Péter Sánta Gábor Sárneczky Krisztián Szabadi Péter Szabó M. Gyula Szabó Sándor Szôllôsi Attila A kalendárium csillagtérképei az Ursa Minor szoftverrel készültek. www.ursaminor.hu Szakmailag ellenôrizte: Szabados László A kiadvány a Magyar Tudományos Akadémia támogatásával készült. További támogatóink mindazok, akik az SZJA 1%-ával támogatják a Magyar Csillagászati Egyesületet. Adószámunk: 19009162-2-43 Felelôs kiadó: Mizser Attila Nyomdai elôkészítés: Kármán Stúdió, www.karman.hu Nyomtatás, kötészet: OOK-Press Kft., www.ookpress.hu Felelôs vezetô: Szathmáry Attila Terjedelem: 23 ív fekete-fehér + 12 oldal színes melléklet 2015. november ISSN 0866-2851 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER Tartalom Bevezetô ................................................... 7 Kalendárium .............................................. -
Power Distribution for Cryogenic Instruments at 6-40K the James Webb Space Telescope Case
Power Distribution for Cryogenic Instruments at 6-40K The James Webb Space Telescope Case Peter Rumler<1>, Ray Lundqu ist<2>, Jose Lorenzo Alvarez'll , Jeff Since 11<2>, Jim Tutt1e<2> fl ) ESA-ESTEC, 2200AG Noordwijk. Nether/ands, JNh'r.ru111/cr'!! l!sa.1111 <1JNASA-GSFC, Greenbelt, MD-20771 USA, my.a./1111d,111isr'if,11a.1·a .1?01· \ .. -- ABSTRA CT ISIM structure located in Region I of the JWST Observatory. Each instrument's OA is connected The Integrated Science Instrument Module (ISIM) of through a heat strap to a dedicated radiator that the James Webb Space Telescope (JWST) operates its provides passive cooling to temperatures below 40K. instruments passively cooled at around 40 Kelvin (K), In addition, the NIRSpec FPA and the SIDECAR ASIC with a warm Instrument Electronic Compartment (!EC) (System for Image Digitization, Enhancement. Control at 300K attached to it. From the wann electronics all and Retrieval) connect to a dedicated radiator separate secondary signal and power harnesses have to bridge from the NIRSpec OA radiator. The ISIM Structure is this 300-40K temperature difference and minimize the a frame made of square graphite fiber reinforced plastic power dissipation and parasitic heat leak into the cold (GFRP) tubes attached together with gussets and clips, region. and with metal fittings for the Optical Telescope After an introduction of the !SIM with its instruments, Element (OTE) and Science Instrument interfaces. The the IEC with the electronics, and the harness resistivity of the GFRP tube material has been architecture with a special radiator, this paper measured to be in the order of H'l/m, and the resistance \ elaborates on the cryogenic wire selection and tests of the joints between GFRP tubes has been measured to perfonned to establish current de-rating rules for be approximately 10-200! per joint. -
Use of a Pathfinder Optical Telescope Element for James Webb Space Telescope Risk Mitigation
Use of a Pathfinder Optical Telescope Element for James Webb Space Telescope Risk Mitigation Lee D. Feinberga*, Ritva KeskiKuhaa, Charlie Atkinsonb, Scott C. Texter” aNASA Goddard Space Flight Center, Greenbelt, MD, USA 20771; 1’Northrup Grumman, Redondo Beach, CA USA ABSTRACT A Pathfmder of the James Webb Space Telescope (JWST) Optical Telescope Element is being developed to check out critical ground support equipment and to rehearse integration and testing procedures. This paper provides a summary of the baseline Pathfmder configuration and architecture, objectives of this effort, limitations of Pathfinder, status of its development, and future plans. Special attention is paid to risks that will be mitigated by Pathfmder. Keywords: Space Telescope, JWST, OTE, James Webb Space Telescope, Pathfmder, Risk 1. INTRODUCTION The testing of JWST Optical Telescope Element 1 (OTE) and Integrated Science Instrument System (ISIM) occurs as an integrated entity called the OTE-ISIM (OTIS) at the Johnson Space Center”. In order to assure the test is successful with as few cryogenic cycles as is possible, an OTE Pathfinder is being funded by the prime contractor Northrop Grumman as an IR+D funded effort. NGAS’s current plan emphasizes optical checkout at cryogenic temperatures though an augmentation to the Pathfmder plan is in the process of being added to the program that would add thermal checkout and dynamics objectives. 2. BIsT0RY OF PATHFINDER The OTE Pathfmder has its roots in the Verification Engineering Test Articles implemented on the Chandra program wherein unfinished flight optics were used to aid in the development of, and to demonstrate the integration operations and X-ray optical testing of, the critical optical components of the telescope using GSE that was uniquely designed for the purpose.