RqepoNo. 11610-BUL B-ulgaria PowerDemand and Supply Options

Public Disclosure Authorized June22, 1993 industryand Energy Operations Division CountryDepartment I ICR~OGRAPHICS Europeand Central Asia Region

R~eport No: 11610 BUL FOROFFICIAL USE ONLY Type: SEC Public Disclosure Authorized \~~~~~~~~~~A Public Disclosure Authorized Public Disclosure Authorized

Thlsocuerttasresricd distribuonan'd'may- be used byreczpie4ts

ht~1fS~O~Odw ObtVrld BankautOrwization.. CURRECltYBt

Currencyunit - 1 (plmu levy),abbrev. Lv US$1 - 21 avenge 1992 US$1= 23.2 - 23.5. Lv. esL avempg1992

ME AND EOUIVALENT k (kllo) 10ILevy (Watt econd) = Jouloe(J) M (1y) = 10 J = 0.239cm! G(giga) -10' kol - 3.9688BTU T(tema) = 1012 kWb = 3.8MI A = Aem TOE = 10.2 cGal v = Volt TCE = 7.00cam W =Watt Mete(m) - 3.28 fet J = Joule Kilomter (k) - 0.6214mile eam = caloie Kilogram(kg) = 2.2 pounds TOE = ton of oilequivalent Metricton (t) = 2,205pounds TCB = ton of coalequivaet BTU = Britishthermal unit

CEC Comision f pe Commities CMEA Counil of MuWa cnmic Ass COE Co i of Energy COM Councilof iniste COMGEOCommittee of Geolo andMiner Resources CEHP CombinedHeat and Power IB Eurpea InvestmentBank BiRD Eu Bankfor R s n and Developmeat ESS EnergyStrategy Study (Report 10143 Bul) FCMA Forner Councilof MutualEconomic As (CMEA)Block POD Fuel GasD df PSU FormerSoviet Union LAEA In l AlomicEnergy Agecy IRA EnergyAcy IPS In d PowerSystem (of CMEA) MOP Miisty of Finne NDC Nainal DispatchCeOter NEK NationalElectric Company SAR StaffAppmisd Repot UCPTE Unionfor the Coornation of Productionand Transportof Electricity (WestEurpean Gid) UDF Unionof DemocraticForces USAID US Agencyfor Intmetiond Delopment USTDA USTrade andDevelop_me Agency WANO WoddAsoi tion of Nucear Opeto WASP WienAutomed SystemPlanning Model

SCALYEAR January1 - December31 FOROMCIL USEONLY

POW-ERDE5MAND AND SLUM DE=lN

At the requestof the Groupof the Sn Indusized counties (G-7)and wih the agr_emm of the Governmentof Bugaria, a joint Elnerg Agec QEA)- WorldBank mission rsited Bulgadriafrom Novmber 7 to 20, 1992to prepar a studywhich would msempower sector stages and ficig iin order to emurethe reliablesupply of electricityif or when nuclear fkacilidesare scud for modificationsor shutdown for saety reasm. 'he mission consistedof: A. Kocic (MissionLeader); J. Mooe (Economist);L. Mltov (WorldBank Resident Mission);G. Kadatur and S. Virmani(Consitants from the World Bank);J. Piersor ([EA team leader);and A. Wheeler(Consutant from the IEA). Thereport was wrken by A. Kocic ad J. Moose at the WorldBank in closecooperation with 1. Piersonat the MEAand withconibuons fiom other teammembers. Mr. L. Radulov,at that dme Presdent of the Committeeof Energy(COB), prvided overallsupport and guidae whileMr. DiankoDobwev, Chairm of the Mangi Board of NEK, manged the coordinaionof workby NEK. Th managementand staffof COE,NEK, Bnegoproekt, the Committeefor PeacefulUses of AtomicEnergy, and EQE-International,actively paicipated in the work of the mission. The first draft of the studywas prepaed in March 1993.based on the findingsof the mission. The draft wasdicussed withthe Bulgaria authoritiesin March/April1993. Followingthese discussions,the studywas revised. The data on costs for saoftyupgrades at tie nuclearunis used in th report were provided by NEK with the assistance of otie consultants. They differ somewhat from the nuclear safetycost dataused In the SummaryReport psented to th G-7,which were provided later by EBRD. The differences,however, are not large and do not affectthe overl conclusions.

Thisdocument has a resictod distbution .ad may be usedby recipientsonly in the performance of their offcia duties.Its contentsmay not otherwisebe disclosedwithout World Dank guthorization. L 4bl4AMCONCLUMONS .... 44...... e...... 1

. Bw d ...... 4.. B. ehc ....r ......

M ENERGY MOR OfB y...... *...... 8S

A. Bwiod d...... **.***..*****.** ..... *** .** ..... **.*** ...... 8 D. SW"Dei ndSi numin...... 1 C. PfiZSupplof d a...... u ...... D. Enm d cdont ...... 19

EL ELCltllRICrYDMIN *4--e--v.-.-...... - 14

A. O vi ...... 14 D. RoOuDceawrulp ...... 14 C Wa ouz..G.s...... 24 D. LaMmautiouaW.a...... 2516 maud SideiMuKg ...... 16 Sup*eSier rangt ...... 2.17 Naa CTmndml ...... 18

IV. POWER SE r REVl .m ...... 31

A.I...... 3 C. PuayF cR.for Pww Q_ ...... 20 Co ...... ,o...... 20 N^ud"Pudt ...... 24 NaUun Oa ...... o...... t ... ? C Gmatie_ qoct...... 2S NucaPoweP Plants...... 25 . in Pow wPas,Dbtrict BHead dPlaits d aiddC ihl.u..Pl.n...... _ Phob .... 2s 3Hy pmw...... PI. 29 D. T"unosmiuaiaaSyTrsna m sdndbPe uE..u...... 31 TI 14 on'Transisbd^m SYM . o*o. *...... 31 Covd edsne4OW220V bomW syil "S"...... 31 . ste IPnYmn liusdiy dh Eba" ...... 31

V. M... we NAst ADis =ct ng.a...... u...... 33

A. sI pi. 24233u ...... 33 & Rems ...... *... o ... o o ...... o .... 37 C FfuimoA^xxS ...... 44

1. NUCUWPOWOC Phu"

3. HydqpowerPnt 4. Tra-sm san SydbmSWnMd PNoyxUR S. SydmPWgRaB 6. Bapoweoglof iDabbt Hodio# _d bdosrdd C"m _ on P

MAU. IBRD No 24233R BuLaa Po-WDMN AND SUPPLY OE=)

Ush 1992 0-7 summitin Munich requesd the Wodd Bank, with the t oe hlomadod 1EnergyAgency (lEA), to produce a study of alternive ene surces to replac the less sf nucloar plants (VVER 440 model 230s, RBMKs)In Eastern Euro: e and the firme Soviet Union. This study b specifically of the atative ergy sources in Bulgar, whih has 4 VVER 440 model 230 nucear unit (uni 1-4), at Its Kozody nula plat with 1760 MW of go gent caacity. Tleb unit repnt about 1S% of Bugriaas g capacity, but typically 20-25% of generation, sinc they ae b load units. Kozloduyalo has 2 VVER 1000 nudea uni (uni S and 6), each with 1000MW of geneatingcapacity representing an additional17% of capacity.

This repot ams that any nuciear power unakwhich condties to operat over an extendedperiod, undertk ma or Wivesme to upgade nuclr saft. The report then ass alt tivo detricity supplyoption and their associatedcosts if Bulgariawe tD shut dow some or all of its nuclearpower iits under variousacceleated meles stead of underking thes major nuclear safety upgrades. The feasibility of ealy cosure of ths nudea plant b dendt on th abffityof Bulgra tW: (1) obta reliable and econDomicenergy supplies (most o which wud be Impoted) to metd fhti demand_ (2) finance internally or obtain extera financingfor te investmentsin nuclear saety and non-nucea generatingunits which would be required; and (3) managethe shon lead tm requird for iestment selection, financingaragement, design and constuction. t is also dependenton the countrys willingnessto pay the costs ivolved in nuclear sfety upgrades and replacementof nuclear power by alatives.

Six nuclearelecticity supplyscenaios, scenarios0 to 5, were developedby tie Bulgaian Govenment for adysis purpoes. lhe scenariosrange from shuttingdown all nuclear units incuding the VVER 1000sImmiately (sio 0) tO nning all unit to the and of their design lives after safety upgradng (sceao 5). The other scnarios, 14, are In betweenand invole vaous closu dates for the 4 VVER 440s rging from closing all 4 of these units I ditely, but coning to rtn the VVER 100s to the nd of ther design lives after safety upgrades (sc io 1), to closiog units 1 and 2 in 1998 and saowing udts 3 and 4, as well as the VVER 1000sto contie operat to the end of their design lives after safety upgrades (scenarIo4). Also, three electricitydemand foreasts for the period 1993 to 2010 (minmum, medium and maxim) were agreed between the Bugariwn Govenet, the Bank and the IMA. e mediumfoes is generallyused by the BulgarianGovrnent for its planning puroe while the minmum or low forecast, which assumesconsiderable demand sde management,is based prmariy on work done by the Bank The maximumor high case was agreed upon as an upper limit The six nuclear supply scenaios coubined with the tee demand forecasts create 18 possible cas, for each of which a least cost electricity supplyplan was developed.

The main conclusios fom the analysis are: (1) it does not appear to be eoonomically feasibleto close the VVER 1000 units at Koloduy (the safer unis) ough these shoid underg ay upgradin, (2) the least cost electricitysupply option for Bulgariais to run all of the nuclearunits tohe end of their designlives after safety upgrading;(3) it would be tecdnicallyfeaible for Bulgada to teplace som or arl of the VVER 440s (the less safe unit) with alteative electricitysupplies and ene sving mueasm-sby the mid to late 1990s; (4) there are several relativelylow cost eletricity sly alternives in Bulgada the most important of which is probably use of highly efficient gs-fired combined cycle generatin uni espcay in existing dis'rlct heatng ad industrial generting plants; nd (5) the addion cost of replacigfthe VVER 4408 is about 3-20% of totd electricity supply costNs,dedng primaury an how many of them are cosed and when they are dlosed. he Bulgaian Govemnt has expre canaern t the least cost atentives to nuclear power analyzed above rety too much on decicy gened f*omImpoted naul gas and they bave reo e tht a lmitbe placedon the use of naul gs for th puposes of th anysis. If tis is done, the Co of replaI nula power I.M OUM=AAND mONwLUSaOm

A. BA u4 1.01 The 19920-7 Munichmeeting communique suggeed me es relatedto the safey of te nuclearpower pla'-s In the couies of te fomr SovietUnion and Centul and Eatern E pe. The G-7 commique suggesd td te scopejbr replacingless safe (Wdclear)plaws by dwe devlopm of aleratve energVsouc andthe more ufkntuse of energy shud be sied, and logedwrwih thehonetre rnaal organ oms,In ptiar tdielE4, the WorldBan* should prepareOe requirdenerv sdes, inludingrplcen sowresof ener and thecost hnptladow!. Ths studyhas, throe, beenpreaed by the WorldBank In coopeton withthe EA, the Govement of Bugria and the NationalElectric Company (NEK) la responseto the G-7 request B. beS 1.02 &M. Thisstudy consders possible snados dfvelopedby the Governme of Bugaria nd NEKfor the Kozoduynuclear plant In combiaton withthree forecastsof electicitydemand agreed to for the puposes of the studyby the Bank,the IEA, the Govenmentof Bulgariaand NEK. For each scearo, mostof which Involveredremeat of one or more of the nuclearreactors at Kozloduy,and demad forecast,the tdy esmates the least cost altnative supplyof elecricity. provde indeeden ludjeme nt to the saet levelsof the nuclea unitsand dosntmke sf

1.03 Demm. Electricityconsum in Bulgariais very hig relativeto the size of Its economy.Elecci tensityin 1990,for examplewas about 2.1 kWhldollarof GNPand rse In 1991. MTheOECD average is 0.371 kWh/USDof GNP). Ihis differen reflectsstucual and efficiency diffeencesand is a result of.

- ener itnive Industries; - energ inefficientprocess; - electricityuse for heain, - relativelylarge use of electiciy compaed to other energysources. Thereis, bowever,great pote for eding electricityintes s of GNPwhich declines in all tho demandforecasts discussed below. 1.04 Electricitydemand grew 11.5%per year from 1950 to 1988, with domesdcdemand peakng at 49.2 TWhin ta year. Doetc demandfell slightlyin 1989and thendropped by 5.7%in 1990,10.7% In 1991and about7.3% in 1992. Peakdemand also fellfrom 8,332MW in 1989to 7,489 MWIn 1991and about7100 MW in 1992. Lookingahead, a umber of forecst of Bularin electricity consumptionover the next 10to 15 yearse available.All forecastsassume that industri restructurng contues and,therefo, the intity of eleicity consumptiondclines. The forecastsvary depndn primary on the sumpdons thy makoabout: (a) the speedat whichindustrial restrcurng occurs; (b) the extent of the impactof restucuri on the intensityof elecricity consumptionby industry; (c) GDP growth;(d) the extet of conseWation/demandside management;and (e) th extent,if any,to whichhouseold shifttowards uig gas for homeheating rather than electricity.For the purposesof this stdy, threeorecastsagreed wit NEKand the Governmnt(mximum, mediu andminmum) wre used. The mediumforecast is used by the BulgarianGovernment for Is planningpurpos, whilethe low forecastIs similarto that used by the Bankin its 1 Stey Stdy (Renrt 10143). These forecastscover the likely range of possibleresut with two possibleexceptions, involving increased coneions of houseolds to gas firedspace heating and enhanceddemand side management,which are -2-

dicussed in paragraphs3.07 to 3.15 beow. 'Me tr foreasts are shownin the Figr beow, and al aume that the econmy staes btwen 1993and 1995and thea beginsa dow reovery. Teo firecastsInclude not onlyestima of decricityconsmpton, but alsottes of peakdemand for power. Cbart 1.1

BULGARIA DEMANDFORECAST an ~~~~Poww%fstmm fttlon Study

4…n s 54

53…---- -

40 __ _ 4 * 11 M _

30 $ 4 9be- -# =1b 2= 20l = Ig 1 O " 10 2t 2032 2OW 010

a WOtIlU + NEDIt O INIW

1.05 TN. high forecastassumes the highesteconomic growth and the leas adjustmentby industryto the anticipatedhigher prices of electricity.The two even are unlikelyto occurtogether and ths frecast b an upperlimit. The lowcase fkrecast Is jt the reverseand assumeslower economic gowth and more adjustmentby industry. It also ssumes the maxim impactof demandsde managementconsidered to be economicallyand feasible. Finally,it assumesdtat 450,000 householdconvert from electric heating to natu gas aftr theyear2000 while the highscenaio assumes no conversions.Te mediumforecast falin betweenthe high and lowforecasts and assmes no mjor conveiors of householdsto gas, modeate economicgrowth and a moregradual adjustment by industry to higherenergy prices. Thelatter forcast is viewedas the baseforecast for planningpurposes, since it is conservatvein the sensethat demandis likelyto be at that levelor below. 1.06 CaDacitx.Bulgars totalinstlled geting capacityincreased from 8,810 MW In 1980 to 12,074MW in 1991,wIh almostall of the new capacitythat was addedto-the system being In the formof nuclear. Thissimply reflects the continuationof the Goenmes policyof expandingnuclear geneating capacity,which wasadopted in the 1970s,as a meansfor offetting the constraintsarisi from the couy's limited wment of commcial eergy resources. Ihe first nucle reacto at Kozloduy(unit 1), a Sovietdesigned and builtVVER 440, modd 230, witha capacityof 440 MW was In 1974. Overthe net 16 years,another 3,320 MW were added to the plantat Kozloduy, comprising3x440 MW (VVER440, model230s, units 2-4) and 2x1000MW (VVE-1000s,units 5-6). -3-

Mm last unit of 1000 MW, unit 6, wa broughton itrtx In 1991 and I In the processof bein commlsskr-ud.As a result,the dswe of nucear in totl Installedcapacty has moretham doubled, from 15%In 1980to 31%SIn 1991,while tha of tml andhydro has deined orrespondly: from64% to 53% for the formerand f*om2196 to 16%for the laUtter,respectvely. Detals relatng to the growth in capacy ar ptesend in thetbl below. Table 1.2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...... _.. _ .. .. .

S 1 S .-. *.

.08. As Apf ithte BWgia auhrte, si nude scnro hwbe coralidered,anld thlese ae given immdately below. Mosdy,the sc8enro iuvolve the dates at wbhiC smneor ;d1of thie WER 440s at Kozoduy(units 1 to 4) ar8 retired,since *ese units m conierda "unaf" by most ae in their curm condition. EFa enario,-. therefore,inxvolves a different availabilityof mmclearpower. A system anaydswas thncarried out withithe reqi-mn dw Uwe demandfor electricit and peakWngcaiy shouldbe met at te least cos giventhe avlabfity of nuclearpower shownfor thiatparcdouar sceao. Ihe scenaio are: ScenarioO - AD1six UnitSat KoAoduyceas powerproduiction bmdiaely' no fiurther micleardevelopment. Souenai I - iCozoduyunits I tO 4 ceaseproduction immade1, Riozloduyunits S and 6 condue productiontD end of designlife. Scerio 2 - Kozloduyunits I and2 ceasepowver production immedhtely', unDs 3 and 4 cease powerproducdon I/l/98, unitsS and 6 continueoeapion to end of desipl life. Scenario3 - Kozloduyunks I to 4 cems powerproduction I/l198, uniL 5 and 6 colldml8 opaion tD end of designlife.

*For pqwof wWb* immedid*isW aI. Momiiv rb f aN_di 1e 9%m ndidu -4-

Semaro4 - Kozloduyunits 1 and 2 cea power productIo 1/1198,uits 3 to 6 continue operationto endof designlifb. Senauio 5 - All six unt continueopeatio to endof desip lf. (2005o units1, 2006for unit 2, 2011for unit 3 and4 and about2019 f&r units 5 and 6). For the purp of compAig thi reportwith those prepared for othercountries, scerio I willbe take as the "lownuclear" scenario, sceno 3 as the *moderatenuclear" scenario, and scenrio 4a5 the*hIgh nuclear'sceaio. In all thesescenios, w invesmet in u unclearuni wouldbe considered. However,an additonal scenario was considered at the requestof the Bulgarianauthorities and thatwas ScnarIo 6 - All six unitscontinue opeaion through to the end of theirdesig life, andadditona nuclearunits would be consideredas candidas for new plant. In fact, that turnedout to bethe sam scenarioas scenario5, sincenew nuclearplants were not a least-costsolution.

1.08 In all thescearos. fntclewunits we to continuoboeate for an extendedperiod, the =osof afet upgdes forthiose uni are includedin th mg of suDplyinel=lgbi underthat scenro (Thisis not the currentsituaton where the required safety upgrades have not yet beenundertaken.) The cost of thesesafety upgrades has beenprovided by the Bulgarianauthorities based on the workof outside consultantsand are shownin Table 5.1. Ihey rabge from an averageof US$87mfllion/year (1993 dollars)in scenarioS to verylittle in sceIo 0, wherethe nuclear units cease production immediately. 1.09 Eighteendifferent cases were considered,consisting of one of thesix nuclearsupply scenarioscombined with one of the three demandforecasts. In ocderto meetdemand for electricityin each case, a mmber of altenve sourcesof electricitywere consideredwith the least cost altenatve chosen.These alternatives include: (a) rehabilitaion of exisig themal powerplants (4730 MW), which maily burn coalor lignite;(b) reabilitation/repoweaingof existing cogenating plants(distict heating plantsand industrialplants totallingabout 1614 MW), whichmanlly burn importedntural gas; and (c) newplants including gas turbines,gas fired combinedcycle plant, plant fired with importedcod etec.Also, some considerationwas givento two non-ectic altenatives:(1) replacingelectricity, a signlflc3ntpart of whichis used by consmes t produceheat, withnatural gas for heatingpurposes; and (2) replcing electricitywith vaious demandside managementtecnmiques, in additionthose alreadytaken into acvount Thesenon-electric alternatives are quiteintriguing (see paras 3.07 to 3.15), but insufficientinormation i currentlyavaiable in Bulgariato be sure thatthey are economicallyor Institutionallyfeasible.

1.10 Thetotal system costs (fuel, orions, maintece, investments)of supplyingelectrity at the lowestpossible cost for the 18 caseshave beenestimated to the year 2010. Totalsystem costs clearlyindicate three groups of scenarios:(a) groupA (sceario 0), (b) groupB (scemrios1, 2 and 3), and (c) groupC (scenarios4 and 5).

GroupA - Scenario0 (mmediateclosure of al nuclearplants) is a substantially moreexpensive solution than any other. I additionto tiat, thesystem paramet giv In themain report indicated that this Is not a feasible solution,since it wouldresult in numerousprolonjged ouaes.

O B - Scenarios1, 2 and 3 whichassume Kozloduy units 1-4 ceasegeneration in 1993to 1998are very similarfrom the point of viewof tota costs. The differencebetween the lowestand highestvalues for differentload forecasti8 withinS to 7%. -5-

GrouNa - Seeios 4 d 5 showpracUicay no difare ce sad e lowercost than the scenariosIn GroupA or B.

1.11 TIhisanalysi of the Bulgaranelectricity system shows that aside from scenario 0, which involvesshuttig al 6 unis at Kozloduyand lSinfeasible, the other fivescenarios which Involve closing unks 14 at vadous das or keepingal u runningthrough the end of theirdesign life are potentially feasiblethough wih diffet costs. The longerunits 1-4 are run, the lower are the total costs of supplyingelectricity with scenario 5, whichinvolves rmning all unitsto the end of their designlife after safetyupgrades, being the lowestcost of all. In choosingbetween scenarios1-5, the Bulgarianauthorities must primarly considerthree factors: 1) nuclearsafety; 2) costs (bothlocal and foreign);and 3) the availabilityof non-uclear fuehs mootof whichare imported)especially natural gas for whichthere is a singlesupplier. The choicebuwervU ' enariosi largelya matter of trade offs. Increasing nuclear safetyabove the levelswhich wou'A k. , alnedby the assumedsafety upgrades (see para 1.08)raises costs and the risks involved in incaslub jependanceon importednon-nuclear fuels.

1.12 Table 1.3 below providesdetailed , 'lts for three scenarioswith the medium(base case) demand frecast. I shows in onstnt dollar terms the total cost of supplyingelectricity for scenario 1 or the low nuclearscenario under which units 1-4 cease productionimmediately; scenario 3 or the moderatenuclear scenaio underwhich these units close in 1998;and scenario 4 the highnuclear scenario underwhichunits I and 2 close in 1998and the other4 unks continueto the end of their designlives. Costsof unservedenergy or outagesor excludedsince they are smalland similarfor all three scenarios. Thetable shows that the highnuclear scenario is leastcost; because the cost of fuelis substantiallylower tha in the other senaios, more than offsettig the cost of the nuclearsafety upgrades which are required for the nuclear unit. The low nuclear scenaro is the highest cost, because the increasedcost of fosil fuels and higherno-nuclear investmentsin this scenariomore than offset the savingsfrom mkng lowerinveents in nuclearsafety upgrdes. However,the differencebetween the highnuclear scenarioand the lownuclear scario is awound11% or US$100million per yearspread over the 18 year time frme of the analysis. Table 1.3: C of System' ElectricitySuppy (1993-2010) (EJS$miillons, 1992 dollars)

ENu4mE EEQE E de-r

1.14 Tables1.4 -1.6 beow proide summry i on on the reslts accordig to a format whichis stndard for all the G-7country studies. Thesetables cover only the period1993-2000 or 1995- 2000rather than 1993-2010,which is the casefor the other tables. Also,they show results only for the g, low and moderate mnllearscenarios assuming the mediumdemand forecast. -6-

(USSMillo, MediumDemand Forecast) F IM puca, pow plt o*, io., bawmuaon an distrb nIud.

l.1S Table1.4 above shows total Investment requirements for the electricitysystem 1993-2000 assumingthe mediumor basedemand forecast. It Includesboth nuclear safety upgrades and non-nulear investme. 7he Inestmentsare verysimilar for all thre scenariosfor thi timeperiod since the hih non-nuclearInvestments in the modcrateand low nuclearscenarios are similarin siz to the higher auclearsafety upgrdes requiredfor the highnuclear scenario. Table 1.Sbelow provides a breabdown of Investmentby type of plant.

Table L5* TolvementR irementsby 3Ty of Plant 1993--2000 (US$Milon, MediumDemand Forecast, 1992 dollars)

1.16 Tablo1.6 showsfssil fulelre _rmetn constant199 dollarsfor the tbre scnro wi th mediumor base demandforecast. As wouldbe expectedfossil fulel requkee_ rise with reduceduso of nucl fuel. Table 1.6Afossi AyFerequs fuel irementsducnst 1 edla f rio1 (US$Million, Medium Demand Forecast, 1992 dollars)

Em ~~~~~AWf les _EF::~ -7.

LM S;nut~ RSlhRbonMelQwS pngC 1.17 The main concernof the BulgarianGovernment with the above analysisis that on avrag, the leastcost alternativeto nuclearpower In Bulgariais theuse of s firedcombined cyce genrat units. lTeseunits are especially economic If exfing s fied genean capaciyin disict beatg plats andIndustrial plans canbe convertedto combinedcycle, with a resultantlarge es in efficincy and capacity. TheGovement of Bulgariawas concerned thatti converon wouldCs ubstanti ly more ta mstatedby the Bankand even more concernedabout the reultant increase liace of Dulgariaon mportedgas. Currety, the countryhas onlyone gas supplier,Rssa, and the pipelinehas to caos three intervenig counries (aine, Moldovpand Romania)bfore gettingto Bugaria. As a reslt of this sitz tion, the supplyof gas has becomesubstntlly les reble witb ctacks lastwintr as a resultof a disputebetween Ulkine andRussia over transit fee. TheBulgana Governent requestedthat the Ban analyzethe costof electricitysupplies, if gas Importsfor power and districtheating wer limitedto 2 billioncubic meters per year (rughly currentlovels) azd tho nw additionalgas firedgeneating capacity is limitedto 500 MW. Thiswas done and is own In Table 1.7 below for the mediumdemand case and three scenarios. It increasesthe costs of supplylngpower by arund 348%,depending on the scenarioand demandassumptions. Also, it wOuldchange the pattn of epeur by reqing higher totl outlays in the earlier years (for coafilignitefired units), but somewhatlower fel costsin the longerterm, since coal and ligniteare assumedto be cheaperthan nural gas. Ibis limitationon gas usage may also not be relevant,If the crt actve wploration prgram inBgaria by internationaloil companiesfinds signifiamt quantities of gas. Table 1.7: of System'snsts Electriity Suply withLimt on go M 1993-201Q (US$millions, 1992 dollars)

1.18 Ibis studyrepee an initia effrt to quantifythe cost of replacing uclearpower in Bulgariawith altenative men sourcesand the more efficientuse of energy. It Is based on al the informationavaiable at this time(April 1993). However,a numberof studiesare undeway whih wil provideaddtional iormaion andshould enac the anlysis. Thes stdies include,but are not lmited to: the studiesof Bulgaras majorthermal power plans and districtheatng plantsfnanced by USTDA; the study of Bulgarias generationfinanced by the CEC; the Energy Efficiencysttdies fianced by USD ndusty) and the Danis Goernment ouseholdsdistct heaing); and the nuclearupgrad sudies financedby the CECand USTDA. -8-

U.ESCRA. A. Background

2.01 EnergyResources. Bulgaria's endowment of commercialenergy resources is etrmely poor. Thevery limitedInitial reserves of oil and gas have declinedsteadily and are now esimatedat about 3 mflliontonnes of oil equivalent,representing less than 3 month of the counrs peroleum consumption.ITe hydropowerpotential is alsolimited as mostof Bulgaria'srivers are small,except for the Danubewhich, however, has a fairlysmall drop in altitudewhere it formsthe country'snorther border withRomania. Largely because of this constraint,hydro capacity accounts for about16% of the country'stotal installedgenerating capacity and an evensmaller percentage of generation.The reserves of the presentlyactive coal miningareas are estimatedat about2.6 billiontonnes, with ligite accounting for abo-t 90% of these reservesand sub-bituminousand bituminousco for the remainig 10%. Mhe latter are spreadthinly across the country,which often rendersteir extracto.nuneconomic. As for the lignitereserves, over 95% of theseare locatedin the southeastof the country,at Marlz East, and are sufficientto meet the requirementsof the existingthree minemouti power plants and the briquette factory for another 75 years. Becauseof the moderatelyfffvorblen mining conditi, which are characterizedby an easily accessibleterrain, a thick ligniteseam and the absenceof goundwer problems,the reserves at Maritz East are likely to remainthe country'sprincipa economically exploitableenergy resource in the mediumto long term. However,as the lignite is of poor quality (heatingvae of about 1,500 kcal/kg, a sulfur contentof about 2%), and camnotbe trnsported economicallyover long distances,it wouldcontinue to be the main source of primawyenergy for the generationof electricityat pit-headpower plants and for the productionof steamfor industieslocated in the vicinityof the mines,as has beenthe casethus far. B. Sector 2.02 The main sectoroperating organizations are the NationalElectric Company (NEK), Neftochim,Petrol, Toplivo, the MaritzaEast Mines, Bulgargaz, the SofiaEnergy Combine and the 0O and Gas Explorationand ProductionCompany. NEK is the statepower company producing about 80% of the electricityconsumed in Bulgaria.Neftochim is the primay staterefining company operatg the large refineryat Burgas. Petrolis the monopolypetroleum product distributor and gasolinemarkating organwi7onwhile Toplivo, which has activitiesoutside the energysector, markets coal, propane/buta and briquettesto the householdsector. The threeMarta EastMine are the by the fa the largestand mostprofitable coal mines in Bulgariaproducing 75% of the oWntrs coaloutput from the largeMarina Eastdeposit. Bulgargazis the stategas transmissioncompany while the SofiaEnr Combineis by far the largest district heaing system in Bulgaria and supplies 75% of the populaion of Sofia wih heat. Finally,the Oiland GasExploration and ProductionCompany is the soleBulgarian oil andgas producing company,though it producesvery little of eithercommodity. Some of the aboveopera8t orpnizao reportto ministriesothers report to Commites whichin turn reportdirecty to the Councilof Mnists (COM). Thereis no Ministryof Energynor anycentral organization coordinating activities in the sector or providingoversight for the sectoras a whole. 2.03 Rather, there are severa differentorganizations responsible for diffent parts of th sector. The Minity of Industryhas responsibilityfor: (a) gas transmission(Bulgargaz); (b) refinig (Neftochim,two very small refineries);(c) petroleumdistribution and tansport fls markng (Petol); and (d) marketingof householdfuels (roplivo). The Committeeof Energy (COE)has oversightand policy responsibilityfor the electricitysubsector, coal mining and district heating. It is entirely independentof any ministryand reportsdirecdy to the COM. The Committeeof Geologyand Miea Resources(COMGEO), which has policyand oversightresposibility for oil and gas explorationand productionand minerals exploration, is also independentand reportsto the COM. The onlyorganizato whichapears to be responsiblefor the sectoras a wholeis the so called"Commission to the Council -9 -

of Minite on Energ and Raw Meial Supplis for the Couny 3. This is basicallya standg committeof the COMand s composedof rieesentves of variousministries and eer orgaiztions. It hasno staffand meets only as requiredfor dealig withimmediate crise. t is not designedto and cannoprovide o toer policy,coordination or oversIg for thesctor. 2.04 ml reatio of a naton energyagency In Bulgariahas beenproposed, which would haveresponsibilty for the various negy sectororganizations. The iia componentof this proposed acy woud be the staffof the COE. In addition,the unitsof the Ministryof Industrywhich deal with energy issues would be icpoed nto the new ageacy. In the Energ Stateg Study (ESS) (ReportNo. 10143),it wasrecommended that in addiionto thesetwo components,COMGEO, and the Commision on Prices be incoaed Into the new agency. Ile Commissionon Prices (COP),a ernmentagroup charged with overseeing prices and reag energymonopolies, oudd then form the basisfor creatinga utiliy regulory authority,which would be independen,but connced to this energyagncy. ' energyagey wouldba oversit responsibilityfor all energyseco orgaaions whic werewnt yet privatizetdHowevr, theseorgizatons wouldopera as commercialenies inthe emergingmaket conomywith lrgely auonous boardsof directorsappointed by the government. Afterprivatization all ene sect organizationsshould be independentand pivate utilitieswoldd be ated by the new regulatoryautory.

2.05 Underthe regime,which existed in Bulgariaunt the end of 1989,decision making was centrae largely In Sofia. Top opating managementwas given limitedauthority and even less incentiveto Improveperfoman. Over the past twoyears, the top managementof mostenergy sector organizatin has been given ineased responsibiliythough this shouldbe furher expanded. The govenmt is in de processof developingperfmance contacts for upper levelmanagement, which are very muchneeded, and shouldhp provide ncentives.In addiwn, however,within energy sector uoganizationsresponsibilty and authorit has to be delegateddownwards to a greaterextent. Plant managersmust have authorit to t the actionsneeded for safetyand the proper operationof their plants. Thisprocess is underway,but still has someway to go.

C. Iddn of EN=

2.06 The er sectorIs the onlysector curredtiy where prices are generalystill controlled. The degreeof control,however, varies greatly wihin the sector. Theprices of electricity,coal and heat we set by the COM. The pricesof petroleumproducts on the other handare partiallyliberalized with a ceilingprice detmined by worldproduct prices. Finally,natural gas pricesin 1991were set based on the costsof Russiangas impor but this m ism was ge in early 1992and they are nowtied to the price of heavyfuel oil. 2.07 EIlcit. The COMsets electricity,heat and coalprices based on a remdaons from the Commissionon Prices and COE. Ihe COM, however, is not bound to accept the rdons of the Commissionon Prices or COEand istead has fixedthese prices, which are quite policaly sensitive,based on a mxure of econmic andpolical consderations.Nevertheless, the COM has increasedeleicity prices verysharply since July 1990,first in Febuary 1991and againin June 1991,May 1992and January1993. As of Jamnay1993, average IndustrW electricity prices were fifte timesthe led in July 1990,while average household electricity prices were ten timestheir 1990level (see Table2.1). Whilethe COMfixes the averageelectricty pice, the Commissionon Ptices andthe COE toger work on the structureof the tauiff used for electricitywhich wil producethe average price. For industrya the p. tariffis usedwith ree dffn chage (ea, day, nigt) dding onthe tme of day. For eholds a two pattariffis used for most households(day, night) with a singleta, used for thosehouseholds which do not havetime of daymet. Thecurrent average price fr industa usersis .79 IevJkWh(3.2 cents/kWh) and for householdsIt is .40lev/kWh (1.6 cents/kWh) witha averageprice for all us of about.64 lev/kWh (2.5 censkWh). - 10-

2.08 NEK's ime stateme and balanc seet are std somewhatdistorted by the radial chnges In prices and exchwgerates whichhave occurred. Whilethe data do not existto makeaU of the requiredcortons It is likelythat the acta averagecost of electricityat t'hebeging of 1993was around 3.0 centsikWhand possiblyhigher. The averagelong run maga costof electricityis probably similarthougb somehat higher.lt shouldnot be as highas in mostmarket economies sice newcapacity maynot be neededfor someyears. his meansthat electricityprices for both industryand households are almostcertnly belowaveae long run marginalcost and shouldbe increased.[Such an incre is a requiementunder the Bank'sEaergy Loan to Bulgaria,see the StaffAppraisl Report(SAR) 1]. It also meanstha electricityprices for householdsae muchfrither belowaverage long run margin cost and for this reasonwould need to be incteasedmore thanthe pricesfor industry. 2.09 Not only are curent deecticprices generally too low, but the curent tariff structur createsa distordon. Pricesfor electicitysupplied to industryshould be generallyI than pricesfor households(rather than moreas in Bulgaria),becuse it is generalyless expensiveto supplyindustries. There are a numberof reasonsfor tbis whichinclude: (a) significanteconomies of scale in supplying large quantitiesof electricityto a singlelocation which arise from the use of highvoltage lines with lower transmissionlosses; (b) an improvedload factor; (c) lower coincidencewith the systempea This distortionin the Bulgaim tariff structure,created by pricing electicity to industryhigher than to householdsgrew worsefrom 1990-1992,but the governmentis curreny tying to correctit. 2.10 D.gdc Heat, District heating plants supply about 22% of Bulgaria'shousehold consmpon of heat (mostlyhot water), and about 58% of Bulgarianindustries' heat requirements (hot waterand steam). Theseheating plants primarily produce steam and hot water,but someare also CHP units, producingpower. Someof the lagest ind plans which use the sm have heat meters to measurewhat they receive but manyof the smallerplants do not. Moreover,households do not have heat metersand are billedfor theirheat on the basis of the cubicmeters of spacein theiraparments or houses. The price of districtheat, whichis set by the COM,has increasedvery sharply,but is still on averagefar belowcost. 2.11 AQ. The COM se a referenceprice for Bulgariancoal, based in part on recommendationsfrom the Commissinon Pricesand COE. Thisreference price is for a goodquality coal with a heatingvalue of 7000kcalkg. Bulgariancoals, however, are of muchpoorer qualitythan the referencecoal and so their act pricesare set relatve to the referenceooalby the COE, withthe agent of the Commisin on Prices. For example,the heatingvalue of Bulgariancoals ranges from 1,200kcal/kg. to 5,400kcalkg, and so the pricesof theseBulgarian coals have to be set relativeto their heatingvalue as well as takdngInto accountother factors such as moitumre,ash etc. Altogetherthere are around400 differentprices for coal. Ihe pricesof importedcoals are not controlledexcept for the very smallamount sold on the retailmaket, whichhave the sameprice controlarrangements as for Bulgarian producedcoals. Coal referenceprices were incased sharply in Februaryand June of 1991 and May 1992(see Table2.1). The currentrefence pricesfor Bulgariancoal are 606 LvlT (JS$1.0310J) for sale to industryand 406 LvJr (US$0.691GJ)for sale to households. Industral companiesare expectedto pay transportto their plantsfor the coal theyuse. The great bulkof Bulgariancoal is used for powergeneration by NEK whichpays the industri price. Nevertheless,this price is belowthe cost of producingcoal whichon averagein Bulgariais cunly aboutUS$1.80/GJ. However, this cost Is raisedshaply by the fairlylarge number of currentlyuneconomic mines which exist in the country. The mainminin complexin the countrywhich produces about 75% of outp(by weight),Mart East, has a cost of boutUS$1.O/GJ. Thus, the industri price of coal, thoughlow, is not as far belowcosts a {tmight fist appear.

2/Raport 11250. - 11

2.12 Peum. For the moe horta petoeum products,ceiling prices for fmn salesare deteminedmontly basedon a foimuladvised by the Commissionon Pces. Ibis formua reltes local Bulgaria retal poct pies to wodd marketprices with a one monthlag. The formulahas built into it esdmatesof freight, ouranceand the dollar/levaexchange rate and alsoprovides for importduties and ecie taxes. Thefrmula aso has a built in margn designedto coverdistibut costs,selling cost (if any)and providea smallprofit Sellersar still free to soil at less than the ceilingprice established by this formula, but since peoleum sales are still a st monopolyther b no incentive to do so. The prices produced by thb formula exceedcost Also, thes petroleumproduct prices, especily gsolne, are relativelylow by world s since the Bulgan excise tax is low. As gasoline servi staions areprivadzed(under the govements eownomicreformprogram) and free imports of petroleumproducts are allowed, price contro on petrolewmproduct shouldbe removed. Thepresent price control frmula shouldbe an Inerim step in the processof freeingpetroleum product prices.

2.13 Natu . Nal gaspris in 1991were not controlleddirecty by the government, thoughthey weresubject to oversit by the Commissionon Prices. Gasprices were set by Bulgargaz, the stategas transmissioncompany, and consited of the price that Bulgargazpaid the Russiansfor gas plus a smallmargin to coverBulgargaz's costs and the fee paid the Romaias for movingthe Russian gas across omaian teTory. However,thse gas pricesepressed in levacaged drasticallyover the course of 1991due to: (a) the hndextionof Russiangas prices (whichare denominat in dollars)to worldpetoleum productprices, which flucuted umuualy widelyas a result of the Gulf War; and (b) changesin the leva dolla excage rate In part emergingfrom bilate tradig consideradons.As a resiutoftheseflucuationungaspricesthegovennmcntatthebeginningof 1992decidedto setthesales price of natul gasby Bulgarga basedon the price of heavyfuel oil on a heatingvalue basis. Ihe price of heavyfud oil in Bulgaria isitu dermined by the petroleumproduct pricing formula discussed above. Whileit is _da be tht the Bugari authoritieswere concemedabout the fluctuions in the leva price of naturalgas, nevertheless,the salesprice in Bulgariafor this gas shouldbe basedon its eo not a hypotheticarelationto heavyfue oil prices thoughthe gas price resultingfrom the formulais fairly closeto the cost of gas. Table2.1

D. 2.14 Bulgariahas hlricaly followeda very energy intive developmaypolicy. Th emphasishas beemon developmentof heay inuties with the energyfor these ilUd118 Ine8lay impoto at faorable prices from the Soviet LTutni. Ihis policyhad three resuts whic iDxvasedemurg - 12-

Ienst. First, the shar of Industryin GDP In Bulgaia I hih tn In mo Western ounties and industy ten to consumemore eneg per unit of out ta other componen of GDP such as services. Second,Bulgada has a higher share of energy Inesive Indu such as orgaic and inorganiccheicals in tota industrialouput. Third, the technologyused in Bulgari industry X generallymuch less energy dficient ta the techology nowused in the West As a resul, the energy intensivenessof Bulgaria'sGNP (energyconsumption per unitof GNP)is signcantly higherthan for a comparablemarket economy. Furthermore, the electricityintensiveness of Bulgaras GDP isrdeavely much higher ta Its ener intesiveness (severa times the OECMaverage) because the country uses electricityheavy, especiallyfor heating. 2.15 As a result of Bulgaria's rgy Inensiv economyand very limit domesticenergy resources,most energy has to be impored. Theseenegy mpor consistof over 99% of theoil andgas used by the economy,about 30% of the coal consumedon a heat valuebasis, 8% of the electriciy and iOO%of the nuclearfud. Usingthe norma conventonwhich tre nuclearpower as a domesc energyresource no matterwhat the sourceof the nudear fuel,Bulgaria Imports about 66% of its energy supplies(see Table2.2). If, however,domescaly geraed nuclearpower were to be cniered as an Importbecause the fueli importedthen about 80% of the county's energysupplies are importedwith the remainig 20% beinglocally produced, from lignite and a limd amountof hydrocapacity. Either one of thesefigures is a highlevel of importdependency, especialy for an economywhich is so energy inensive. Most of these energy imports (8i-90%) a from the former Set Unio (FU prmiy frm the Ukrain and ussian Republics.As a resut of this combinationof energyintensity and import dependence,Bulgara's energyImports are a rdeaivelylarge share of its totalimports amountig to 23% in 1990(US$1.9 billion equivale), wih Inignifict exportsof energy.

2.16 So far, the energyintensity of BulgarianGDP doesnot appearto have decreased,with energyconumpon and outputfalling at rougblythe samerate. However,this pan shod startto changeas the economicrestructudngoccurs and as reladveenergy prices conueto incrse. Reduction of energyconsumption and, therefore,of net energyimports is likelyto be an importa componentof any improvementof Bulgariasbalance of trade. 2.17 Thepaen of energyuse in Bulgariais significalltydifferent from the West. lTe main area of differenceis in the directuse of gas. In mostwestrn industrWcountries gas is used in industry, in powergeneration and by householdsand the servicesector. In Bulgaria,it is almostentirely used in the industria sectorand in powergsenerat inuding districtheadng plan (manyof the latter being combinedheat andpower (CHP) planos) with a negligibleamount being used In serices and houseolds (see Table2.2). Furthermore,this lopsidedpattern of usagewiUl not chge rapidlysince Bulgaia lacks a distributionnework for gas so that it cannotcurently be suppliedto mosthouseholds and COMMec establiments. Indirecty,of course,the houseld and servicesectors use somegas sincea smallpart of the electricitythey consumeand mostof the heat suppliedby ditict hean plants,comes from gas. Even takingthis indirectuse into accoun, however,the use of natura gas in Bulgariais stil heavily skewedtowards the Indust sector. 2.18 Lookingahead, energy cosmpon is expectedto dedine forthe nexttwo to threeyears and then to increaseslowly. The extentto whichit declinesand pace at whichit recoversOapends on a numberof factors,the most importat of whichare: (a) gmwthof GDP?;(b) energyprices; (c) the extent and speedof indust restuctuing (sift fromheavy Industries towards serices etc.); and (d) the speedat whichenergy efficient techoogies will be iroduced. However,almost ll forecast call for energydemand to gwWmore dowly than GDP and for a shif in the patternof fueluse, from coal towardsgreater use of nat gas and petroleum. * taAWAUA WDMALMWU 9n _~e hAmnabraeId _e_d_ ,_ -__ E^.!______|_*_'______. _ -U_r-asCod - Code at LPG Uk d. Uaa,pI%d. Cibed, 4aitMAW. tel . . : odued pt, .a~ 6,997 St _12 4, 87n 9,00 No Imwt 4,015 6,419 358 2,330 6,394 2S5 _ 19U41 i~~~~~~~~~~~ *.,~ . _ _~ _ ..

Csswu- TOW 4,710 , 6.97 321 1,732 664 114 -3,635 4,708 _1 96OPlf, 4,781 6.260 -10440 - - - - F____ -- ______0_ _- _.__ _ -5 .5_ *18.---- Ci*.pI.a-138 - __.------~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-338 PWrohumotfimnedh ,-1 .6.397 357 3,9t6 3,S91 114 .139 :."I [ bbi.61 -453 -4,708 472 3,913 .142 ______.t.C0 1 _5 __._ _*.3 -367 -1358 _A_639 42 .1.233 Aaio.¢te.EUwtr. 42D0 -36 _ 723 .1.462 . 446 2.1 _ .______1 ' .191 .2,01t -306 2,50 -323 own '- - - - -_- - -2- - -304 .- -. -"4 o28 4-6-118 -114 -476 -1.

______30 18 6e6 2970 2,0,,5 48 10.791 hae - le- -. --I 12 214 S 146 m _en_f_n_1_f__ 61 1 _ 3 12 to _lo 71 410 - 2 --_- 34 -s -^2 . SS 44 4- _dtbww 34 _ 2S 141 4S0 _729 ._ ,§S 2J1t1 4,@3 7 12 _ 3S91,009 __12 _o __ 127 _22 1,53S OGr Teta 1,298 44 t,235 1,392 91 .1.65 I'm6 7,079 Howebd I,ISI~~.18 44 728 M6 * 1,27S 9011 4,304 A6*ulk S ~ ~ ~~~0IS6 760 25 106 2U t,342 TOadv 16 102 45 4 _ 77 42 26 51het Sl 219_ 423 62 192 200 __ Not RWAc(fld 219 Sorc;NE I .1 -330 5 I 0 CO.Hyr- - _ . . . 0 0 0I6 . _ -. , - Source: 1NEK,COE. Hydroand nuclearelectricity converted to hest at 2,500kcla/kWh. -14-

m. ELECEM DEMAND A. QOevw

3.01 Bulgariahas also followeda very energyand lecticity insive devdopmentpolicy. The emphasi has been on the developmentof heavyenergylelectricity intensive Industies whichused dectricity inefficiendy and vally all houseolds in Bulgaria are attached to the naonal grid with electricity widelyused for heatiDng.This electrici intensivedevelopment process, with electricityusage growing l.S% per yew from 1950 to 1988, was also encouragedby very low prices for elecicity through out this period. As a mult of these fictors, the electricityintensity of Bulgari's GDP is que high with Bulgariausing over five-timesthe electricityper unit of GDP of comparablemarket economies.

B. Recent Development

3.02 Table 3.1 shows the decline In Table3.1: eeikT De agd S (TWb) Bulgarian electricity.:::' & consumption over the past __ sevea yeas. Gross domestic cosmtOnf 4~ 4S electricity (excluding4 export but inluing all losses) has dropped from an i 1_ all time pekof 49.2 TWhIi in 1988 to 41.0 TWh In 1991 and i declid f2urthe to about 38 TWhy 1M19.in .t*Sgr Tisb decline Is less, (niMt1kI6' 4* however,tha thedecline in. . GDP over this same tie e period. For example,the 4 decline in electricity_s consumption from 1988t This intoste.i hso is A.91 t 1991 is 16.7% while the ,. decline in real GD)P over 1I~'0 this same time period is'' 22.4%. Usingprelimnary -Rte~tenw~an *P 1.# : ~1 estimates for 1992 .oa.. -#$* electricityconumption and GDP, the total decline in electricity consumption rlative to 1988 would be hio ton 23% while the decline in real GDP, agai relativeto 492 41 * 1988,would be 28.4%. 3.03 Table3.1 also showsthe reasonswhy electricity consumption is no declinin as rapidly as GDP. Whileindustria consumption of electricit is generallydropping at the samerate as GDP,other catgories of electricityconumption are not. In particular,household consumption of electicity has actuallyrisen since 1988. This increasein houseboldconsumption is primariy the result of more househols using electrciy for heatng as the prices of petroleumproducts used for heating (homeheaftin oil,.rpn/uae have inceased. In addition,transission and distribtion losse, -11-

whichar countd as part of domesticconsuMpon, have also Increasl lagely s a rest of the risig thef of electricity.Finally, othe categoriesof electricityconsumptio such as atet ligting, tanspot and agrictutal uses havenot declinedvery much. C. EgeSlo MOI 3.04 A number Of forecasts Of Bulgari i electricy csmpdton over the Bad to (e teyearswe aw h avanmiiwe. AlD forecasts bmfo assume that industrial ver ito tub th T he rstructuingTbe.locc, the e salz b nddt intoesity of electricity i decline Th outu fthatof h eomi g a the last adj_t b eryices and agricultue tic of ety Ih l grow fasermthan Industry. It 81s _ S ta 400 h * The forecasts vary '. dependingprimarily on the ast falls in hig a 4*l -' assumptions they make j mds eOrd aboi(a)he speedatwhichs. industrial restructuring ~W~ occurs; (b)theextentof the 20"'5 ~ #1 4. 5~~ ~~'\Q

Impact of restructuring on '' the intensity of electricity _ clsompt icdnsofp ustr frpwey mgws M) conunitlobyIndustry; (C) .*.. * , . GiDPVowdi,; (d) electricity------consevatlnldeand side mangemnt;and(e) the extent,if any, to whichhouseholds shif towardsusing gas for homeheating raheta electricty. For the purposesof this study,thre forwcastsagreed with NEK and the COE (maximum,medium and minimum)were used. The mediumforecast is preferredby the Bulgriansfor planningpurposes, while fthminimum forecast is verysimiar to tha usedby the Bankin the ESS. The maximumforecas Is an upperbound. Theseforecasts cover the likelyrange of possibleresults wihb two aeceptionswhich are discussedin paragraphs3.07-3. 11 and 3.14-3.15 below. The thre forecastsare shownin Table 3.2 and all assme tha the economystabfiie between1993 and 1995and then begis a slowrecovery. Theforecast also includenot onlyprojections of electricitycnupinin TWh, but als projectonsof peak demandfor powerin megawatts(MW). 3.05 The high forecastassumes the highesteconomic growth and the least adjustmentby industy to the antIcipatedhigher prices of electricity.The lowforecat is jugtthe reversand assumes lower econmic growthand more adjustommnby industry. It also asumes that 450,000household convertfrom electricheatin to naturalgas after the year 2000 while the high forecast asumes no conversions.The mediumforecas falls in betweenthe high and low forecast and assmes no major conversionsof householdsto gas, modesteconomic growth and a more gradualadjustmntW by industry to higherenerg prices. D. Mnrmn

3.06 It is usefll to distnph betweentwo diffent concept in loadmanagement (a) demand management, and (b) supply ma. Demand managementrs to techniqueswhich Imac directy on the neWyconsumptio patternsof nihidua comers (e.g. direct control,voluntary control,customer enery storage); upply reefesto the use of utldity-owmedfaikies to improvethe man in wbicheleclric energ Is providedt thedo conmer (e.g., utilitystore and expandedInerconnecton). D.1: DemandSide ULMafgM 3.07 Demandredo. lhe low electricitydemand forecast assumes rapid adjustmenby industry,and to a lesserextent other sectors,to higherelectricty prices; and a moderatedemand side managementeffort correponding to the limitedIsituton capacityin this areaand loweleccity cost. An activegovernment program over five to ten years mightbe able to reducedemand below the low scenariothus supplemeng the impactof resucturi andhigher prices. Someof this additionalsaving wouldoccur in the industrialsector but muchof it wouldprobably be in the householdand communal sectors(public buildings, shops). 3.08 in the indust sectorenerW audits pefmed by consutantsto USAIDshow short term savin poteal for electricity,involving litdo or no capitalinvestments, of about12%. The longe term savins potenta is estmated at around 35% which would, however,involve new capital investments, thoughthe latterwould be highlyeonomic. A puatof thesepotential savings will occur as a result of industrialrestructuring, but the savings could be somewhataccelerated by Governmnft assistance.

3.09 Thepotenti for savins in the householdand communadsector is evenlarger especially withrespect to heating. Datafor 1988reported by a Danish-Bulgarianstudy (Birch and Krogboeand the Ministyof ConstructionSept 1991)Indicates that the energyconsumed per degreeday per m3 for Bgara, was about237 kl, whilefgu r the USand Swedeaare 160and 135 for the existig housingstock and the averagesfor new tock are 100and 65 respectively. Best availablemodern technologygives around 35 kJ per meper degreeday. Thusthe poten for savingsin spaceheadtg is verylarge.

3.10 Ihis same Danish/Bulgarianstudy also providediormation aboutwhere some of the potentialsavings are located, and rugh indo of the investmentsrequired and the paybacks assumingelectric heating. The three main areas identifiedas havingthe highestpotential for savmg electricheat were improvedwindow seals, balconyretrofits and low emissionvenetian blinds. For apartments,the paybackperiod for theseinvestments were from 1 to 4 years(assuming they heated with electricity),energy savings (part of whichwould be electricity)would be around3.3 TWhequivalent and the total investmentrequired was estimatedat aroundUS$200 million. All of the savingmeasures suggestedby the stdy cr pondcsely to standardwet Europeanpractices. In addidon,Bulgafia mightmove beyond standard wes Euopeanenergy saving technology by, for exampleadopting more advancedtechnology such as the use of highefficiency (compact fuoresent) light bulbs. (Thesebulbs would cut electricityconsumption by around50 GWh per millionlight bulbs in use and last about 10 timesas longas a conventionalbulbs at a cost estated at awoundUS$80WUS$85 million per million light bulbs.) - 17-

3.11 Whilethe savigp poteOnIn thehousehold and commund sector is largeas Icated above,the acheveme of hse sa Is likelyto be slowedby: (a)lck of awarenessby houeholds andbuildin m of thepotenti fordeecity saving;(b) lack of proper maials forundetaking consuvatlon mers (nsultion, windowsealant); and (e) the scarcityand hgh cost of hnds for undertakingsuchnv et l hegoven needsto developan active program to encourgeenergy saing In ths seor. Elemetsof sucha progm mightinclude: (i) an energ conseraionof fc to coordinaeand promoteconevatin (the EnergyEfficicy Agencyis a majorfirst step in tbhis d n); (H)Iwoving bu codes;and (1il)programs to encoug scale energyand elec¢iity conservatio Investmen such as havingNEK makesome such ivestment and includethem In Its ratebase. Wbilethe Impact on electricitydemand of sucha prgram cannotbe esimatednow, it couldbe signficat andcould reduce demand below the lowforecast. D.2 SideJunPI NWIUen 3.12 Aetlve a Thedemand for dectic powervaries withe timeof day, th dayof theweek, the weather, and dte seasn. An illustrton of thisvariation In Bulgariansystem is shownIn Figur 3.1 for weeksin July andDecember 1991. A nmber of methodsexistin for modIfingthese system load pattns to moreclosely match alectric energy use withsupply, and these methodsfall underthe general term load management, often these methods involve electricity storage.

Figure3.1

BULGARIA - WEEKLY LOAD CURVE YEM - 19i1

6 IILE-1eAXT;T1 L

SV4 …-

0 20 40 sO so0 00 120 140 15 TIME (HOUR 0 FIFRBT I IN JULY + WEEK IN DECBABER - 18-

3.13 Someof the most tiwve supply- FIgur 3.2 Chairapumped storage operation side storageconcepts, such as batteriesand flywheels, are technologicallyconstraed. The majorsupply- side storage device In comnercial operation is s. s t pumpedstorage. Ihe facilitynormaily operates by pumpingwater into the reservoirduring periods of /Xb reducedsystem load (e.g. nightsand weekend),when the Incrementalcost of energyis low. Duringpeak- / load periods,water is releasedfrom the re-ervoirto generateelectricity, thus replacingenergy of higher incrementalcosts. However, pumped storage _ typicallyuses about 20-25%more energy than it produces.Bulgaria has a majorpumped storage scheme nearly completed at Cbaira,with 880 MW,and a schematicpresentation of this pumpedstorage plant operationis givenin Figure3.2. D.3: NaturalGas 3.14 In additionto load managementmethods for reducingelectrcity demand and changig the load curve,a secondoption exists for reducingelectricity demand and that is changesin the type of energyused by finalconsumers. ITe majoroption would be a lare programto converthouseholds from heatingwith electricityto heatng with gas in additionto the 450,000houseold conversionsalready containedin the low demandforecast. Ihe electricitysavings from convertng 550,000additonal householdsto gas by the year 2010 (bringingtotal conversionsto 1 millionhouseholds about the maximumthat is consideredeconomically feasible and coveringaround 30% of the populion) are estmated at aromund1.6 TWh. Initialrough estimatesare that such a conversionwould cost about US$500per householdor a totalof aboutUS$250 million. However,this numberis uncertainand could be muchhigher if majorreconstuction of apartmentsfor new pipeshas to be undertaken. The major benefitof this conversionwould come not onlyfrom the reductionin electricityusage, but evenmore fromthe reductionin peakdemand. It is estimatedthat about2500 MWof the currentpeak demand is causedby householdheating and thatconversion of .5 millionadditional households to get heatingmight reducethe peakby as muchas 900 MW.

3.15 However,the BulgarianGovernment is very unetain about the reliabilityof its gas supplywhich comes entirely from Russiawith the pipelinecrossing Ukraine, Moldova and Romania beforek gets to Bulgaria. Giventhe turmoilin these countries,Bulgaria is not anxiousto increaseits relianceon gas untl it has morethan one supplier.Therefbre, while large scalegas conversionsare an intriguingoption, this optionneeds considerable fiuer studyin termsboth of the cost and feasibilityof convertingexisting dwellings and also whatcould be doneto reducethe risk associatedwith imported gas supplies. - 19-

IV. POWER== gY=

A. Jnwnductin 4.01 BulgarI'estotal installedgeeating capacityincreased from 8,854MW in 1980 tD 12,074MW In 1991,with almost all of the nowcapawty tht wasadded to the sysm beingIn he fom of nuclear. This simplyreflects the cotin on of the Govment's policyof expandingnucloar generatngcapacity, whch was adoptedin the 1970s,as meansfor offbetingthe constraintsaising from the country'slifl.ed endowmentof com cial eergy resources. lbo first nucla reactor(uil 1), a Sovietdesiged and built VVER440, model230, with a capacityof 440 MW was c s at KozloduyIn 1974. Over the nex 16 years, another3,320 MW were addedto the plat at Kozloduy, compriing3x440 MW (VVER440, model230s, unit 24) and 2x1000MW (VVR-1000s, units S-6). The last unit of 1000 MW, unk 6, was broughton stream In 1991 and is In the proces of big commissioned.As a reut, the hae of nuclea in total irsted cacit has moreta doubled,fm 159 in 1980to 31% in 1991,while tha of therma and hydrohas declinedcorrepodingly: fom 64% to 53% for the formerand from21 % to 16%for the latr, respecdvely.Details reating t theo wth In capacityar prented in the Tle 4.1 below.

.~~~.v.t. MWE .*..'1-"I.**SION

It teetoteWouncapa f i I pc to At Ee A m

4.02 Whie the raid powt In. I nula iigrW cIad an ain ve h u w

14.02ihlak Whiletn therapid gonidee sulsnuclardI cpith Wes y Overd tvrhe n pastmo ths,maot tecbnical _cot has beenprovided for these unis, pdmrimyby thieCEC, in conjunctionwith thie WorldAssociation of NuclearOperator (WANO)and their operadonsbave beea improved. -20-

4.03 h Issu Inolved In the safty of units 1-4 are diffict In the botsbun, d are aeededto mee peakwinter dmad dueto: (a) opaati al problemswit stig thal plants;(b) fd shortas; (c) the low availabilt of unis S and 6; and (d) the highco and uncertainavablaity of impons. i the mediumterm, with ncreased iabliy of powerfom h thermalplan and unit 5 and 6, the needfor th VVEt 440swoutd reaydimind . Howevr, thes uns ar on of the lowet cost sourceof power,aside fromhydropower, for th countryand their rephcment by thma power pla wouldInvolve a significanteconmc cost for the cousry. Nevertheless,the contind opraion of the unitsin th mediumterm withoutmaor upgradingof thek safy systemsand phap eve with it, wouldbe unceptable to muchof the in2te ommiy. 4.04 Chart 4.1 providesthe detais Chart4.1 relatingto files used by the COEto genr electicityin Bulgarain 1991. The orwoduy COE'sElectricity Generation in 1991 nuclear pln provided about 37% of the In Percent by FuelType electricity,domesdc lignie (mostlythe Marda East Complex),provided 33.7%, mportedcoa (mosdyused at the Varnaplant) provided 14.3% and there were smallamounts geneated by fuel Nu¶"t3tn oil, gas and by hydro plants acuti cumlively for 14.6%of the total. Historically, A verylittlo gas has beenused in powergenatDon, withgSu primarily reserved for industrialuse. Whil it would be advantageous, for D3W3. 2 environmentalreasons, to expandgam usage in 1.64 powergeneration, COE and NUKare opposedat this time to a major expaion becas the county hs only one sourc of supply,Rusia, which Is not viewed as being very stable (see para 3.15).

B. EP. fuW Resourcegfor PowMraUan B.1: Qa1

4.05 .eex Bulgars onlymajor domestic er reure is low grade ligie. There are also moderatereserves oi sub-bituminouscoal, but the county is very poor in higherquality od reserves. Ihe minablereserves (- t presentlyactive coal miningareas are stedin Table4.2 below. Whilethese reserves may be recoverablewith present technology, a sificant portionprobaby canmot be recoveredeconomically. I additionto the reserveslisted below, thffere is a relatvely new dicve of high qualityhard col in the northeasternpart of the country. However,those reserves occur at grat depth(about 2,000 m) and are, thre, not economicallyrecoverable. Table4.2: BulgiaE Coal Reserves

r .- -

L~~~~~~~~~~ a

/ ..--..-.. a1"- - 21 -

4.06 -Thereserves of the mjo typo of coalIn actIvemiing ara are briy descrbd beow:

* 3eznimbreses occur In two regionsof te couy: in Ctal Btlgaa, n Stas Zagora andin Wste Bulgari, MainlyWest and SouthofSofa Th centra Bulgria saervesarom by the large, pepit minabledepost of Mariza East, which alone reeset 2.2 bUl tonmes,or 95% of all Bulgaian ligt rsrves. These reservesare hig sulfur(2%) witha low beatingvalue (1500 kcg and a sgnifcan amountof these reservesare locaed under vllages and towns. At this stage it Is uncetain whetherta pordonwill everbe exploited.However, during at last the nex twnty years, exploitationis wpet to woto underthe presnt ravely fvorable owditions,witout majorresettlements. Near Mai East e the umchsmaller reservesof the Marbs undergoundmines, which canot b exloited economically. Iho lignitereseves of Wester Bulgari are about70 milliontomes, or only3% of th count's lignie reserves. A major porto of ths seves, however,may be eoonomicallyrecoverable.

* S = reservesoc inWestem Bulgaria, at Bobovlol, Pnikoand Pin, and In EasternBulaia, Northof Burgas. The BobovDol resees, at 160 milion tonnes,are by far the largest,representing 75% of sub-biuminouscoal reserves. The Eobov Dol reeves are marginalbut someof the seams cn probablybe exploited economically.Ihe other sub-bituminousreserves are verylikely uneconomic. 0 BMm coal ureservesoccur ouly in Cental Bu, North of Staa Zagoa Reservesare lime to about 10 milliontonnes. Probably none of tiese reservescan be minedes.onomicy

3 A reservesoccur only at a smalldeposit North of Sofiaand ar limitedto only 1 milliontomes, whichprobably are not economicallyrecoverable.

4.07 As is shownin Chart4.1, about47% of Bulgariasproduction of electricitycomes from coa d inite. Mostof dis I fromdomestic lignitelcoal. There are two majorpower complexes t usedomestic coallgite. e are th Marza EastComplex, co tg of tree powerpl (Mitza East , IL and M, wIh 2270MW capaciy)and the BobovDol plantwith 630 MW. Twopower plans use importedcoal amely Varna (1260MW) and Ruse (400 MW). The paragaphs below disass coal/lignitesupplies for these plantsand the best meansof in ing them and, therefre, electcity

4.08 Mw East. Cure productionfrom the Marta Eastmies is about23 mIllion tomes of ligniteper year,while the g tplants at Mritza Eat coulduse substatilly moretha the 18-19 milliontomes they receive for electricitygeneration (part of the lnite is usedfor producingbriquettes). Producdonfrom the mines,as a fir stp, couldbe raisedto 28 milliontones per ye, the levelof the recordyear 1987. ITe requiredlncrease in productoncould be aned frm the th exit larg openpit minesat MadtzaEast by ening the annualaverage rnmint timeof the exisfingequipme by abou 20% and the averagehouly outputby about5%. hi couldbe acheveddthrough: () improved organiion and mngement supportedby tenia assnce; and i) the purchaseof certaincica piecesof import equipmentand Increasedavailabity of sparepats. -22 -

4.09 Newmines at MzaEast andpower plas bsd on thes min appearto be exduded by economiccoIsIderatIons. Gie the Ig rato of ovden to lHnte, die lowcaloic valueof the lie adthehigh capitalcosts of a ne mine,k wouldnot be possble for a nowmin to compet widh poted cold. In addWon,a newlignefired powr plantwould bave higher capital and operatingcosts and lowr efficienytm a new powerplant burning Imotd highgade coal. Fina:ly,imported ca woud be muchpreeable for enviromentoraso: additionalsfir emissionswould be muchlower, and therewould be no additionallag sce use of land for open-pitmining. 4.10 gB ad. For the BobovDol plant, probablythe best option s to achievefWl utilizon by utilizingless co foim the BobovDol undergund mines(most of whichare uneconomic) and more ligit fromthe surae minesnear Sofia, as well as suiable Importedsub-bitumins coal, suchas coa fromIndoneia. Wbfletis optionis sinficantly more expensivethan fill utilizadonof the MaritzaEat and Vaa powerplants (see below), it appearsstill preerable to the constructionof new plant Significantnvestmbt for coal blendingand posibly also mill and boiler adaptationmay be requird. ibb shoud be carefullychecked. Some old miningequipme at the lignitemines near Sofia woul also haveto be renewed. Fullutilization of the BobovDol Plant(equivalent to an outputincreas of about 100 %) wouldrequire a d _ increasein coal availability.A blend of about2 million ons per yea of lignte from the surfacemines near Sofia, 1.2 milion tomiesfrom the BobovDot undergroundmine, and 0.7 milliontonms of highgre importedsub-biuminous cod coud be used (eachcoa type woud conbute one thi, in tm of heat content,to the plants powergenation). While such s8Caio woud be compatblewith otuc of exisig mines,boiler desig may require differt bleing ratios (ess lignt, more importedcoal). Also, there may be constraintson Sofiabasin lite productionwhich would change the blendin the samedirection. 4.11 Y!a. Condued opeation of the Varnapower plant on the basis of importedcoal is almostcty higblyeconomic. Its Imiont also t in futu the coalsWply be diversified.The singlesupply source historically (Dontk basinof Ukrane) is beoming nrely insecure,and its futre cmgptives is highlydoubtful. While Donetskcoal can be deliveredby barge, futurecoal suppliesare likelyto arive by mediumsize ship since many of the major alteive supplysources (US,South Africa, Columbia, Austalia, Indonesiaetc) are locatedat a considerabledisance. Thepier xtensionat the Varnaplanto acmmodatelarger boats should, therefore, be completedwith priority. Also,any nowcoal bleing fiities andboilers at Varnashould be adaptedto use higherratios of non- anthracit coal (whileatracite co can presentybe obtaned intenationallyat low prices, there are onlya few suppliers). 4.12 RBn. Finally, for the Ruse coal fired power plant, i is probabletgat the analysis curntly being undaken by a consultinggroup may indicatethat i is not economicallyjustfied to reabilitate the plant. The plantwspower generaion capacity in 1991was Just 0.7 TWh (about20% utilizationof Installedcapacity). Coal spplies are uncertain, since the plan burns the same anMtrate/low-volatilItycoal from the Donetskbasin as the Vamaplant Ruse or anotherneuby site may, however,be suitablefor the constructonof a gas-firedcombined cycle plant or a dual-firedplane usingboth gas and importedcoal. Deliveryof the Importedcoal would,however, be expensivegiven the locationof the plant on the Danubesome dis;t fromthe coastand there are no likelysources of domesticcod. 4.13 Furtherdevelopment of Bulgariancoal resourc appearsnot to be feasible,given the problms coneced wih Mariza Eastligite, the limitedreserves of the lignitemines near Sofia, and the unoomic geologicconditos of all other deposi. If additionalpower plant capacityi needed, the best optionswould appear to be a newplant on the coastbased on importedcoal, or a newcombined ydcegas-fire pl -23 -

Costsof Coal Supy to PowerPlant

4.14 Overthe next 20 ya, the lowest-ct ifd appearsto be nt from dee IstIngmis at Martza East, followedby ligite frm the SofaignIWmines, lmported coal for the Vaas plat, and lastly, coal Importsfor the BobovDol plant. A reduce amountof local co fom the BobovDol undegroundmines could possibly be producedat importparity cost, If the vestuctrig is Implemetd successUIlylTables 4.3 and 4.).

Table4.3: TypIci Seciflcationsand Pricesfor IMorted SteamCoal

~~~~~~~~Now a/ W/ . 4dl -Prassut .1- Fub.. 1 Heat Typo Va AA Moist VaL 8 POD CIP CIP CIP To Fom k=Vkg % % s % $At Sit Sl SGo Vai SouthAfica A 5,90051 20 10g 10 Si 1.05S 19 SSW 64 C.11 Bobov Dcl donia S 5,500 1 22 40 0.1 23 431 7.8 9.4W

at A - Antncixa, S - Sub4umus hi kow betn vaue a/ Volntiles

C/ iwnld/199 - f/ Incoastat 199 tewo, amine to be 10%higher thon 19M prim. (PODquotatios awelow Inomwuielonwith cahwsarns and as howt a are umisll low in 1992)

hi laudedin Vai Watb deo by all to Van plet, high a fgt due to dnz a boat (5,000 t) it asn frightkand Va=n post coasurduced by S USS/t (mldd*2basis) due to lm~e boatsunloaded at Vamn ITP plo az%Wmmo to 30,000t oapltd 1994 3/ IwAndatBuqinboaupto 50,000 t, tat_poftedbyuiltoDobovDa Id all chae uofmBurg to BobovDol doubledMm 4 to 8 USSt)

Table4.4:WWf CrduoooQf Selected BplgarS Coa Mies Table 4.4:-pbul W -u -C-ea-

Markmnas 1"500 22.9 90 3.8 2.5 28.0 of 4.2d 4.2 SofiaLlgite Mu=se/ 1900 1.6 140 5.3 3.1 2.011 5.151f 6.2h1t DobovDol 1900 1. 530 22.1 11.6 1.21 9.33/ 9.3

at colptt and cas based on euxtrpoato of fiat 9 umoth of IM9 *i about mt 20 yer, cow in consta 12 hitorical (1967)rord prduotion lovel, to be Saned by sr wimws and mLinrIvesasm dl combhatsisu d by 67%, to covet the coats.of weuminSmnoraplsomast and nidrialas wellas of ,ouftvdlo and of courisiag the aCluurv, Sts~a*udand DellBDuo mi mine O 20% goup Imas aammsdto be ahIeved by p repaeme90i f od e 2.p2sat 51 cots Inmmrea-sedby 67%, to coverth oats of reourun miawnorrplacein and modearniraionav*Ual atof eouiatlm aid Fllip 1ilfr usd le.d, assumd to3be1eine cas a MarlzA hi avea Ispt c9at of12US2 to Bobo6Doi W assumed 20% outt dcos asumd to be requldfi (afg m of w19 Section) 20%_/ ut ca =dton saf rtruot aued (o onanboat portion of deposit) - 24 -

4.15 For Marlta East lignite, de avea unit productioncas will probablyr to 6.3 US$Ie,or 4.2 USSCal inithe hort-term. i wi be necessaryto coveral reuring epens for landusemde r --I.o mostequipmen ludingfiudsforsomerehab lationwich will rais, at low ot te productonlovd to about28 milliontown per year. While ome minor fiuther exansion of the exstg minesbeyond 28 milliontomes per year mightbe feasible,major fdrter expnsio woud rqu addig additionalmajor miningequipment to the existingmines or building new min. While ths would be technicallypossible, given the nively high overburdenligniterado and the hig capitalcost of the majorequipment, the marginalcost of productm for the extra outputwould be expectedto be near or even above the costs of coal impots (about 8 US$/Gcalor 12 US$per tonoof lignite). This apprs, thaerfore,not to be an attractivealternatve. 4.16 For the ligis surfae minesnear Sofiat average unit production costs wil probablyrise to 5.1 !JS$IGcalex-mi or 6.2 USS/Gcaldelivered at the BobovDol planL The inre wil be requiredto pay for replacementof someold equipmentand for improvedland Treoamato. T deliveriesfrom the Sofialignite mines to the BobovDoi plant wouldthen be as expensiveas coa imports to the Vana plant,but sfillsignficanty ceper t coal importsto the BobovDol plot 4.17 For the BobovDol undeground mines, srious restructuringmay lead to a future productioncost of 9.3 USS/Gcal,equivalent to the cost of Importedsub-biuminous coal for BobovDol. Successfl restucing reques con rion on the best sectos of the depost, abadoment of uneonomicsections, and govermet asstance forsolving the soca problemsof redundantmine labor. B.2: NuR.eIPl 4.18 Nuclearfuel is prvided fromthe Russian Republic in the formof readyto use mbl desined spically for the VVERreactor. Differentdesigns are utlized in the 440series as compared to the 1000 serles. Each 440 seriesreactor has about 325 assemblieswhich are replacedon a 3-year cycle(about 100-11 0 per year). Recentprices paid to lissia wereabout US$150,000 per assembly.The 1000 eaes reactorshave 255 lr amblies whichalso followa 3-yearreplacement cycle and reoe costs are US$500,000per asembly. 4.19 In a normalyear, this repeants a ttal fuel cost of aroundUS$150 million for the quantitiesued and thisprice is conitet withpresent uranium costs of US$60D80/kg.Overa quantity requiemens are not significantIn the presentworld market. 4.20 The assembliesare specificalydesigned for the VVERreactors. It is veryunlikdy that an alteatve sourceof supplyother than Rusia will be foundfor the 440 series. For the 1000series, discussionshave been held with West European suppliers, but it is onlylikely that alternative sources will provepractical if a sufficientlylarge marketcan be xund. 4.21 Consequently,It is probablethat Russia will remain the sole supplysource. The fuelis contacted on a two-yearlead time, and aTmgementsare in hand for 1993and 1994,altugh prices needto be more clearlydetemined. This arrangementis likelyto condmefor the foreseeablefutr.

B.3: N 4.22 Bulgariaused S.67 bcm of gas in 1991and demandis expectedto remainflat (at 5.6> 5.7 bcm)in 1992. Of is total,aound 4.5 bcmis usedby districtheating plants, which are often CHP plants,and by iustri co-generators.Based on electricityproduced, about 1.0 bcm equivlent of this 4.5 bcmare used for geing eecticky. Curet pricespaid fr Russiangas are adjusted every hee months,usng abas priceof US$90per thousand cubic meters (tcm) indexed to theprice of residuafuld oil ,uh 1l suninhuw&nr*nt thA rniAt nf rmalAnfl ital nil with 3A.S nnlnhur eontet ant tn the twice -25 -

of gas oil Based on tis fimula, the price for the fourtb quarte of 1992Is Just sligbhdyabove the base. Over halfof t as is cuwr y not saly pid for, but Is obtned as debt reayment for the assitan t Bulgaria prowidedin the constructionof the Yanbrg pipeline and as a transit fee for gas passing through Bulgaia to Turkey. The remaning gas b paid for In a bartr arrngemenmt Gas s sold by BulgarWg astrqulred bythe Govawmentat70% ofthepriceof3.5%sulfhr heavy fad ol on aheat equivalen basi.

4.23 Cptions to buld new ges-&fedpower plants are somewhat limited by the capacity of existing pipelines. Now plant costuction may be feasible for a plant in the nrdtheas corner of the county using an estmated maximumavailable pipeline capaciy in the Russianpipelin to Bulgardaof 1.5 bcmWyr. However, given the high efficiency of gas-fired combined cycle plas, this gas could rodce of about 6.5 TWh of dectricity. Additona gas-fired capacity would requre either the constnuvion of an additonal pipenthrough Roman (about 180km)or the use of avaWlablecapaity in the tanst pipine from Russia to Turey and Grewce. Contructon prospects fr a new pipeline through Romania are not though to be very good, while curaenty available rnsit capacity, wvhich repesensi about 50% of a tDota s capaciy of 10 bcn, i dependenton the growth of gas contraed to be deliver to Greece and Turkey. As disgrows, the amountof transit capacity availableto BuDgada wi diminish. Under curret plans, ts availabe transit capacity wouldbe gone in about 8-10 years. it is, therefore, questionablewhether the BDgariansshl rdyon it.

4.24 Bulgarisgas demand s win-peaking since a substail part of It i used for producing hot wer for district heating sysms. Cumentcapacity of th line fom Rusia and draw down of soage at the Chiren gs sorage fild i barey adequat to meet peak demand. t wiU probably be neesary to ics the capacityof the Chim fidd to pvide peak gas and this woud be escay tue If a new gas fid power plt wr bulk

4.25 Russia i currnly the sole source of gas for Bulgara which subtantily increasesthe riksassodated with gassuppfies. Also, the pipeine route coes Ukraine, Nlokivaand Romala which farther hIncses riks. In addiion, the long run pice of gas from Rusia and the quanties available are uncertain (However, tee i a possibilitydt the cunrrt actve exploation program in Bulgada by ftkor oil compans wil find gas.) For the purposes of the analysis, it was assmed t gas would be vabe at a ngrun pico of aboutUS$4.00 per MMBTUon the BulgaianlRonlan border (equivalt to about US$128per dhousandcubic meters). Thdsi consitent with the assumptionsused in calcuaIg the long run pre of Rusian gas suppliedto the Ukrine. C. C.1 C.l1:N{uclea Pw-w ]3Wams

4.26 n hoonly nuclear phn in Bgaria Is owned by the Nationd Electric Company (NEK) and i stuated at Xozloduy, about 220 km north of Sofia on the Danube river. R compdres 4x440 MW and 2xlOOOMW units with a totl nstled capacityof 3,760 MW. Al unis are pressudzed water reactors PR) utlizing sghdy endicheduranium as fuel and light wat as moderator and cooloa. nhefour 440 MW unis-uIs 1,2,3 and 4--were ommissionedinthe years 1974,197S, 1980,and 1982respecdtivy. Unit 5 (VVRM-1OO) was cmmisoned in December 1988. Unit 6 b operting at parti output, but as of April 1993, i had not yet been allowed to attain fall power and it had not be=Dol:ialy A

4.27 h pform nceof uns 1-4over the past few yes has ben quie good: for examuple, theeavage platload fcor forunlits 14 was 79.6% in 1987,76.0% in 1988, and 71.2% in 1989. MTe perFixmmm of unit S over the qui lmited dme period in whih it has bee opeating has not been as good, du largely tboitlX problems with te sm generatos. The Kozdodayplant I being used as a baseload pla and has a good record of unplanned reor scrams (2-3 per ctor per year). - 26 -

4.28 TheKozloduy units I to 4 are of the early VVER-440lmodel230 design,developed by the Sovietsin the 1960sand 1970sand lack safetyfeates such as contanent, whichare considered essenta In the west Alongwith other units of the sametype,2 they have bee the focusof nnationd concen duringthe past years. In addition,a numberof managerial,training and matria problemsexist at theseunits. Whilethe WER-1000units do not hae the samedesig deficenciesas the VVER-440s model230s, they have and controldeficiencies, steam generator problems and suffer from many of the samemanagerial, taining and materialproblems as the VVER-440unis.

4.29 'Me COE had plannedfor a secondnuclear power sie on the Danube at Belene, consistg of two VVER-1000uni in phase I and two additionatunt in phase 2. A considerable amountof equipmentwas orderedand paid for whichwas to be used for unit I and someconstruction at the sitehas takenplace. However,in view of: 1) the drasticpolitical changes which have occurred in the c-untry, 2) safetyconcerns about nuclear power, and 3) the majoreconomic changes which are ongoingin the countryand wiUresult in lowerelectricity demand, the Governmentof Bulgariadecided to stop constructionof the Beleneplant. C.2: jEemal Power. Distr t and IndustrialCogaion Plants 4.30 Zetna PowerPlants. The followingis a list of thermalpower plants, all of whichare ownedand operatedby the NationalElectric Company, NEK: (a) M Ea 1. The pla has beenin operationfor yearsand has reachedthe end of its usde life. The plant has four 50 MW units supplyingsteam to a near by briquette fctory and two units of 150MW plant whichhave been decmmi . Ihe fuelis ligite from the adjacentmines. Me units in this power station are plannedfor decommisioningduring 1995-1997.For this sudy, t was assumedthat this plant wil be replacedby a newlignite-fired 400 MW condensing power pla whichwill commene commercialoperation by Jamny, 1999. (b) East2. Ihe planthas four 150MW unit (units14) whichhave been cownverted to directfirng of lignte, three 210 MW (units5-7) units and a 210 MW (unit8) under mcnuction. Ihe first four unitshave nearlycompleted half of their operatinglife and are candidatesfor life etension. The first four unitsof 150MW each are expectedto undergolife extensionthwough rehabilitation during 1994-1998.The threeunis of 210 MW eachare relativelynew and are operaingwell. Anotherunit of 210 MW capacity is to be completedw.th financing from EBRD and BIB. Thisunit andunit 7 whichshare a commonstack willbe providedwith flue gas desulfurboaton(POD). (c) Mar}tza 3 has four unitsof 210 MW each and wereinstalled during 1978 dhough 1981. The units are operatingwell and standardrehabilitation and monderniztinnof istruments and contols are anticipatedin the near future. Retrofittingof theseunits withFOD is beingconsidered. Ugnite supplied is similarto dtatsupplied to Martza east I and 2. (d) Yanahas 6 unitsof 210MW, each insIled between1968 and 1979. Theyare desiWed to use Ukrainiananhracite coal with unis 4 to 6 desipgedalso to use naturalgas. Difficultyin supplyingthis coalis cag problemsin theoperationof this plant. Units 1 to 3 are in poor technicalcondition. In this study,it is recommendedthat the first

2 In additinto te Kozloduyunits 1.4, te foilowingunits of te sane typeare stffin operation:at Dohunice,Czechoslovaska 2 unit; at Novovororn Russia,l 2 unts; andat Kola,Russia, 2 units. The -27 -

he unt be rhilated to bum low sufur Iportd coa and the other thr units undergo If extaesionthrough rehablitation and contn to use tie presentimported Ukrnia coal. Use of nal gas is not recommendedfor powerproduction in these units sinceit is subly more than coal on a heat basis and Varn cannot take fulladvantage of the gas (seepara 4.11). (e) Boboy Dothas th 200MW uni, each om onedbetween 1973 and 1975. Bobov Dol minesare depletedand terate swurcesof fuel supplyand utilizationare being euated. Boler detroron due to heavy dagginghas been reported. Theseunits are scheduled for life eesion throughrehabilitation during the years 1994 to 1996. The boilers r modificationsto acceptblended coal or low sulfur Importedcoal (see pana 4.10).

(J) B lhastwo unitsof 30 MW each,two unitsof 110MW each andtwo unitsof 60 MW each. The 30 MW Dunswere rehabiliad and are plannedto be decommissionedby 2000. Tbe curret technicalcondition of the 110MW units is poor. The 60 MWunits are operatingwell. Ihe power plant uses anthracitecoal importedfrom Ukraidne. Availabity of this coal has been a big problemfor Bulgaria. Studiesare being udertaken to convertthe exist boflersto bun importedsub-bitumino coal. Some of the unitscould be conerted to gas firingbut it is not recoended. If continueduse of gas is considered,combined cycle repowerig maybe technicallyand economically justifiable. The rehabilitationof theseunits are scheduledduring 1995-2000. The two 30 MW unitsare expc to be retiredduring the period 1998-2000.In this study,a recommendationis made to convertand to extendthe life of the two 60 MW andthe two 110MW units to burn low sulfurimported coal. (g) Marita hastwo uis of 25 MWeach, commissioned durig 1951-1955and both have reached the end of their usel lives. It also has one 120 MW unit, commissionedin 1971,which has severeboiler and tubine problems. This plant suppliessteam to the districtheating system. Ihe 120 Mw unit has been deratedto about7580 MW. The deraon is maiy dueto bad fuelquaity. Lne fuelis suppliedby Maitza West coal- mine and contas excessiveamouns of over burden, as well as being expensiveto produce. The plantis locatedin one of the mostpolluted are of Bulgaria Naur gas is avaiableat the sie. Therefore,it maybe economicallyfeasible to insall a combined cyclecogeneraton system consste withtha steamdemand for >e dist heatig and industri-' systm. However,in this studyan assumptionis madeto retre theseunits and lost electricitycapacity will be madeup by a newlyinstalled 400 MW plant in the MaritzaEast 1 complex.

Distrct Headng Plants 4.31 There are several districtheatng cogenration plants that produce electriciq as a byproduct The plats supplyhot waterfor heatingthe bufldingsand processsteam for localindustries. Ihere sveral other distict heatng plat that produceonly hot waterand/or process seam. Most of the heat and electricityis producedby plantsusing natural gas as a fuel. The plant that use natura gs as fuel oth ogenmatg and plas that produceonly thermalenergy) provide the potentia for convertingand/or repowering to efficientgas turbine cogeneration. Detailed feasibility studies and audits of theseplan are waanted to defineeconomically fasible repowerin qopr es. 4.32 The m4jorcogeneratg districtheat plantswhich could be convertedto combined cycleplan are in Sofia (Sofia,Traicho Kosov plants)Plovdiv, Pleven and Shumenand are deed below. Also the Republikaplat in Penik, whichues local coal is discussed. -28 -

(a) MmSfia plantis idealfor converionto gs-fired combinedcycle cogenton. There are curetly fou peratwnunis at the plat, the ratedat 2S MW each ad on ratd at 50 MW. Units4 and S are scheduedto be retireddurng 1994. Units6 and are recommendedto be rehabilitatedand rePoweredduring 199S and 1996 using gs turbies. A prelimnay estimatefor gas tutbinerepowering of 6 r 1 8 res in a Incs in nt electic geneat capct of about280 MWbased on urent opeaons. The new net capackyfor this pla ater the reirem of units 4 and S I about 345 MW.The curre estimatefor repoweredcapacities were made consstenwith dt currentdesg steamdemands. (b) e Traicho planthas fiveunis. Fourunits have turbine genators each rated at 30 MW eachand onerated at 66 MW. Thisplant uss naturalgas as the primay fuel. The four 30 MW turbinesneed rehabiiaton, especialyreplaceme of HP cylinders. Like the Sofiaplant, this plnis an idealcandida for rehablitatio and repowering withgas tubie combinedcycle cogeneaon. Al the existingfive units offer a potetal for gas turbine combinedcycle cogeneradon.The ema net capat increaseis about73S MW. Ihe esdmatednew net capacityfor this plant is 870 MW. (c) The lka plant is locatedIn Pnk, a major ndusia town outsideSofiia Thi plat until local low grade coal withhigh contentof moistur, ash and sulfur. Thi plant suppliesheat to a populationof about 100,000and process steam to several industries.Due to age,this plant iS curtly operang far belowcapacity. The curmr Instaled and avaiable dectric grating cpactes are lSS MW and 75 MW respectdvely.The plant has fve unitsof whichunit 1 is redred and unit 2 is scheduled to be redredin 1993. Units3,4 andS are scheduledto be rehabilited during 1994and 199S. Alsoa new25 MW cogenrationunit (most of the equpmenton site)is scheduled to be instlled in 199S.

(d) The Emdiv planthas two 30 MWunits and a 25 MWunit whichis partialy completed. The fuel is heavyfuel oi but permitshave been obtaied to convertto natral gas. Becae of availabilityof ntura gs an eady lemeni of combinedcycle operationwould be beneficialwih the resultof increasedelectricity production at high efficiencies.Unit 1 is scheduledto be retiredin 2005. Strongrecommendations are madeto repowerunits 2 and 3 duringthe years 1996and 1998,respectively. The new net repoweredcapacity is estimatedto be about260 MW. (e) Pleven& Shumen. Currently,Pleven plant has three 12 MW instled units with maximungeneating capacityof 8 MW for each unit. Similary, Shumenhas three 6 MWunits with maximum generatg capacityof about4 MW each in boththe plan, laW quan of steamare sent to iustries after exp n trough back pressure turbines. Theseplants use naturalgas andoil for fuel. Boththese plant offera potent for repowering. Ihe estimatednew net capacitiesfor Plevenand Shumenare about 295 MW and 160 MW resectivey.

4.33 The major industrid plant ha produceelectricity in a cogeeraton mode are: the petroleumand petrochemicalprceing plant in Burgas,chemical plant in Dvna, a chemicalplant In Svishtov,a metallurgicalplant in Kremikovsl,a petochemicalplant in Pleven,a ires and fabricplant in Vidin, a chemicalplant in Vratsaand a fertilizerplant In Stara Zagora. In 1991,all these plant combinedwith other smaler fiitdes generatedabout 3.S TWh. The reportedtotal installedcapacity -29-

for industryfor the sameyear is 1040MW. Ths resuls in an anual utza of 3400hour for the totl i led capacity. 4.34 lhe plantsat Burgas,Devnia, Kremitvl and Stra Zagra use or hab an optionto use natura gas as the primaryfuel. Therefor,theso pla candidatesfor ga tbine combinedcycle repowering. Preliminary fepoweringorm capacitywere madeby maching gas turbineheat recoveryseam generatoroutu to the rated Conditionof es stem turbin. Gasturbine and waste heatboiler capacities were determined by prorting the performanceof a stndard ind gastLubine. Table4.S showspreliminary estimaes for repoweredcapacities and costs for talasion.

4.35 As indicatedabove, the currentanalysis of districtheating and unil cogeneraton plants has indicateda potentialto Increasethe electricitygenerat capacityof Bulgariathrough repowering. The esfimatd maximumpotena for Increasein total net capacityis aprximately 3900MW, at an averageuc heat rate of lessthan 1500kcal/kWh. This edma cpacit is epcd to be the maximm potenti and may not be realizableafter a more detaied studyis performed.Even if, one intuitivelyassumes that half this capacityis feasible,then it would representa s percentageof the total generatingcapacity in Bulgaria. The avere esdmatedcost for rqoweig is US$375/kW.The fuel cost is estimatedto be 2.4 centslkWh,based on US$4/millionBTU. The capital charge,based an 10%Interest and 2S yearplant life and 6000hours of opeaton eachyear, is eiated to be .7 cents/kWh. The ttal cost for electricityproduction excuding opeatig (n fuel) ad maintenancost is 3.1 cents/kWhwhich is very attractiveto any country hat adopts free market practices. The aboveestimates are veryprelimiay anddetiled anditsof plan and feasbili tudies ae requiredto establishreal opportunities.In additon, theserepowered plants are lesspolluing than coal fired plantsas theydo not emitsufur dioxideand do not have solidwaste disposal problems. 4.36 NEKand the COE are less opdmisticthan the Bankabout the potenti for repowerig and rehabitating industrialand distict heatingplans. They believe it will cost more, will be Institutionallymore diffiaclt (since these un are not partof NEKthough power purchase arrangement exist),tha the increasedreliance on importedgas is undesirable.Thereore, in the anaysis descrbed in ChapterS, alternativecases were run excludingthis option. C.3: wermlants 4.37 Backgrumn4.There are 1,970MW of hydroelectriccapacity In Bulgaria,making up approximatly18% of the NEs totalhinstalled capacity. Altogether, there are 87 operatinghydroplant, however,the 11 largestplants have 77% of the capacity. The lagest sigle hydropowerproject is the Behmeken-Sestimo-tair hydropowercomplex (Rilt complea)located In the Rila mona. t curly has 735 MWof capacitysplit into three seprt plat (meken, Sestrimo,Momia Kisua) and accouns for 37% of Bulgaras hydro capacity. The secondbig hydropower complexi the so calledVatcha or Rhodopecomplex located in the RhodopeMouans withfourperting powerplant (-Teshel,Devin, Antonivaovtsl, )and total capacityof 380 MW. he thrd re complexis the Ardariver complex with three power plat (Stud Kladenets, ailovgrd and Kardzhal witha tot capacityof 274 MW. The availablehydro cacty depeds largey on the water supplyin the reservoirs.In the winterof 1991-92,availle hydroelectriccapact wasbetween 750 and 900 MW, well belowthe total installedcapacity, due to the droughtin BulgariaIn 1990and eadier whichresulted in the partW depletionof the reservoirs. Thesecapacity figumes are basedon normaloperations on a monthlybasis that wouldmeet springminimum reservoir levels needed for muncpal and agdrcult supply. in fact, instan us capacitycan and did increaseto apximaly 1500MW or above,thou at a penaltyto generationduring other periodsif minimumreservoir levels are to be met. Table4:5: UltP tainsi ggeration (over 5 MVn :P

A38~~~~~~~~ 1 191 hc a oeael r er yseetc lnFi i oete 2.1%oflt vwaecri4 62 o tta letrciygeetxdi d y Bsd n h meatis uit, f ydoeecile pans holdgeerte4. Ih n aveaepeiR years~~~~~~~~~~~W ndygas anW. tapasta xeeoo .alxlial yrpwr p i

Bulgaiay isI 1012 TW. Howver, his fguro epend vergmuch n thechang econmicofhydrpowr ad th vauo f th sebics itproie adion44xNin er07 sm f hc arestatvup, initanes pnal iexiblit, lad-blowingCapbiSQeWn peaiit n

stat oaot, ad_ htghpumedstge - 31 -

4.39 Considerablehydropower capacity is under construcin or desig in Bulgaria. Pumped sra capciy of 864 MW ae under constructionat Chaira which Is part of the Bdmekn-Sestno- Chain complex. The firsttwo uni at Chairn, 2 x 216 MW, are almost complet and NEK has Indicated a they will be completedby April 1993. The other two units, also 2 x 216 MW, ar scheduledto be completed In 1995 wth financingprovided by the Bank

D.

D.1: Ihe Cufe Tanmision Sy=

4.40 ne high voltage systemscoun of 400 kV and 220 kV s s , but with one 750 kV interconnection(tie line). lTe subtra ion level is 100 kV and low . In this report, atteion is focused entirely on the 400 kV and the 220 kV system (the High Voltage ystem) which constiutes the bulk power transmissionsystem. Both the 400 and the 220 kV systemsforn a closed loop configuraion respectivdy, which eentill cover the entire country. The 220 kV systemhas sever altaten paths that connect intermediatenodes of the main loop. The tanission systemis ot a bottenek Adequate transmision capacity is availableto meet demand, though certain rehabilitaion needs to be underta (see below).

D.2: Current needs 400/220 kV transmision syem

4.41 With regard to the present day 400/200 kV system, a number of short-term needs have been ideified. Theseneeds can be divided into two caeories. The first consists of rhabitation actionsthat will make the existingsystem more reliable, easier to mintain, and up to the curent accepted prace. Exmples include:

- tReplacingsections of the 400 kV conductors. - Replacing sectionsof the 400 kV ground wires. - Changing 110 kV towers built before 1970. Upgradingshunt reactors. Changing circuit breakers

Thecosts for the fist three Items is estimad by Bulgariato be US$20-25million, while the initia cost of replacing faile reactors is estimatedto be US$10 million. Ihe circ breaker upgrade should start in two tothree years, butno ost estimates are currently avaiable. It should be notdtdhthe rehabilitationcan proceed incrementally. A careful analysisof where the process should start and how it sould conte should be underta as a flrst step. Its perhaps worth nothing at this polnt thata significant pordon of the transmission equipment is reaching the end of its usefil life and wil need upgdereplacemet within the next few years. The second category of needs is related to expansion/enhancementof the carent bigh voltage network. In spite of the drop in demand some expansionand enhancementremains necessary. 'Tere is a need for additionalshunt reactors to maintain the voltage at acceptablelevels and these will be finaced by the Bank. The costruction/completIonof the Plovdiv/KorlovoZlatitsa 400 kV lines and stations wiulprovide an altea 400 kV path link the pumped hydro plant at Chaira to the NPP Koododuy.This wUIenhnce the effectivenessof the pumped hydro plantNPP combinion for peak shaig and region reserve avaiabiity.

D.3: Int=_wlec Eirc ity Euh==

4.42 Ihe Bulgarianpower system is interconnectedwith aUlneighboring countries including Ukre, Romana, ltuy, Greece, and Yugolavia. he country i liaed with Ukae throgb a 750 kV lin and a 400 kV line, with Romaniathrough two 400 kV lines and a 220 kV line, and with Greece, 1Tuyand Yugoslaviathrough 400 kV transmissionlines. In the past, about 800 MW could -32 -

be mowe f*om IheFSU (Ukraine)at pedodsof peak demondwith about 4-5 TWh importedyearly. Athoughithe conct was to be renwedannually, exeiene In 1991and 1992suggests that Ukraie my be unableor unwllng to providethe ene and capity thatwas previously supplied and for which the 750 kV missionline was originallybstaled. 4.43 Bulgaria'strade in electicity with Romania,Grece, Turkeyand Yugoslaviaremains small. Tade with Romaniawill remainvy limited becauseboth countriessuffer from available capacityshortages, while dectricity trade withTurkey is limitedby technicalfactors and costs. Trade with Greecei limitedprimarily by capacityconstaints in that countrywhile trade withYugoslavia is stoppedby the cur embargo. 4.44 The Intercon to the Ulkaineand Romaniaare in parallel(synchronized systems) wherea those to Yugoslaviaand Gre a operuaedon the 'lsolated island-principle which allows sychoIzed opeation of an isolatedpart of one power systemwith the other. The isolatedisWand" method of operationlimts flexibilityand Bulgara's abilityto importpower and energy,but this is neessitted by the factthat Bulgar (aswell as the other countriesof the formerCMEA) belongs to the EasternEurope interconnected system known as IPS or moreinformally as MIR(Peace); whereas Greece and Yugoslaviabelons to the WesternEur po intrconnectedsystem known as UCPTE. Thedifference in the stnards of the two system does not allowsynchronization of the systemsat the presenttime. Turdey, on the other hand, is not a memberof eithersystem and operatesits own independentpower grid. Thisgives it moreflexibiity to Itechne powerwith either system. However,being a member of a large systemhas major advantagesin that the immediateavailability of powerthrough the system Interconnectin conrbute to a higherreliabilit than woud be the casewithout them and, if rationally utilzed, also to a more economicopeation of the Intrconneted system.

4.45 Bulgariais In tripat discussionswith Greeceand Yugoslaviafor enhancingfiure exchanges,stregthening of the Interconnectonsand possiblesynchronization. Ibis wouldrequire the adoptionby Bulgariaof the UCPTEstandards including adequate generating capacity, peaking units, and frepency and voltageregulation which they currenty cannotmeet Also at present,it is questionable w-hetherBugaria could do withoutimport of electricityfrom Ukraineat peakperiods and, therefore, It may not be able to join UCPTEuni thatissue is resolved.There are, however,ongoing discussions betwe UCPIE and IPS about establisig coser links and eventuallyeven synchronizingthe two systemsand If this occun it woulddiminate the necessityfor Bulgariato makea decisionbetween the two systm. The completionof th improvedcontrol system for NEK, whichwill be financedby the Bank,wDI facilitate Bulgaria's consideration for membershipin UCFE at a laterdate, and assistparallel operationof the Bulgarianpower network with the UCPTEnetwork. 4.46 lie _. All of Bulgaria'simports and exportsof electricityare on an ad hoc basis,except for a bilateraltrade arragementwith the Ukraine.In the pastthe tradearrangement was with the FSU which also, as part of the IPS, providedreserve capacity and frequencycontrol. Arrgement withthe inependt Ukaine are more uncertainta withthe FSU, but Bulgariahas a bilateal trad aungement wnderwhich it sells a rangeof productsto the Ukraine(food, chemicals etc.) in returnfor Ukra productsincluding electricity. Goodsand servicesunder this bilatera tradingarrgement ae pricedin doas basedon worldmarket prices and eachcountry is supposedto importabout the samevalue of goodsfrom the other countryso there shouldbe no net surplus. For the purposesof this analysis,it wasaumed that 400 MWof capacityand 2 TWhof electricityyearly would be avaflablefrom the Ukraineover the timeperiod of the study at a cost of about3.5 US cents/kWh. -33-

V. _ A. m_

5.01 Ths chapr descibes the resultsof *he geneationpower system plang aDalyasion the Bulgarianpower sector. Theprimary objective of this anaysishas beento eauate the implications in terms of operat nd investmentcosts of adoptingalterative scenariosfor the rehabitadon or losu of the Kozloduynuclear power unit (nucleatsupply scenarios). 5.02 M oavg. Mhre demandforeass have been agreedwith NEK, along with six scenaros for Xozloduycreating a total of 18 cases(6x3). For each casea least-t electricitysupply plan has been developed. Tse existng thermalplant has been analyzedand data preparedon present plt perfomace and the scopefor reabitation or repowering.Projections of fumrefuel availability and costs have been prepared. Thi data has been incorporatd in the WASP-Mgenerton planing model. Analysishas beencarried out for each of the casesto determinethe least-co meansof meetng fre demandfor electricity.Ihe analysishas beeocarried out over a planningperiod to 2010, andthe costs of investmentand operationdiscounted at 10%and comparedon a presentvalue basis. 5.03 3 ItclarPlant Scenaios. Six differentnuclear plant scenarioshave been received from the Bulgaian Governmet and analyzed. Thesecover the completespread of optionsfrom an mmediatecessation of nuclearpower genraon to maintainingthe fiu nuelearsector. Ihe options iWnludesafe shut down, mantanig the plant in a safe conditionand eventa decommissioning. Considerationhas also beengiven in the cougs to stategies fr upgradingthe plantto acceptablesafety _tandard.lThescenarios are: ScenarIo0 - All six unitsat Kozloduyceaso power production immediately, no furthernuclear developments. Scenarb I - Kozloduyunits 1 to 4 cease productionimmediately, Kozloduy unis 5 and 6 ontinueproduction to desigpend of life. Scenario2 - Kozloduyunit I and2 ceasepower production immediately, 3 and 4 ceasepower productionin 1/1198,units S and 6 continueoperation through to end of design life. Scenaro 3 - Kozloduyunits 1 to 4 ceasepower ptoduction in 1/1/98,units 5 and 6 continue opertion throughto end of designlife.

ScnarIo 4 - Kozloduyunits 1 and 2 ceasepower producton in 111/98,units 3 to 6 continue operationthough to end of designlife. S Io 5 - All six unitSconue operationthrough to end of designlife (2005for unit 1, 2006for unit 2, 2011 for units3 and 4 and about2019 for units5 and 6).

Ih all these scenaios, no investmentin new nuclearunis was considered. However,an additional seario wasconsideled at the requestof the Bulgarianautorities andthat wasScenaro 6 - Allsix unitS coninue operationdtrough to the end of their design lif, and additionalnuclear units would be cosdered as candiates for newplants. In fact, thatturned out to be the samescenario as scenario5, sic new nudear plantswere not a leas-costsolution. -34-

S.04 Units S ad 6 continu opeationkto about2019, that Is 30 years ' life. Anlyss has ben caried out by NEKsand their consultantson estmimted avalabilitiea, operating upgrade and Wafyworkscos for the nuclearun b 1 p 1S . 11 & m. under the different senaios. T t annualinvestamn cost for eachscenaro K.. 4 190 are summarlzedInTable S.1. .7' *'NL0 O0 .0 Annual op0atingS a6e.scosts a m *.o 455 Includethe costsfor nuclearfuel which ~0~ ~00 35~ J '4 ~ are estated in992 pric atlUSS16 2d 2

milion per unit for units 1 to 4, and ' '~- 0 s mSiioneamcii.of uns bo u1 US$43micaion per unitfor uni S .f Dand

the geneaios pla ningda. 0 and M ie ou e . costs been based on hstorical have figurs, and are estimatedas Lv 80 medi and amor pi.2 mllion per yewafor al sik sets, or Lv o 270 moii folr ealochpair of ues I to 4, andLv 300mililon for units5 and 6. it g also)q* a g rnt 0A tem Theseare at 1992price level and have been convertedt US Dolars at the excanmgerate of Lv 21 per US$whih is consevave. Dets of the variousactvities which arn sume to be crried out each yearon the ploanare given In Annex1, Attachment1. 5.06 p.m,andFm[ an~d SAYML&adine. Mmredemand forecasts have been prepared In conjunion withNEe. Theseare a minimuma mediumand a maximumforecast presented in Table3.2. Theseforecast asme a comparativel-constant system load fctor over the forecastp d of around 65%. This is comparablewith the present load factor of 64%. Thefecasts includesauiliary consumptonwithm the stations. Gene rationlg al requiresa goodreprsnato of the system loadingpate and inoraon has bee colectedfrom NEK of hourlyloadinsp over the past 20 yecrs. 'Thesevalues hav been averagedon a normalizedbasis and monthy load durationcuve derived. Systemdemand is higher in the win derin the summerdue to heaing loads, and the annualpeak occursin December.Detailed changes in thesewHil undoubtedly occur as the consumermix changes with the evolvingeconomic situation. 5.07 fzaittingGenelkon lants, The presentgeneratin plant in Bulgariaincludes nuclear, convenotioathermal stations, industria cogeneraton, combined district heating and power plants as well as hydro-electricstaton. Thepresent generatin capabilityof thisplan is 10,020MW comparedto the estmated 199 peakdemand of 6,840MW (under the mediumsceario). Thbeinstaled capacity (11119) is 12,080MW madeup of:

Hydro - 1975.6 MW Main thermal - 4730.0 MW Cogeneraon - 574.0 MW Industri - 1040.2 MW Nuclear - 3760.0 MW -35-

5.08 Dtaed of iee pants asr gsiv il Table5.2: FIxedSystm Summaryof Depndable Capacties dat for the nuclearpower uni at p owuy ae | i * S # . shw in th Annex 1,,

fuels are locally mined _ ligt ( dmaryfrom the Marltza ae), ImporttOl w th h coal, nuralo gs and a p b beI limie quantityof fueloil. _ Da fo f ha Fuel detais are also given In Anex 5. Presentnhea raw, es iand costs, and_ 1a U tSS6 '*R" outage rates have been o. as w providedfrom Information preparedby NEKin conjucdionwith the Bank. Theheat rate are quotedon a grossgcneaton basis andon lowercalorifie vauelsbasis for thewfu-l.Thecenti,on and disrct eatig plans have been modeled as compite plan for each fuel type and this is shown In Annex S. Heat ates eMfor electricityproduction, not overall conumption. Data for the hydroelecuic plant havebeen, provided by NEKand the valuasof powerand energyae givenB fto tre hydlogical condtiorshig prbableites of 25%, 56% and 19%respectively. ihe retirementprogram was aured basedon the ageof the plant, and t Is shownIn AmueS. 5.08 eutl&Wies. Fuelsuplies are discussedIn paras 4.054.25.For geneationplanin purposes2I has been aumed tha lgnit wi continueto be avalableat a co of aound US$1.06per MMBhli U. majorquantities of coal are to be Importedthen some new ifras ewilh be reuirda bImprtedcoal for Varns is pricedat US$1.61MMTU and for BobovDoi at aboutUS2ieMtu. he fuelprices for import fudsae bpas on worldmarket 1rces, and in hs studypries havebeen ssumedto main constantin ra tem overthe studyperiod. Iported gaSprices are basedon a price of US$3.5000MW U at the Ukrain border, and 25 cea have been allowedfor transitchges each throughRomania and Urainwe gving a priceto Bulgariaof US$4AMMBTU(US$12IGcal). Nuclear fue costshave beenassmed constantin line withthe assumptionsouste In Sedtion3 above.

5.9teds ict nhe.Plow=W drS Theplanning sm dies are beingcarried out over he;period 1993 to 2010. The analysishas been carriedout using monthlysimulations for each of te th hydrologicalcondirons, with the avage reuts beingadopted. A 4rscountrae of 10%has been agreed forthe study. No specific generation planning margin has bee nasmed, ratheroptimizatio studes have beencarried out by incrporatinga valuefor unsevedenerg of US$300IMWh.In practice the studie haveindicated that thisyield a planing marginof about15%. Thesimulations have assumed that systemspinning reseve willbe provide by hydroplants and by imports,although in practice,the loss of a 1000Mw unitat Kozlodycanno be coveredfuiy andload shedding will be required. The studies haveals assumedtha the Aindstiaand distic heatingplan moustrun. Althoughthis Is ntO strictly tue forthe districtheating plants, WASP is unableto varytime of yearavailability of pliant Nuclearplan havenot beenforced to run, but carehas beentaken in anayzingthe simulations to enur tha the nuclearunits run at reaisticallyhigh loading levels. IP*,it litw $1 hugh F! Ii IflUILLIII 1I II wuri[ar 1ijJt 4 K o3 *1I.1 . I r q

0 3

'U13111 1i a : 'IU 41 [11111I I 1IiI filth 5 151111113. *dfrrwii I -37

Table5.3:

5.t2 In addonto te cnddateplant desaVedabove, a co_ka hasboo manato ew aars puped stoag scheme.lbbisrb 4 unitsof 216MW eacht. Twno wfll be 1muin in IM,3and two In 1995.7hey hav anofficiqic of 7S96and a poteo fbt goosin 1w8.S 8m per day. li is equivlet to 1836 MWh per day per unit. Mis plant has been iodudo in * fixed sse for thepurposes of the geuaetaon plamiog smudies. 5.13 I tor Ans ahatve soure of power and eneW islmorm ts _4bbd amves. As tiscse dsewhaer a numberof opins exist, and it was agreedtba ktsud be asme dsha400 MW wouldbe avaflableas bas load at a costof US$0.035/k:Wh,rouSly th cutv cmGof ipom.Ibis was icluded as an opdon Ind ie an .ysis. B. Sof

5.14 Cagaitv ad=. AvaD*locapacky under each nluclears¢natio over dke planing pod has beenWwmpd wh the demd a_ oadut r to be by the rebabUlhtdo,repowelog and _osmon of now mentraonplan. PAebkbDonof the main*emal planu,disrict heatingsud industra plan relSbUo/vo6ii we"eput on a fbotio of equaUywb henow CoouslUCtion ad sdeclo wasnde on the basis of the leas tDWsystem cost. Noweve, 0* aoc assumesavway oraiatos and na lotiEs relatod thefa Ct tha dhtit heatn and bAusWd pla mteout of NERa contol thoughWu Issuescma be oem. Ihe gben d_t camewao optimizedover ttheperiod 1993-2010.Cq*4*i addldou for dhrent kad fanca d sceuis arshown inl Table 5.3. lheprs valuesof the objecdvefunedon (total sy8Wm cam)w show in Table5.4. The ae the tfi cmu of spplyillg delcricilyfrm 1993-2010discwute at 10% lbr eachcase. -38 -

TableS.4: r tVauesY oLnt TotalSystem Supply Cos r he 18 CieseQ (US$Bllion In 1992)

Forecast\Scemarlo Minimum Medium Maximum

6.221 8.201 9.148 2 6.055 7.401 8.848 3 5.891 7.668 8.633

5.15 'n capacitybalances, cost breakdownas wel as plt schedulesare gI in Anex S. Therest dsowsta thesystem coss ar moreseitio to thesdeection of thescenrios tha te demad forecast(see Table 5.4). Underscenario 0, thereIs animmediate shofall in capaciywhich ca notbe metbY IMPOh . Thisdiuaon coudbe described in different ways. We believe that the most illustatie wayare the number of dayswhen the demand is not metfor each of theegteen consIdered options(rable 5.5). Table5.5: Nuimberof Dayswhen demand meietin

I~~~~~~~~~11 I 1$

5.16 EIn all camsanalyzed, the most ivo contbuionihetD ystem 8 egicams *am te nucoaploct geneSon, except scenarios 0 and 1. nohemeew gnaaedby d gne sous ar prnted (forsee osl, I 3 d 4)in TableS.6 below. -39-

TABLE-6.* ENERSYGENRATION BY PANTS(Wh)

NERIOI TYPE 108 II 1694 5 1is" 200 63 2m 6 2010 d170. .1TOT. d1TOT. d170. O10T. _ TOT.

HYDRO 44.12 6". 212 2212 to 367.1 OA 8s7.t UK4 4 'THRML 2122. 6I7 26.4 o 1.0 2oU GU.448.6 NA 8176* 83 22n* so6 NUCLEAR 06 I6.1 07M. 24.8 07a0 S O08 19,4 076.0 17* 075. 17*

DISTRICTr 1277 2 717,0 1. I1.= W1.16 0 0 1.7 Is" INDUTRY 2.0 5.7 24.6 6.20a7*6" 5. 106 140081 6.8 7776 18T TO tA L 16. 80 41416A 601. 548_ 5660. 8 HYORO I2446.12 6.2445.1 6.244512 5* 5187.1 68 31617.1 5*6372 6.4 THERMAL 114006.4 8. 1546 30.4 176. 4 AUKS GI.437178* S. 581.2 SU6* NUCLER 2t1121 643 211t0S SU 211t 51.9076.06 184 07 17* 07 172 DISTRICT j2314 04 88 0. 6078 0.2 96.15 8* 60.. 1.7 1t05* &A INDUSTRY 1SM 0.5 171.7 0.4 214. 0* 106A4 8* 83. 6* 7 * 1a_ TOTAL 36886.6 3_312.3 41410 60212.4 _461 60. 4 _ _YORO24461.12 344612 6 2-44t2 * 31.1 . 3187. re 3LT 6.0 THERMAL 1400. 36. 1t96 864 12.A 4U2 25147.0 6t01 804.531 76 62 NUCLER 21121 54.3 IS0 68 21. 51.0 1606. 10.0 1606 2V 160 5" 8 DISTRICT 223.4 0.* "0* 0* 00.72 0.2 1074* Li 48 1.7 10n" 1t INDUSTRY 1. 0.A 17t.7 6.4 2146 0* 6727 1.4 4W6. $8 1273. TOTAL 386 36312. 414190 6120 54617.1 6665.

HYDRO 2445.12 U8 244t2 62 244512 6 17.1 6* 3107.1 64 867 6 THERMAL 132263 66.7 281.4 61.0t26310 66 26414.7 61.6 30715.7 6R4 58u04.2 1 NUCLEAR 1076t6 25.176.0 24* 060 23. 07MA0 28.1 0752.0 10* 07630 1 DISTRICT 12* 32 7A 1 8.8 2t0 1064.18 28 6.m 2.0 16. 21 INDUSTRY2270 6 242525 6. 20M 6.0 516.41 3 460G.4 80 11t3 TOTAL M7834 Sos0 414154 407. 46886 681813S 3 HYDRO 2412 6.3 2448.12 6.2 244512 * 3187.1 6 3187.1 64 137 THERMAL 149064 383 1540U68 3.4 1 42.8 414.7 61.6 3075. 684 8047 0F1.4 NUCLEAR 1 21 548 2S1112tA 62110*. 51.0 07806 . 07.06 1. 0.06 1.7 DISTRICT 222.14 Q0 62 0*2 0.72 021064.18 2S 96 2.0 106 2.1 INDUSTRY 180.6 0* 17.7 OA 84* 0.4 2t10A1 5.8 4605.4 1A4 6N6 11* TOTAL [1886. 362.S 4141U 4587 4986. 2186.138 4 HYDRO 2S12 6.3 82 .2 2412 6 3187.1 * 8.1 64 817.1 0 THERMAL 146064 S3.15468 804 1720 423 2480 68 26784.1 4.4 2681 84.2 NUCLEAR 2t121.6 6S 21130. 6. 2111S8 61.016066* =A*15066. U _106 26t9 DISTRCW 82814 06 2 0.2 90.72 0.2 646 . 8A0S 1.7 045 1J INUSTRY 180.M O0 171.7 .4 214. 0. 2643 6 1 6 472.76 6.1 TrOTAL I666. 3S32. 41416 462t12 4834 6281878

I HYDRO 2445.12 6. 244&12 7.1 244.12 7TS 47 6264S27 66 t1.1 7T THERMAL 21862 60. 20844.6 0* 20.1 62.2 240024 SL1 2M60.1 G44 So" I NUCLEAR 17VL.6 US*0760 26A4 076. 20.0 07A0 S5.2U07T6 US 0760 2U DISTRICT 5AS 2J 840 1.1 180*4 0.5 O50 2L 07 1.7 o6i. 2. INDUSlRY 112027 83 870 26 30.0 t.1 1t01 38 1L77 SA.4 30" $ TO TAL 12.9 s1t432 9 366. 3 .$ 40786* 4254500 8 HYDRO 12443.12 6A244512 7.1 2446.12 7_4.MC 6 8647 66 818.1 ?4 THERMAL 12480*8 846 1024 A10* O M*1 2 404 0 W1 220.1 64.4 2606* 6 NUCLEAR 21041 66.2 21111* 61.5 noo66 6LT 06.0 25.07680 82 02.6 " DISTRICT 66.11 0.2 1.1 0.0 121 0.0 06 Ai 60 1.7 MM 28 INDUSTRY 148.46 OA 10.2 0A 140* 0.4 121" 3t 18677 .4 so" 6 TOTAL 36213. 343614 _IJe1* a5" 407858 42546.0 4 tIlORO 2445.12 6*2445.12 7.1 2445.12 7*2 445.1 6321445.1t 6.0 8157.1 74 THERMAL 12480.8 34. 106244 30* 600.71 2L. 205182 61 267* 6A.21070.71 46. NUCLEAR 21084.1 5 21281111* 44589162 62.7 16. 60 16066* 3* 16066 3 ODSTRICT 5511 02 1*1 0.0 1o.1 0.0 sum 1. 160 0 744.54 1* INDUSTRY 146AS 0.4 160.6 0.4 140. 04 7T1 02 5.72 0A 27.11 to YTOTAL 362136 34S2.4 83661A 1660" 4079t1 425246*4 -40 -

IMLET&-L7 PqU. UIBUWS3TRMYr

_80amm I rf_ _ MM'. t O IO1 16 2-- 1006 2010

IUGNI IWOMNON)- 30.70 2L412 24.5* SUM a27m V029 IA P LUON1TN 4.4" 4.MS 4.040 :1 cm am NUOUM (IOFOPUh 4600 406.00 4U6 4L00 460 46.0 NH.A (3ILUON-M 0.146 0.146 0.106 Z4A3S L6 MU * P.F. 0.06" 0.008 0.03 4.000 0.000 0.0M0

* ug ON)N 26.63a 2.443 2614 32./ 2 2.6n.773 COAL (MIWONOT .= is" 1.7 SAN 4664 1.76 NEF (fONOFRIW OL44? 3 16.6W 48.600MA 46*00 Nm" WONUM * *A0ooeo .00 2.4o3 26 &SU f.OL OWON TO O.0 0.000 0.002 0.00 0AN 0.000

4 3UIY it N IT T A6 26 441 29.614 LM 1i763 27.01 COAL (IIJLLON Tote j 12 3 1t1 4.1 4.0 U6.4 NUCULAR ((ONOPFU4P ) A647 60 662 79. 70*37 70.06 .G"A PLUON M* 000 ooeo0 0.000 Co t1476 2t6 P.OL I LO 0.00 0.000 0.oe2 0.000 0.00 0.0o0

I LIGNIT (MILUON ON) 30X*7 23A12 24.64312731 32774 17.01 COAL AILLONTON) 4.466 46 4.640 414 4.7 3.460 - NUCLER (ONOFFUUW 4600 46600 46se 46*00 4MSAO4LOO N.an (LUON 6*.143 0.146 0.106 1t.31 1.7 1146 P.OU 0.N1006 0.06O 0,066 Q0000 0.000 0.0

3 pLIGNITE AUON NTO) 651 20644 12614 12.71 12.774 27.026 COAL (N(WORTON 1 * t 1*t*1 4.149 4.63 34 NUCLEA ( TOONOFPPE) 6L4 36 L430t O 450o 4&M N. a PILUON M** 0ooe0 00 o00o 1.1 1.7t 1146 F.OL 0"LUNTot OO1 0.000 0.002 0.000 0.000 0AO*

4 LGNT (MLUONTON) 253 2S44MS 2114 1L3 3263 27.0 COAL 0NLUtONT) N 1.2 131 .80 4.6 2.43 NUCLEW" ((ONOFFUU) (L0324 6630 3.2111 70.13 70*6 702 N.KGA (PUON*I-) 0neo cm0 0n00 0.477 o05 z161 .0 UONTON I 0000 0.002 0.400 0. 0.000

LINT (W1014ONT04 30.04 26163 33567 12746 32.546 .007 COAL 1MWNTO 7M 1 LOU2.06 AO 4.116 33 NUCAR (TONOFPP. 46.00 46600 41000 4600 46600 46600 N.KaG (3ILUONM-I 0.3 0.00 0.000 0o2 0..46 1304 F.OL6 MIUONt 0.064 0.064 0.010 0.000 0.000 o0n

GNIE (1 21 1 0.704 82746 2.54 27.00 aOmL TIWONTON)O.2 0.177 006 SA 4.116 436 NUCULAR INOFFUa) 2 S6463 63.424 446.00 46.60 4.00 N.KG" 3IIONW* 00N0 0.00 Lono 0M22 0S2A 1.4 P.06. OJN TOM 0.000 0CA0 0CA0 0.000 0.000 0.00

4 USNITE QIION TON) 22S 21.03s 1704 3t 0a46 2K.464 cOm (ILLON TON) 0627 0.177 A0 25 1a.0 W11 NU01 |TONOFFUEQ alm S.463 OL424 70o7 70. 707 KG" (SIUON M*'04 Q0 0.00 0G00 0.012 0.01 0.444 P.O TLON) ag000 0.000 .000 0.000 0.000 0.00 . _ - S N~ZT01 }{f&St]tE~~~~~~~~~~~~~WlL.{ -. It1l asE}s~~~I 0Z &| I odlli] tii laSit stt19F

t~~~~~~~~~ i 1Fa11 ^if 't!ll1

wJJi 3 Ii g - I 5 vi~~~ ~~~ i l}l Ug]Ftttot -42-

ab$5S: CL9SLktvAMMM (US$m tm.1992 do.)

lIf _ A 1 521 n summary, analysisoftheBulgaia elec y sem stScen , wh

eletrit wIth scenarioy,whic Involvysrnigaluisthnofdcrctysse theirlaa dhosiglife acfersafetyc upgrades,beinga th lowestcot Kofiod.yin choo asingbletwesmearinolvs theiugariantvay authoritesmt primarilyconsider thre factors:1) nuclearsafety; 2) costs;and 3) the availabilityof non-nuclearfuels especialynatural gas for whichthere Is a singe supplier. The choicebetween the scenariosIs largely a matrof trade offs. Incrasing nuclearsafety raise costs and the risks involvedIn increaing dependanceon Importednon-nuclear fuels. However,the analysisdoes indicatethat the costs of Increasin nuclearsafety by shuttingthe older unitsat Kozloduyare not enormous. 5.22 Lw " kiluzfgdamtdaU" leugraGvrmn was concernedthat the resultsof the anaysis discussedabove relied too muchon repoweringIndustria and districtheatin plant using gas fire combinedcycle units. They were concernedthat this repowerin mightbe mor expensivethan anticipate andin any casewould increase relianc on imported gas. 'Therefore at the requestof the BulgarianGovernment, additonal case where run where the repowerin of the Inustria geneation plantsis subsantiailylimited in comparisonwith the already analyzed.Also additions to the gasfired plants(combined cycle) were limited to about600 MWand total gas usagefor electricityand heat was limitedto about2 BM. Tis approachlead to presen valuesof totalsystiem costs whichare not mubstantalydifferent (3-8% higher) tha for equivalentcase withthe high reowerin program,but the expendituresstuctur Is different.The repoweringoption has lower investmentcos in the next 5-6 years, and higher fuel cost while the other option Involveshigher investmencos in the medium-termand Its financialfeasibility is questionable.The presentvalue of Incrmentalsystem cos as wellas the cost breakdownfor this optionare presentedin Tables5. 10, 5,11 and 5.12. -43 -

Table 5.10: Pm Valugeof TotalSystem Co far the 18 Cae withLime Gas Usage (US$Billion)

1 6.180 8.666 9.747 2 6.018 8.356 9.371 3 5.853 8.061 9.146

TableS.11: m a Sstem CostsRelative to ull gas Usaje

u~~~~~~~~~~~~~~~~~~~~~~~~~K-

Table 5.12: Cosl of Ssem 8lectricity SUPPmLywithLimits on Gas UsJge (ESs millions,1992 dollas)

| ~~~~~~~~~~~~~~~~~~~~~~~~g E

MMs m ..... 1 ~~~~~~~~~~~~~~~.1 .44 -

5.24 Tassi She least cost sCenaios envisage o major additions to the trnmission stock. Kododuy is mostly enviaged opatg with at least 4 uats, and in the nex ten years any additionalcapacity s lky to be repowerig of cogeneraton. Such repowring is withn the low voltagesystem and since these schemesare new to load ceners, It s unlikelythat any najor transmisionextensions will be rqued. Thisstudy has not analyzedthe low voltagenetwork, but as far as the high voltagesystem is concerned,no majorreinforcements over and abovethose planned by NEKseem necessary.

C. I 5.25 To get a roughindication of whetherthe capitadinvestments and operating costs forect aboveare financiallyfeasible the valueof final electricityconsumption in Bulgariawas forecast for the dtree demandcases. Finalelecticity consumpton consists of salesof electricityby the Naoal Electrc company(NEK) and cogeneraorsown use of electricity.lhe electriciywas valuedat an aver prcoe of 3.7 US centskWh. Thiswould be the averag salesprice for NEKand was assumedfor the'sak of simplicityto be the valuecogeneratDrs would abo put on theirown consumption of electricity.This prico is slightlyabove the averageprico that NEK has agreedwith the Bankto satn by September1,193 (3.5 US cents/kWh),since NEK has agred th stg in late 1994its averagesales price of electriit should be the higher of: (a) fth long run marginal cost of electricity supplr, or (b) that price required for NEKto meetcerain fih alWcovenats specffiedby the Bank. Whiletis prce i8 not yet known, itis esmated to be in the 3.54.0 US cents/kWhrange.

Figure5.13 Value of Electricity versus Cash Outlays on Operations (;inimum DemandForcast)

*409

la"s te.

I I **SeeeS +~we nwe :.ea

lie ie ineto" teat tern ton seineeson I easfewe 114, ans se."sel go'"iee

Imutbest +4nmeves -* **"ast$* .9 e*nadeI .45 -

5.26 FigureS. 13 showsthe value of fal electricityconsumption In the miwmumdemand case from 1993to 2010 (toplue), comparedwith the totalcash operatag and investm costs('bss outlays) for achyear for eachscenario (bottom lines). Thesecash outlays consist of all fuelcost, operatngand costsand capita outlays.They exclude income taxes, dividends, levies in leu of diviends, and debt service. They also excludesome investments which are underwaysuch as the compleidonof unit 8 at the MaritzaEast II plant and the Bank'sproject with NEKwhich will involveit in somelocal capitaloutlays. Foreigndebt service and the requiredcapital outlays under the ongoingprojects gether, however, would be less than US$50 million per year.

5.27 Figure S.13 shows that with the minimum demand forecast and a tariff of 3.7 US cents/kWh;NEK would potentially be in a relativelystrong financial position and ableto fiance operatingcosts and mostof the requiredcapital investments under nuclear ar:ios 1 to 5 asumig ta taxesard other levieson it werelimited. Scenario0, withthe immediateclosure of all nuclearplans, wouldbe harderto finance. Alsoas pointedout above,this scenariois infeasiblesince it wouldresult in massiveelectricity shortages in the shorterterm and severelydamage the economy. Figure5.14 Valueof Electricityversus CashOutlays on Operations (MaximumDemand Foreee"t)

was 1404 1100 1use to"? Is"n ugo "el0 3no0 ass08 a"0 1000 goes 1norwee0 goe 0o

. ,:zw , , 4 w.m * 8seaua.s 6 i":o.i I

-X-~~~~~~~~~~~

5.28 Figure 5.14 shows the same situationfor the maximum demand forecas Given this rorcastof demand,scenario 0 wouldbe very didficultto financeeven excludingf the majordmge tt closureof all of the nuclearunis underthis scenariowould have on the economy. The situationwith the mediumdemand forecast is roughlyhalf way between the maxum andminimum demand forecasts.

5.29 The aboveanalysis is rough and could be refined. However,it does indicatethat at expectedlevels of electricitytariffs and witha reasonabletaxation burden, NEK and the cogeneator may be ableto financemost of the oms of scenarios to5 under all demad cases. Sceio 0 wouldbe - 46 - Annex-1 Page I of 4

NUCLEAR PATkmE

1. Backgsmn. The onlynuclear plant in Bulgariais ownedby NEK and is situ at Kozloduy, about220 Im north of Sofiaon the Danuberiver. It comprises4x440 MW and 2x1000MW unit with a totalinstled capacityof 3,760 MW. All unitsare pressurizedwater reactors (PWR)utilizing slighldy ennched uraium as fuel and commonwater as moderatorand coolant. The four 440 MW units - unib 1, 2, 3 and 4 - were commissionedin the years 1974, 1975, 1980, and 1982 respectvely. Unit 5 (VVER-1000)was commisslonedIn December1988. Unit 6 is operatingat partia output,but as of early 1993,the Committeefor the PeacefulUses of AtomicEnergy, the Bulgariannuclear regulatory agency, had not yet allowedit to attain full power and it has not been offlciallycommissioned.

2. The performanceof units 1-4 over the past few years has been quite good: for example,the averageplant load factorfor units 1-4 was 76.0% in 1988,and 71.2% in 1989. The performanceof unit 5 over the quitelimited time period In whichit has been operadnghas not been as good, due largelyto initiaWlproblems with the steam generators. Ihe Kozloduyplant is being used as a baseloadplant and has a goodrecord of unplannedreactor scrams(2-3 per reactorper year).

3. The Kozloduyunits 1 to 4 are of the early VVER-440/V230design, developed by the Sovietsin the 1960s and 1970s. Along with other units of the same type,' they have been the focus of nternationalconcem during the past years. In addition,a numberof managerial,training and material problemsexist at these units. While the VVER-1000units do not have the same designdeficiencies as the VVER-440's,they haveinstrmentation and control deficiencies, steam generator problems and sufer from many of the samemanagerial, training and materialproblems as the VVER-440units.

4. The COE hadplanned for a secondnuclear power site on the Danubeat Belene,consistg of two VVBR-1000units in phase I and two additionalunits in phase2. A considerableamount of eqipment was ordered and paid for which was to be used for unit1 and some constructionat the sitehas taen place. However, in view of 1) the drasdc politicalchanges which have occurred in the country, 2) safety concernsabout nuclear power, and 3) the major economicchanges which are ongoing in the countryand will result in lower electricitydemand, the Governmentof Bulgfaia the elene plant. The Bankstronly suports this position.

S. S.a Concemsabout Designof WER 440'sMM af As a result of inteional concernabout the safetyof the designof the WER-440, model V230, the Intational AtomicEnergy Agency(IAEA), at the urgingof its members,organized a concertedeffort to performa comprehensive reviewof the problem and to make appropriaterecommendations. This effort, initiatedin 1989 as an extra-budgeay activityof the Agency,consisted of the followingcomponents:

(a) a genericdesign review, performedin February 1991,

(b) ite visits and evaluations,and

(c) a comprehensivereport presenting conclusions and recommendaions in December1991.

In additionto the Kozioduyunits 1-4. the following units of the sametype are 3ti1in operation:at Bohunice,Czechoslovakia 2 units; at Novovoronezh.Russia, 2 units; and at Kola, Russia,4 units. The three unts at Grelfawald.Germany and the two units in Arnenia. have been shut down. - 47 - hnaI Page2 of 4

6. The generic review process of the Agency,with the cooperado of the Sovietdesigpers, concluded(as anticipated)that the designof the VVER-440model 230 lacks many importantsafety featuresconsidered mandatory by commonlyaccepted itenaona practice. hese Includelack of: redundant systeym for highpressure injection of coolant in cas of a large pipe break In the system, backp feedwat circuits, and a full-scalecontainment tuctute that can witstand a substantial overpressureresulting from an accident.In particular,the reviewdetermined that the designlacs three Importnt propertiesconsidered essential in interational practice i.e., ind=a. d&Amakxand aoUn of safetysystems. hbislack makesthe safetysystm particularlyvulnerable to simultaneous fai;urecaused by the samecause or mode. The systemlayout gives poor protectionagainst inra and externalhazards like fires, floods, earthquakesetc. The originalplant design was appliedinitially exclusivel7to low-seismicitysites in accordanceto Sovietregulation. (Unfortunately,this aumption does not applyat Kozloduy,though the plantis not in a particularlyhigh seismicityZone by Bulgarin standards.) Heavyreliance was also placedon operatorcontrol which increases the need for skIlled opertors and raisesthe probabilityof humanerror. 7. On the other hand, the IAEA reviewalso recognizedthat the designof the units has certin redeemingfeatres. The designwas quite conservative,providing large therma margins,sturdy fuel design,a large volumeof water abovethe reactorcore, and very large steamgenerators wit large amoun of water for heat removalwhich would last for severalhours even wit activecirulation. However,these consative features,although providing considerable credit In any safetyevaluadon, are acceptednot be able to mitigateagainst a large pipe break of the primarycircuit or other severe accidentscenarios.

8. The IAEAreview recognized that there existsignificant differences in the detais of the design amongthe variousplants of the samegeneral design, owing to variationsin the actualdesign used, site charcteristics,or to laterbackfltilng measures. However, these differences are generallynot majorand have a secondaryimpact on safety. In additionto the designdeficiencies identified, it s generally recogzed thatthere are otherand in someways more important safety problems at someof theseplans including: 1) deficienciesin the qualityof materials;2) lack of qualityassurance during constucton; 3) poor instrumentationand controldesign and operaton; 4) poor operatortraining; 5) inadequate maintance procedures;and 6) inadequate:anagement structure. 9. The IAEAreview also identifieda numberof investmentswhich would be neededin mostof the VVER-440plants. Theseinvestments were classified into three categories: CategoryI: Immediateneed. CategoryII: Withintwo years. Categorym: Longerthan two years. In CategoryI, the followingneeds were identified:

(a) leak detectiondevices in the pdmary circuitto allowshutdown before a catastrophic failure(because this modelhas only a limitedcapacity for emergencycoolant injection in the caseof a largebreak); (b) upgradingof instrumention and controlsystems, including power conroller, control roominstruments, miscellaneous detectors, and operatoraids. -48 - Annex Page3 of 4

In CategoryI, the following items were Included: (a) simulatorsfor operatortraining; (b) auxiliaryand emergencyfedwater systems; (c) Improvedfire protection; (d) thermalhydraulic analyses; (e) probabilisticsafety analyses, level I (I.e., to the probabilityof core meltdown);(this item includesinformation of categoriesI, U, and o). In Categorym, the followingwere included:

(a) upgradingof steamgenerator systems performance; (O) confinementsystem evaluation and possibleupgrading.

10. After muchof the work on the genericreview had takenplace, a specificsite visit was carried out by an LAEAteam at Kozloduyin June 1991. Theteam found that, in additionto the expecteddesig deficiencies,operational practices and material conditions of the plantwere very poor. Safetyequipment had been allowedto deteriorate,fire hazards existed,morale was very poor, personnelwere not adequatelytrained or led and managementwas demoralized with litde authorityto act. 11. Emegen imnroement grogramfor Kozloduv. The internationalconcern created by the IAEA's reviewof the VVER-440model 230 reactorsand specificallyits reporton Kozloduyculminated in a meetingin Viennaon July 9, 1991at whichinternational emergency assistance was decidedfor Kozloduy. The Commissionof the EuropeanCommunities (CEC) was designated as the focusof this effortand wasasked to coordinate,finance and administer the emergencyprogram. The CEC alocated 11.5 millionECU for this purpose. The programhas fivecomponents and is primarilyimplemented by the WorldAssociation of NuclearOperators (WANO). The componentsare:

(a) Uxr=nHou king Pro& is executedby a team of about 15 foreignpersonnel experiencedin powerplant operations, and coveringurgently needed actions to correct the materialconditions at units 14 in Kozloduythat wereidentified by the IAEASafety ReviewMission in June, 1991.

(b) Twining Afagw=n, is primarilyimplemented by foreignpersonnel from the nuclear powerplants at Bugey(France) to improvemanagement and organization, safety culture, staffprofessionalism,operational and maintece methodologies,quality assurance (QA) programs,and supervisionof implemenationof agreedactions.

(c) Six-MonthSafet Asssment and ImproyementProgram is implementedby expert personnelfrom Europe and to a lesserdegree the US. This programis for the urgent resolutionof basic safetyissues such as reactorpressure vessel and primarycircuit itegrity, accident analysis, confinementleak tightness, simulator training, and anti-seismicmeasures. It includesthe initiationbut not the completionof the very importanttask of writingnew procedures for normaland emergencyoperations. (d) TechnicalAssistance to the Conmmitteeon the PeacefiulUses of AtomicEnexg (the BulgarianNuclear Regulatory Authority) by Europeannuclear regulatory experts. The Committeeis receivingguidance on strengtheningand extendingits capabilityin establishingstandards, monitoring compliance at the plant,and enforcingthe regulaom in everyaspect of plant operations. - 49 - AnnexI Page4 of 4

(e) A StUy of Bulgaria's,lectrciqt siatio Inin l ort run was undertakenby Eurelctric, a consortiumof EuropeanElectric Power Companiesand has been completed. WhUethis programIs designedas a short run effortto improvethe conditionof the Kozloduyplant, It will conne in some formover a longerperiod given the deep-seatednature of someof Kozloduy's problems. 12. As a resut in part of the IAEA reporton Kozloduyand the Viennameeting, the Bulgarian authoritiesagreed to take correctivemeaues in a phasedprogrm, first to upgradeunit 4 followedby unit 3 and, whenwork on thesetwo unitswas completed,to performthe upgradingof units 1 and 2. This is in the prs of being carriedouL

13. Stas of the VER-1001. Unipts and §. Althoughths unitsare of a latervintage, better designed,and are equippedwith the necessaryredundant saety systemsrequred by westernstadards, includinga fuil contnment stucture, they have matera problemsin the horizontalsteam generators wherecracks have developed In cert cases. Workon the steamgenerators, consistng of repairand heat treatmentfollowed by inspection,have been completedfor both unis and it is thoughtthis will preventthe futureoccurrence of cracks. It Is also knownthat the instrumeion and controlsystems are not up to modem standardsand it has been reportedthat reactorcore presentsstability problems whichmay interfre withthe economicand stableoperation of the units. 14. An IAEAOperational Safety Asssment ReviewTeam (OSARI) has reviewedunits 5 and 6 and confirmedthat the maindeficiencies are not in the designarea but ratherare in the areasof management, personneltraining, adequate inceives for performance,opeatig procedures,and regulory measures. Perhs the singlemost important area, whichaffected all the unitsat Kozloduy,was the salariespaid to skilledworkers, i.e. shiftsupervisors and licensedcontrol room operators, and to managers.These werequite low, but havevery recentlybeen sharplyincreased. Nevertheless,there remainvery poor socialand livng conditionsin the town of Kozloduy. Attachedas Appendix1 to this annexare the detailsof the six nuclearscenarios. - 50 - Amex 1 Appendix 1 Page 1 of 17

NCLEAR POVER ANT SCENARIOS

1.1 'te six differentnuclear scenario havebeen prepar" by NEK and they are presented in this Annex.

1.2 Thebasic technical data descrbing the Kozloduy1 -6 unitsare alsopreseted In theform as theyhave been given to the Missionby NEK. 1.3 Preseted beloware the sixnuclear operaing scenarios ta are to be consideredfor the futureof the nuclearindustry in Bulgaria. SCENARIO0- Al 6 units at Kozloduycease power productionInnedlately no future nucleardevelopmt. 1.1.93 All 6 unitscease power production 1.1.93-1.1.98 All 6 unitswill be operatedin the shutdownstate (thiswil require developmentof specificsafety plans). Continul upgradeof plant to ensuresafety In the shutdownstate. 1.1.93 Commencedesommissioning stdies and developplan. 1.1.98 Implementde mioning plan SCENARIO1 - Koxloduyunits 1 to 4 ceasepower producion 31.12.92,Kiozloduy units S and 6 continued operstionthrough to desIg end of Hife.

1.1.93 Units 1 to 4 cese powerproduction.

1.1.93-1.1.98 Units 1 to 4 wil be opeated in the shutdownstate (thiswill require developmentof specificsafety plans). Continu upgradeof UnitsI to 4 to ensuresafety in the shutdown state. 1.1.93 Comme dmmsioning studiesand developplan for Units 1 to 4.

1.1.98 Implementdecommissioning plan on Unis 1 to 4. 1.1.93-1.1.95 Performsafety and avaiabilitystodies for Units5 and 6.

1.1.96-1.1.97 Carryout researchand development,design and procurementof the safety/availabilityfeatures idendfied by the abovestudy.

1.1.97-1.1.99 The abovefeatures will be installed(Wt may result in a reduced sv,ailnhilav nf the ,mitu. - 51 - Annexl Appendhl Page2 of 17

1.1.99-DEOL Continuedsafey and opational upgradeswill be madeto Units5 ad 6on an anna basis. SCENARIO2- KoulodZ Undts1 and 2 ces pwe producdon I_=dtely. Unis 3 nd 4 ceasepowe prductio on 11.1.98, UndtsS and 6 con_nud operion truh to dedgu end of lite. 1.1.93 Units I and 2 ceasepower producton. 1.1.93-1.1.98 Uni 1 and 2 willbe opeated In the shutdownstae (thiswill require developmentof specificsaety plans). Continualupgrade of Units1 and to 2 to ensuresafety in the shutdownstate. 1.1.93 Commece decommissioningstudies and developplan for Units and 2.

1.1.98 Implementdecommissoni plan on Units 1 and 2. 1.1.93-1.1.96 Shorttermsaetyupgrades of Uit 3 and 4.

1.1.96-1.1.98 ContmIedsafety and operadonalupgrades wDI be madeto Unlt 3 and 4.

1.1.97-1.1.98 Developshitdown plan for Units3 and 4. 1.1.98 Units3 and 4 ceae powerproducto 1.1.98-1.1.03 Units3 and 4 wil be operatedIn the shutdownstate. Connual upgradeof Units3 and 4 to ensur safetyin the shutdown state. 1.1.98 Commencdecommiin studiesand developplan for Unib 3 and 4.

1.1.03 Implementdecommissoningplan on Units3 and 4. 1.1.93-1.1.95 Performsafety and availabty studiesfor Units5 and 6. 1.1.96-1.1.97 Carryout reearch and development,desg and procurementof the saetyl/availbilityfeaures idenifiedby the abovestudy.

1.1.97-1.1.99 lTe abovefeatur wl be inslled (t may result in a reduced availabilityof the units). 1.1.99-DEOL Connued safetyand operationalupgrad wi be madeto UnitsS and 6 on anannual bash. - 52 - Annul Append I Pag 3 of 17

SCEARIO 3 - KlCoddy Units 1 and 2 cma pow produten In 138, UIt 3 to 6 contnued opatio througb to desp end of Ise. 1.1.93-1.1.96 Short-temsfty upgades of Units1 to 4. 1.1.93-1.1.94 Cary out reach and development,degn and prourement of the safty/availablityfeatu identifiedby provio stdies for Unit 3 and 4. 1.1.96-1.1.97 IhMabove fatures willbe lstalld on UnIts3 and 4 (thIsmay resdlt In a reducedavailability of the units).

1.1.96-DEOL Contnued ay nd opaional upgrdes will be madeof Units3 and 4 on an annualbasis. 1.1.96-1.1.98 Continuedafety upgradeswi be madeto Un 1 and 2. 1.1.97-1.1.98 Developshutownplan for Unis 1 nd 2. 1.1.98 Unis 1 and 2 ceasopower production.

1.1.98-1.1.03 Units 1 and 2 wil be operatedin the town stat. Contnualupgrade of Units1 and 2 to ensur saety in the shutdown

1.1.98 Comme de o studiesand dvelop planfor Units1 ad 2. 1.1.03 Implementdec oin la on Unt 1 ad 2. 1.1.93-1.1.95 Peform safetyand avaibWiy stes for Unis 5 and 6. 1.1.96-1.1.97 Cary out reearch and development,design and ptomeme of the safeiylaviabflityf_eat identifiedby the abovestudy. 1.1.97-1.1.99 I le above ures wil be Iutalled (thismay rsu in a reduced availabilityof the units).

1.1.99-DEOL Coinued say and operatonl upgades willbe madeof Units5 and 6 on an amual basis. SCENARIO4 - AN6 Kolodu Unitsoperado thouwg to dedi end of liut.

1.1.93-1.1.96 Shorterm saty upgradesof Uni 1 to 4. 1.1.93-1.1.94 Cartyout eearch and deelopment, designand porme of the saftylavbility features itifed by ptreios d for Unis I to 4. 53 - Anne AppendIx1 Poge4 of 17

1.1.96-1.1.99 bhe o fres wMbe ited on Unit I to 4 (th may rsutk In a reduc aaitflity of the units). 1.1.99-DEOL Co d safetyand opeato upgrads will be madeto Unb 1 to 4 on an annualbasls. 1.1.03-1.1.04 Deveopshutdown plan for Uit I and 2. 1.1.04 Unis I and 2 ceas powerproduedto 1.1.04-1.1.09 Unt 1 and 2 wI be operatedin the dsdow stat. Contia upgradeof Unt 1 and 2 to ensu safetyIn the sudown state.

1.1.04 Comme deommissioningsues and developplan for Unia 1 and 2. 1.1.09 Imlemet deommisioningplan on Unit 1 and 2. 1.1.09-1.1.10 Developshutdown plan forUits 3 and4. 1.1.10 Units3 and 4 cee powerproducn 1.1.10-1.1.15 Unit3 and 4 willbe operatedin the sutdown sate. Continuaupgrade of Units3 and 4 to eu safetyinthe sutdown state. 1.1.10 Comned stuesand developpla for Unl 3 and4. 1.1.15 Iplemet deo iong plan on Units3 and 4. 1.1.93-1.1.95 Performsafety and availability sud for UnitsS and6. 1.1.96-1.1.97 Carryout reach and deveopment,desi and pro ent of the safety/availabilityfeatures identified by the abovestudy. 1.1.97-1.1.99 lhe abovefeaues wil be stalled(tis mwayresult In a reduced availabilityof dtheunit).

1.1.99-DEOL Contnuedsafey nd operationalupgrades will be madeto UnitsS and 6 on ananual bais. - 54 - Annex1 Appendx 1 Page5 of 17

SCENARIOS - All KozloduyUnits operaon lthugh to dedgn end of U?. and new nudear cotrcon It deemedto be required by electricty demand.

h is the sme a Scenario4, withthe considerationof finureconstuedon of additionalunits. Ihe numberand capacitiesof nowunits willdepend on the demandforeats. As suchconsuction cos shouldbe quotedin tms of costper MW constructed.These should be total cos includiagdesin, analysis,pcuement, construction,commissioning, etc. COMMENTS: 1. Designend of life (DEOL)is consideredto be 30 yearsfrom commencement of commercial operations. 2. For me of analysisit proposed Units1 and 2 shouldbe u sy hut down, slmily fbr UnIs 3 and 4.

NuclearSafety/Upgrae Investmnt Costs(JS$M)

s _== ~~~~~~~~~~~~10

s X T A. A 10

1U!eix. ~ 50~, - 55 - AmexI Appendix1 Pgo 6 of 17

BG-1 KOZLODUY -

Currentstas: OPERATIONAL

I. GENERAL Stationname KIozoduy- I Regionof Township Kozloduy StationCoordinates: Latitade(degrees, minutes): Longitde (degrees,minmes): ReactorType: PWR ReactorSystem Supplier: ATOMENERGOEXPORT TurbineGenerator Supplier: ATOMENERGOEXPORT Owner(s): NATIONALELECIUC COMPANY Operator: KOZLODUYNPP H. MAILINGADDRESS: Staion Address: NPS Kowloday 3320KozIoduy Bulgaria StationTelephone (02)871312,(0973)71 Telex 33 416 Fax (0973)2591 UtilityAddress: NEK 8 Tladlt Str 1000Sofia Bulgaria UtilityTelephone: (02)86191 Telec 22707,22708 Fax (02)875826 m. OUTPUTPER REACTORUNMT: DesignCurent Nuclearthermad: 1375 1375 Gross ectrical 440 440 Net electical 408 408 IV. DATEOF: Stateof Constuction Aprl 1970 First crIially June 30, 1974 First synchronizaionto grid August14, 1974 Commnrci Operation October25, 1974 -56- AnsezAI Appenl I Page7 of 17

V. REACTORCORE CHARACTERISCS Fued mara: U0 No of fud assembli 349 No of fild rods peraembly 126 Av. inidalfad onrIchment 2.5 (w%) Av. reloadfuel ercmet: 3.6 (w%) Cladding, material: ZR thidknss: 0.65 (M) Fud loading: 42 (tonneU) Powerdensty in fud: 32 (kWf U) ,towerdensity In coro 84.2 (kW/lk) Linearpower density: 12.5 (kW/m) Dischage burnup,design av. 28600(MWd/t) Methodof refeling off load -desig freq of re ing 12 (months) - part of core witwn 33 (%) Meansof reactivitycontrol: H3BO,

VI. PLANT SYSTEMS Reactorvessel, basic material: LOWALLOY STEEL laddingmaterial: NO CLADDING Primaysystem deciptiot: No. of primarypumps 6 CAOh: Material: E60 Massflow through core: 39000(tih) Outlet _ 298 (degC) Outletpre:r. 125(kglcm) Steamgenerator(s): Number: 6 Type: PGW-4E Turbines:Number: 2 Rating: 220 MWe Steam condions at turbine net Tempeature 255 (degC) Pressre 44 fk/cm Moist content 05 (%) Flow: 1320(t/h) Typeof conder coodg River Reactorsystem cotaim No conWtainmen 57 - Anex Appedix 1 Page 8 of 17

BG-2 KOZLODUY -2

Curreatus: OPEnRAIONAL

1. GENERAL Staion name ozloduy- 2 Regionof Townhip Kozloduy Statio Coordintes: Latitude(degroes, minutes): Lonte (dgrees, miutes): Ractor Tye: PWR ReactorSystem Supplier: ATOMENERGOEXPORT Tuine Geera Supplier. ATOMENERGOEXPORT Owner(s): NATIONALELECRIC COMPANY Operator: KOZLODUYNPP Ll. MAILWGADDRESS: StadonAddress: NPS Kozloduy 3320Kozloduy Bulgaria StatoTelepbone (02)871312,(0973)71 Telex 33 416 Fax (0973)2591 Utiity Address: NEK 8 Trladitzastr 1000Sofia Bulgari UtilityTelephone: (02)86191 Teet 22707,22708 Fax (02) 875826

m. OUTPUTPER REACTORUNIT: Desin Currt Nuclearthemal: 1375 1375 Grossdeoical 440 440 Net decbtical 408 408 Iv.DATE OF: Stateof CDnStucdon April 1970 First ctically August23, 1975 Firt synchraniztn to grid September27, 197S Commecal OPeratin November5, 1975 Desig Lfe Tim 30 years - 58 - AmueI Appi Pagoe9 of 17

V. REACTORCORE CHARACTRISTICS Fuel material U02 No of fuel rods per assembly: 126 Av. initial fuel enrichment 2.5 (w%) Av. reloadfuel enrichment: 3.6 (w%) Cladding,material: ZR thickness: 0.65 (mm) Fuel loading: 42 (tonneU) Powerdensity in fuel: 32 (kWkg U) Powerdensity in core: 84.2 (kW/lit) Linearpower density: 12.5 (kW/m) Dischargeburmup. design av. 28600(MWdlt) Mehod of refuelling off load - design frequencyof refueing 12 (month) - partof core wtlhawn 33 (%) Meansof reactity conrol: H3BOQ VI. PLANTSYSTEMS Reactorvessel. basic material: LOWALLOY STEEL claddingmaterial: NO CLADDING Prim systemdescriptiow: No. of prmary pumps 6 Coolant:MaterI: HP0 Mas flow thugh core: 39000(tlh) Outet tempare: 298 (degC) Oudetpressure: 125 (kglcm) Steamgenerator(s): Number: 6 Type: PGW-4E Turbines:Number: 2 Rating: 220 MWe Steamconditions at tubine inlet: Temperaure 255 (degC) Pressr. 44 (kglcw) Moisure content 0.5 (%) Flow: 1320(tlh) Type of condensecooling River Reactorsystem containment No containment _59 Ana I AppendkIl Page 10 of 17

BG-3 KOZLODUY -3

Currentstaw: OPERATIONAL

I. GENERAL Stationname Kozloduy- 3 Regionof Township Kozloduy StationCoordinates: Latitude(degrees, mints): Longiude (degre, minuts): ReactorType: PWR .ReacorSystem Supplier ATOMENERGOEXPORT TuIbineGeneaor Supplier. ATOMENEGO}EPORT Owner(s): NATIONALELECTRIC COMPANY Optr: KOZLODUYNPP I. MAILNG ADDRESS: StationAddress: NPS Koeloduy 3320Kozloduy Bugaria Sation Telephone (02)871312,(0973)71 Telex 33 416 Fax (0973)2591 Utilty Address: NationalEectric Company 8 Trladitzastr 1000Sofia Bulgia Uity Telephone: (02)86191 Telex 22707,22708 Fax (02)875826 m. OUTPUTPER REACTORUNIT': DesignCurent Nucleartherma: 1375 1375 Gross electrical 440 440 Net electrical 408 408 IV. DATEOF: Stateof Construction Ocbr 1973 Fiustcritically December4, 1980 Firstsynchronization to grid Decem 17, 1980 Commeril Operatioa January28, 1981 Deign Life Time 30 yes -60 - AmexI Appedix I Page 11 of 17

V. REACTORCORE CHARACTERSTIS Fuelmaterial UO2 No of fuel assemblies: 349 No of fuel rodsper assembly: 126 Av. initialfuel enrichment 2.5 (w%) Av. reloadfuel enrichment: 3.6 (w%) Cladding,material: ZR thickness: 0.65 (mm) Fuelloading: 42 (tonneU) Powerdensity in fuel: 32 (kW/kgU) ?owerdensity in core: 84.2 (kW/lit) Linearpower density: 12.5 (kW/m) Dischage bumnup,design av. 28600(MWdIt) Methodof refuelling off load - design frequencyof refuelling 12 (months) - part of core withdrawn 33 (%) Meansof reacdvitycontrol: HBO3 VI. PLANTSYSMS Reactorvessel, basic material: LOWALLOY STEEL claddingmaterial: NO tLADDING Primary system description: No. of primarypumps 6 Coolant:Material: H20 Massflow tbroughcore: 39000(t/) outlet tempeatre: 298 (degC) Outletpressure: 125 (cm) Steamgenerator(s): Number: 6 Type: PGW-4E Turbines:Number: 2 Rating: 220 MWe Steamconditions at turbineinlet: Temperatue 255 (degC) Pressure: 44 (kgkm2) Moisturecontent: 0.5 (%) Flow: 1320(t/h) Type of condensercooling River Reactorsystem containment No cold_ - 61 - Annul Appendi I Page 12 of 17

BG-4 KOZLODUY-4

Cunt Sta: OPERATIONAL

I. GENERAL Saion name Kozloduy- 4 Ron of Township Kozloduy Sation Coordinates: Latitude (degrees, minutes): Logitude (degrees, mnumtes): Reactor Type: PWR Reactor SystemSupplier: ATOMENERGOEXPORT Turbine Generator Supplier: ATOMUENERGOEXPORT Owner(s): NATIONALELECRuC COMPANY Operaor: NPP

11.MAING ADDRESS: StationAddress: NPS Kozoduy 3320 ICzoduy Bugaia StationTelephone (02)871312,(0973)71 Telex 33416 Fax (0973) 2591 Utility Addess: Natonal Eectric Company 8 TriaditzaStW 1000 Sofa Bulgaria Utility Teephone: (02)86191 Telex 22707,22708 Fax (02) 875826 m. OUTPUT PER REACTORUNIT: Design Cunt Nucler thamal: 1375 1375 Gross electrIca 440 440 Not electical 408 4O8

TV. DATE OF: Stae of Contuction October 1973 First cridcally Apri 25, 1982 First nzato grid May 17,1982 CommercialOperation June 17, 1982 Desin LifTime 30 years - 62 - AhmoI Appendk I Pag 13 of 17

V. REACTORCORE CHARACTRISTICS udemaeriad U02 No of fuelassemblies: 349 No of fuelrodspera mbly: 126 Av. hitial fuel enricmen 2.5 (w%) Av. reloadfudel eiment: 3.6 (w%) Cladding,material: ZR thicness: 0.65 (mm) Fuelloading: 42 (tome U) Powerdensity in fuel: 32 (kW/kgU) bowerdensity in core: 84.2 (kWAt) Linearpower density: 12.5 (kWhm) Dischage burnup,desig av. 28600(MWd/t) Methodof refuelling off load - deign frequenc of reelling 12 (months) - part of core withdrawn 33 (%) Meansof reactivitycontrol: H3B0% VI. PLANTSYSTEMS Reacor vessel,basic material: LOWALLOY STEEL daddingmaterial: SS Primay systemdescrWlpton No. of primarypumps 6 Coolant:Materil: H20 Mas flow throughcore: 39000(t/h) Outlettemperue: 298 (degC) Outletpressure: 125 (kg/fcm Steamgenertor(s): Number: 6 Type: PGW4E Turbines:Number: 2 Rating: 220 MWe Steamconditions at tubrineinlet. Tempeature 255 (degC) Pressue: 44 (kglcm2) Moistureconten: 0.5 (%) Flow: 1320(t/h) Typeof condensercooling River Ractor systemcontainment No containment 1~~~~~~~14ii~~~~~x0 64 - AnnexI Append 1 Page 15 of 17

V. REACrORCORE CHARACTERISTICS Fuelmatal U0 No of fuel assemblies: 163 No of fuel rodsper aLembly: 312 Av. nial fuel enrichmeut 3.1 (w%) Av. reloadfiel earichment: 4.4* (w%) 3.3 (w%) Cladding,material: ZR thickmess: 0.65 (mm) Fuel loading: 75.2 (tonneU) Powerdensity in fel: 45.5 (kWig U) Powerdensity in core: 111 (kW/it) Linearpower density: 16.71(!Wlm) Dischargebunup, designav. 40000*(MWd/t) 2700 (MWt) Methodof refuelling off load

- desig frequencyof refueling 12 (months) part of core withdawn 50 (%) Meansof reactvity control: H,BO3 VI. PLANTSYSTEMS Reactorvessel, basic material: LOWALLOY STEEL claddingmaterial: SS Priay systemdecrton: 4 modulesof steamgen. No. of primarypumps 4 Coolant Matera: H0 Massflow thrugh core: 84800(t/h) outlet tmpeature: 320.1(deg C) Oudetpressure: 160 (kg/cgm) Steamgenerator(s): Number: 4 Type: POW-1000(horontl) Turbines:Number: 1 Rating: 1000MWe Steamconditions at turbineinlet: Temperature 274 (degC) Pressure: 59 (kglcm?) Moisturecontent: 0.2 (%) Flow: 5980(tlh) Typeof condensercooling River React systemcontament Reinforced,preatsed concrete - 65 - AnnexI Appeix 1 Page 16 of 17

BG-6 KOZLODUY - 6

Curre status: CONSTRUCTION

I. GENERAL Stationnam Kooduy -6 Regionof Township Kozloduy Staton Coordinates: Latitude(degrees, minutes): Longitde (degrees,minutes): Ractor Type: PWR ReactorSystem Supplier: ATOMENERGOEXPORT TurbineGeneator Supplier: ATOMENIERGOEXPORT Owner(s): NATIONALELECTRIC COMPANY Operaor: KOZLODUYNPP IL MAUINGADDRESS: StationMdress: NPSKoioduy 3320Kozloduy Bulgaria StationTelephone (02)871312,(0973)71 Telex 33 416 Fax (0973)2591 Utit Address: NationaDElectric Company Triaditzastr 1000Sofia Bulgaria UtilityTelephone: (02)86191 Tdel 22707,22708 Fax (02) 875826 m. OUTPUTPER REACrORUNIT: DesignCufrent Nuclearthenral: 3000 3000 Grosselectrical 1000 1000 Net electrical 953 953

IV. DATEOF: Stateof Constction July 1980 First cdtically First to grid CommerciaOperaio DesignLife Time 30 years -66 - An= I Appedx 1 Pagp 17 of 17

V. REACTORCORE CHARACTERISTICS Fuel materil 102 No of fae assemblies: 163 No of fuel rodsper asembly: 312 Av. ini fuelenrichmet 3.1 (w%) Av. reloadfuel enrichment: 4.4* (w%) 3.3 (w%) Cladding,materia: ZR thickns: 0.65 (M) Fuelloading: 75.2 (tonn U) Powerdensity in fuel: 45.5 (kW/cgU) Powerdensity in core: 111 (kWflt) Linearpower denity: 16.71(kWIm) Dshage bunup, designav. 40000*(MWd/t) 2700 (MWt) Mediodof refuelling off load - desig fiequencyof refuelling 12 (months) -part of corewithawn SO(%) Meansof reactivitycontrol: HBO3

VL PLANT SYSTEM Reactorvessel, basic material: LOWALLOY CR-MO-NI STEEL claddingmaterial: SS Primarysystem description: 4 modulesof ste geL No. of primarypumps 4 Coola: Materl: HE0 Ma flowthrough core: 84800(th) Outlettmpae: 320.1(deg C) Outletpresse: 160 kg/cm:) Steamgenerator(s): Number 4 Type: PGW-1010(oriont) Turbines:Number: I Rating: 1000MWe Steamconditions at turbineInlet: Tempaure 274 (deg C) Pressure: 59 (kg/cm) Moisture content 0.2 (%) Flow: 5980 (t/h) Type of condenser cooling River Reactor system contnmet Reinforced,prestesd concrete -67 - AnS2 Page 1 of 7

BULGARI

THERMALPOWER PLANTS, DlSTRIC HEATING PLANTS AND INDSTRIAL CQ9Mffz1IO PLANTS

1. Tbissection of the reporthas the followingmain objectives: o Reviewof the curfentstatis of existingtaermal generating plant in Bulgariaincluding plantsin the districtheating and industr sectors;

O Technicaldata collectionfor eachunit - includinglocation, and the yearof commercial service, design basis, technical and major equipmentdata, current maximm and minimumcapacities, availability, heat rates,scheduled maintenance and outage data, fuel type and composition, fuel availability, remaining life of existng equipment, annal electricitygeneration, anmual and/or monthly fuel consumption, and production costs; and

o Reviewof operatingand maintenancepractices, equipment limations, rehabilitation programsand schedules,identification of candidateplants for combinedcycle opeat, fuel switching scenarios, efficiency improvements,costs for rehabilitationand repowerig, decommissioningor retirementschedules and review of projectsunder construction.

2. MaritzaEast I Ihis powerplant is locatedin southeasternBugaria near Galabovo. Martza East 1 has beenin operationfor 30 years. lhe planthas reachedthe end of its usefullife. The plant has four 50 MW units supplyingsteam to a nearbybriquette factory and two units of 150 MW, whichhave been decommissioned.The power plant, built during1958 to 1963,has six 210 t/hr steam boilerssupplying steam to the four50 MWexaction steamturbines. The plantsupplies nearly 480 t/hr of processsteam at 180 OCand 4kg1/sq.cmto the briquettefactory. In 1991,this plant generatedabout 990,000MWh of electricityand 1.5 milliongiga caloriesof thermalenergy. The reportedplant overall gros heat rate was 2930 klc/kWh. In 1991,the plant had 1229employees. Under a U.S. TDP financedfeasibility study, the studycontractor, Bechtel, is consideringseveral options to replacethese units. Someof the optionsconsidered In the Bechtelstudy are: (1)a new200 MW-250MW plantto be builton the samesite which would continue to supplysteam to the briquettefactory, (2) gradually closing downthe briquettefactory and instalingone 400 MW condensingunit. The unitsin this powerstaion are planed for decommissioningduring 1995-1997.For this study,it wasassumed that this plant will be replacedby a new lignite-fired400 MW condensingpower plant whichwill commence commecial operationby Jamuy, 1999. The estmatedcost for this newplant in 1992U.S. dollarsis US$1300/kW. This esdmatedoes not includeinterest during construction, contingency, etc.

3. Martz Elt-2. this planthas four 150 MW units (units 1-4) whichhave been converted to directfiring of lignite,dtree 210 MWunits (units 5-7) and a 210 MWunit (unit 8) underconstruction. The four 150MW units were partally rehabilitatedduring 1984-1986 and, duringthis rehabilitationthe boilerswere converted to directfiring of lignite. This,along with the reductionof mainand reheat steam temperte due to materialproblems, resulted in deratingof theseunit to 130MW each. The four units of 150 MW each were commissionedduring the years 1966-1969. The orgin operaig supetheatedand reheat temperaturesfor boilers and turbines were 5701570°C and S651565C, respectively. In addition,the fuel was dried in fuel drying plantsbefore being fed to the boilers. Because of material problems, the superheatedand reheat steam temperatureswere derated lo _ -4O 68 Pago2 of 7

545/545eC, resultingin reducedgeneradng caiies for theseuni. The equipmentin theseunis has nearly exhausted50% of its usel life. Ibese units prime candidatesfor fiuther life exein throughrehabilitation. All the unit are experiencingtube failures,due to high ext furnaceflue gs temperaturescaused by excessiveslagging in the fiunace. Muchof the boilers auxillaryeq u is experiencingproblems, for examplethe coal mil is experiencingsevere erosion due to high ash content in the lignite. The unitsare also subjectto saerenccling, leadig to furtherdetatin of equipme Reducedcapacities due to increasedcondenser back presur were also reported. High p e of unburntcarbon in the ash Is also reported. Poor lignitequality, mainly because of excesive cay inthe lignite,is causingmaterial handling problems during cetn weathercondions such as ra ad aw. 4. For the study,first four undtsof 150 MW each are expectedto undergolife extenio throughrehabilitation during 1994-1998.The thre units of 210 MW each are relativelynew and are operatingwell. Anotherunit of 210 MW capacityIs to be completedwith fincng fromEBRD and EIB. This unit along with unit 7 which share a commonstack, will be providedwith a flue gas desulfriation (FGD)unit. The esimatedcost for life extensionthrough rehabiLon for the old 150 MWunits is aboutUS$I50lkW in 1992U.S Dollars. Ibis plantgenerated about 4.68 TWhduring 1991 at an overallgross heat rate of 2784KcalJlWh. The plantcurrently employs 2,067 people. 5. Matitza3wppgad. his planthas twounits of 25 MWeach, duru 1951-1955,and they have reachedthe end of their useful lives. It also has one 120 MW Unit, commissionedin 1971,which has seere boilerand turbineproblems. i plant suppliessteam to the districtheating system. The 120MW unit has been derated to about75-80 MW. Thederatlon is mainly due to bad fuel quality. Lignitefuel is suppliedby Maitza West coal mne andconOD exceGsi amountsof over burden. The plant is locatedin one of the mostpolluted areas of Bulgaria Swetal options under considerationare: (1) Life extensionthrough rehabilitationof 120 MW unit; (2) decommissioningof this unitand replacementof lost electriccapacity by insing a new powerplt In the MaritzaEast area and replacethe exsting districtheating system by providig atu to Individualconsumers for heatng; and(3) a combinedcycle cogeneration system comisten withthe steam demandfor the districtheating and industrl systems. In this study,an assmtion is madeto reire theseunits. Lost electriciycapact willbe madeup by a newlyinalled 400 MWplat in the Mart East 1 complex.In 1991,Maritza 3 generatedabout 1S4million MWh of electricityand 192,000gigp caloriesof thermalenergy. This plant currentlyemploys 363 people. Grossheat rate for the electricity productionwas 4029kcal/kWh.

6. Maita East 3. It has four unitsof 210 MWeach, instaled during 1978throu 1981. Theunits are operatingwell and standardrehabilitation and modion of im and contos are anticipatedin the near future. Retrofittingof these unitswih FGD Is being considered. LgnWte suppliedis similarto that suppliedto MaritzaEast 1 and 2. In 1991,this plant generatedabout 4.1 millionTWh. Thisplant employed1465 people in 1991.

7. Rum. Thisplant is locatedin NorthemBulgaria ad on t'hebanks of Danube. It has twounits of 30 MW each,two unitsof 110MW each andtwo unitsof 60 MWeach. The 30 MWuni were rehabilitatedand are plannedto be decommissionedin the year 2000. TOTEMAof Bulgaia is perfrming a feasibilitystudy for life extensiontirough rehabilitation of the 110MW units. Thecurrent thnical conditionof theseunits is consideredto be poor. The60 MWunits are opatg wel. The power plant uses anthracitecoal importedfiom Ukraine. Avalabilityof this coal has be a rnJor problemfor Bulgaria. Studiesare beingundertaken to convertthe exsting boilersto combustImported sub-bituminouscoal. Someof the units canbe convertedto gas firingbut this s ntect d. w continueduse of gas is considered,combined cycle repowering may be technicallyand economicaly justifiable. The plant is eperiencing problemswith auxiliay equipment,such as circulatig watr pumps,water treatment plant, coalmills, etc. In 1991,this plantgenered 521,744MWh of dectcit -69 - _ Page3 of 7

and 786,388giga caloriesof thermal energy. The gross heat rate for electdcityproduction was 3094kcal/kWh. The rehabilitationof these units are scheduledduring the years 1995-2000.The two 30 MW units are ecpectedto be retired duringthe period 1998-2000.In this study, an assumptionis madeto convertand to extendthe life of the two 60 MWand the two 110MW unitsto burn low sulfur importedcoal. The estimatedcost for conversionis aboutUS$225/kW. 8. Vanrna.This plant is locatedon Varnalake some20 km from Varna. It has 6 unitsof 210 MW each installedbetween 1968 and 1979. They are designedto use Ukrainiananthraite coal. As before(Russe), difficulty in supplyingthis coal is causingproblems to the operationof this plant. Units4 to 6 have been designedalso to use naturalgas. Units 1 to 3 are in poor technicalcondition, experiencingincreased forced outages due to tube leaks in the steamand watercircuits in the boiler. Highcooling water temperaturesresulting from inefficientcooling towers have causedreduced output. Currenty Bechtel is performinga feasibilitystudy for the life extensionof these units including conversionof existingboilers to sub-bituminouscoal. In 1991, this plant generatedabout 5.9 millionTWh of electricityat a grossheat rate of nearly2351 keallkW. In this study,it was assumed that the first three units willbe rehabilitatedto burn low sulfurimported coal at a cost of US$225/kW. The otherthree unitswill undergo life extensionthrough rehabilitation at a cost of US$2251kWand will contn to use the presentimported Ukrainian coal. 9. BobovDol Thispower plant is locatedaround 100 km southeastof Sofia. It has three unitsof 200 MW,each commissioned between 1973 and 1975. Lifeextension and rehabilitation of these units are beingstudied by Bechtel. BobovDol minesare depletedand alternatesources of fuel supply are beingevaluated. Boiler deterioration due to heavyslagging has been reported. In 1991,this plant generatedabout 1.6 TWh of electricityat a grossheat rate of about3078 kcals/kWh. Theseunits are scheduledfor life extensionthrough rehabilitation during the years 1994to 1996.The boilers require odificationsto acceptblended coal or low sulfurimported coal. Low sulfurimported coal would be preferableas thiswould eliminate the needfor expensiveFGD units. Theestimated cost for rehabilitation is US$173IkW.

Ditict Heatng Plant

10. Sfia. TheSofia plants are idealfor conversion to gas-firedcombined cycle cogeneration and the thermalenergy distribution system has hugelosses and needsimmediate modernization. Sofia has a populationof about 1.1 million. Presendy,the thermalenergy is suppliedby two thermalpower plants(Sofia and Kostovplants), two localheating stations and severalspare boiler plants. The Sofia plant was built in four stages. The first stagewas built in 1949,and, exceptfor occasionaluse of its boilersfor producingprocess steam, most of the powergeneration equipment has been decommissioned. The secondstage was built in 1958. Thisstage consists of threeboilers rated at 170tons/h of steameach andtwo extractingsteam turbines rated at 25 MfWeach. Thisstage is in needof immediaterehabilitation dtroughrepowering or replacement.The third stagewas completed in 1963and is also a candidatefor rehabflitationand/or repowering. This stage consistsof two boilersrated at 220 tons/heach supplying steam to a 50 MW extractionturbine. The fourth stage was completedin 1985 and consistsof a 220 tons/hboiler supplying steam to a back pressureturbine rated at 25 MW. Originally,the boilers were constructedto burnlignite and they havebeen convertedto burnfuel oil and naturalgas. In 1991, this plantgenerated nearly 485,000 MWh of electricityand 2.33 milliongiga calories of thermalenergy. The grossheat rate fur electricitygeneration was 1940kcal/kWh. Naturalgas is used as the prinary fuel. A preliminaryestimate for gas turbinerepowering results in an increasein net electricgenerating capacityof about280 MWbased on currentoperations. The new net capacityfor this plant after the reiement of units4 and 5 is about345 MW. (Units4 and 5 are scheduledto be retired during 1994). Unit 6 and 8 are recommendedto be repowered,using gas turbines, during 1995 and 1996. Thecurrent estmate for repoweredcapacities were madeconsistent with the currentdesign steam demands. The - 70 - AM 2 Page 4 of 7

esdmated net capacitiesfor units 6 and 8 are 104 and 240 MWs respectively. The esdmad cost for repoweringbased on these capacitiesIs about US$310/kW.

11. The Kostovplant was built In three stages. The first stage, complted In 1964, consists of two boilars, each rated at 220 tons/h, 9.6 MPa, 540 eC and two 30 MW turbine-generators. The second stage similar to the first stage was completedin 1968. The third stage was built in 1968 and Is comprisedof three boilers each rated at 220 tonslh, 13 MPa, 540 IC and one 66 MW turbine-generator. In addition, eight hot water boilers each rated at 100 kcal/h, were added between 1972 and 1982. The four 30 MW turbines need rehabilitationespecily replacementof HP cylinders. Tbis plant uses natuWal gas as the primary fuel. In 1991, this plant generatedabout 596,785 MWb of electricityand 2.7 million giga caloriesof thermal energy. The gross heat rate for electricitygeneration was 1706 kcal/kWh. Like the Sofia plant, this plant is an ideal candidate for rehabilitation and repowering with gas urbine combinedcycle cogeneration. All the existingfive units offer a potentialfor gas turbine combinedcycle cogeneration. The estimated net capacity increaseis about 735 MW. The estimated new net capacity for this plant is 870 MW. The cost for repowering,including rehabilitation of the existingstem cycle, is US$275/kW,based on new net capacity.

12. Pemik. Pernik is a major industral town outside Sofiawith a large districtheatingplant, Republika. Thisplant utilizes local low grade coal with high contentof moisture, ash and sulfur. This plant suppliesheat to a populationof about 100,000and process steam to several industries. Due to age, this plat Is currendyoperating far below capacity. The current insIled and avaflableelectric genat caacities are 155 MW and 75 MW respectively. This plant was built in three stages. Ihe first stage was completed in 1952 and consists of two non-condensingturbines of 25 MW each and two steam generators rated at 34.7 kg/s at 7.8 MPa and 500 -C. This stage is expected to be decommissionedin the near futare. The second stage was completedin 1958 and consistsof three steam generators having the same parameters as the first stage and two 25 MW turbines (one of condensingtype and the other double extraction type). The third stage was built in 1967 and consists of a steam generator rated at 61.1 kg/sec at 9.6 MPa and 540 *C and a condensingturbine rated at 55 MW. The second stage boilers and associatedequipment are candidatesfor life extensionthrough rehabilitation. Thisplant is ideal for the introductionof modem fluidizedbed boiler technology. In 1991, this plant generatedabout 169,000 MWh of electricity and 583,000 giga calories of thermal energy. The gross heat rate for this generation of electricity was 3971 kcal/kWh. Units 3, 4 and 5 are scheduled to be rehabilitted during 1994 and 1995. Also a new 25 MW cogenerationunit (most of the equipment is on site) is scheduled to be installed in 1995 (assumed). The rehabilitationcost is estimatedto be US$50/kW. This estimate does not includerehabilitation of the boilers, as electricityis consideredas a byproduct from this plant.

13. P10ydiv.The Plovdivplant has two 30 MW units and a 25 MW unit partily completed. Fuel is heavy fuel oil and permits have been obtained to convert to natural gas. Energoprojet is performing a life time assessmentof existingequipment. The current plans are:

Completionof the 25 MW back pressure unit and conversionof the boilers from fuel off to natural gas.

Modernization and rehabilitation of the existing equipment including HP cylinder replacementof turbine 2.

Decommissioningof ubrine I and conversionof turbine 2 to combinedcycle operation with two gas turbines 60 MW each (total gas turbine generationcapacity 120 MW).

Introductionof a new 25 MW unit. -71 - A Page 5 of 7

Because of the availabilityof natur gas, an early implementationof combinedcycle operation would be beneficialand havethe resultof incroasedelectricity production at highefficiencies. 14. In 1991,this plant generated about 122,000 MWh of electricityand 579000giga calories of thermalenergy. he gross heat rate for the generationof electricitywas 1751kcal/kWh. Unit 1 b scheduledto be retired in the year 2005. Strongrecommendations are madeto repoweredunits 2 and 3 duringthe years 1996and 1998,respectively. The new net repoweredcapacity is estimatedto be about 260 MW. The estimatedcost for this repoweringIs in the orderof US$300IkW. 15. AvramStolanov. It has one 30 MWunit and plansfor installingan additionaltwo 12 MW backpressure units are beingconsidered. Fuel used is browncoal. In 1991,this plantgeneated about1^6,500 MWh of electricityand 383,000giga caloriesof thermalenergy. Thegross heat rate for electricityproduction was 2611kcallkWh.

16. Pleven & Shumen. Currently,Pleven plant has three 12 MW installedunits with maximum generatingcapacity of 8 MW for each unit. Similarly, Shumen has three 6 MW units with maximumgenerating capacity of about 4 MW each. In both plants, large quantites of steam are ptovided to industriesafter expandingthrough back pressure turbines. Theseplants use nar gas and oil for fuel. In 1991,Pleven generated about 73,000 MWh of electricityand 878,000giga caloriesof ermal energy. TMegross heat rate for electricitygeneration was 1758kcals/kWh. In 1991,Shumen generated about54,000 MWh of electricityand 563,000giga caloriesof thermalenergy. The grossheat rate for electricitygeneration was 1260kcals/kWh. Both plants offer a potenti for repowering.The esdmated newnet capacitiesfor Plevenand Shumen are about295 MWand 160MW, respectively. The esdmaed costsfor theseplants based on new net capacitiesare aboutUS$4751kW and US$485IkW,respectively. 17. RusseWest. Kazanlak,Gabrovo. In 1991,these plants generated 8100, 19,800,18300 MWh of electricity,respectively and 207,000, 293,000,312,000 giga caloriesof theam energy, respectively.The gross heat rates for electricitygeneration were 1519, 1401, and 1450 lccas/kWh, respectively.Except for standardrehabilitation of these units, these plants ar expectedto contnu operatingthrough the year 2010 at the presentratings,

18. Pazardzikand HoskovoPlants. Thereare no cumrrentplans to completethe constructio of Pazardzikand Hoskovoplants. 19. OtherOpportunities for ElectricityGeneration. There are severalsmaller districtheatg plantswhich generate electricity and severalother gas fired district heating plants which currently produce only hot water. Thesegas fired hot water plantsoffer a potentialfor gas turbineconversion and are includedin the tablefurnished by the COE.

Industrial El=n 20. The major industrialplants that produceelectricity in a cogeneratonmode re: a petroleumand petrochemicalprocessing plant in Burgas,chemical plants in Deymia,a chemia plantin Svihhtov,a metallurgicalplant in Kremikovsi,a petrochemicalplant in Pleven,a tires and fabc plant in Vidin, a chemicalplant in Vratsaand a fertilizerplant in Stara Zagora In 1991,all these plan combinedwith other smallerfacilities generated about 3547 GWh. The reportedtotal installedcapacity for industryfor the same year is 1040MW. Thisresults in an anmualutilization of 3400hours for the totalinslled capacity. ITis mediocreutilization is due to lack of availabilityof feedstocks required to operatethese industrialplants. The plantsat Burgas,Devina, Kremikovsi and StarmZagora use or have the option to use natmul gas as the primary fuel. Therefore these plants are cdid for gas turbine combinedcycle repowering. Preliminary estimaes for repoweringcapacity were made by matchinggas - 72 - Amn l2 Page6 of 7 turbinelheatrecovery steam generatoroutput to the rated conditionsof existingsteam turbines. Gas turbine and waste heat boiler capacitieswere determinedby proratingthe performanceof a stadard industrialgas turbine.The majorindustr plantsthat cogenerateelectricity in substantialquanties ae Burgas,Devnia, Svishtov, Kremikovsi, Vidin, Vratsa and StaraZagota. 21. Burg. Burgasplant is the largestpetrochemical and petroleumprocessing plat in Bulgaria. Currently,the plantis operatingat reducedcapacity because of lack of feed stock. As the Bulgarianmonetary and policysituation stabilizes, this plant is expectedto undergomodernization. Ths planthas a large needfor processsteam. For example,the reportedaverage hourly steam needs during winterand sunmmerare 1060and 850 tons, respectively.This planthas two unitsof 60 MW and two unitsof 50 MWeach operatingon naturalgas and/orfuel oil. Theseunits are primecandidates for gas turbine epowering.The estimatednet capacityafter repowering is 1,082MW. Theestimated heat rates are in the rangeof 1500to 1825kcal/kWh. 22. )evnia. This is the largest cheemicalcomplex in Bulgaria. Major productsinclude calcinatedsoda, soda products,sulphuric acid, phosphoricacid, chlorine,PVC, etc. The unitsin this complexare plannedfor modernization.The plant under normal conditions requires 1577 tonh of steam for processpurposes. But, after accounting for steamgenerated from available internal waste heat, a tota of 1324tons/h is neededfrom externally fired boilers. The planthas severalcogeneration units, some operatingon coal and otherson naturalgas and oil. Repoweringopportunities exist for unitsopeg on naturalgas and the estimatedrepowered net heat rate is in the rangeof 1250-1390kcal/kWh. The estimatedcost for repoweringis US$350/kW. 23. Kremikovsi.This is the largestmetallurgical plant in Bulgaria.The plant is in needof modernization.The cogenerationplants use naturalgas to producesteam and electricity.The esimed repoweredcapacity for this plantis 486 MWat a net heat rate in the rangeof 1230to 1600kcaslWh. The estimatedinstallation costs are US$310/kW. 24. SYib. This plantproduces fibers. It has one 60 MW cogenerationunit. Tis unit uses coalfor energyproduction. 25. NHKPIv. Thisis a petrochemicalplant and has a 60 MWcogeneration unit and uses heavyfuel oil for energy. 26. Xiain. This plant producestires and fabrics and uses imported coal for energy production.The planthas a two 30MWcogeneration units.

27. Yrt. This is a chemicalplant which has two 30 MW cogenerationunits. Natura gas and fuel oil are used as fuel for energyproduction. This plant has repoweringopportunities and the estimatedpotential is 284 MW. The estimatedcost for installationis 274 US$/kW. 28. Stara Z Tor.This is fertiizer plant and has four 6 MWunits and two 12 MWunits. Currently,the steamfor 6 MW unitsis generatedby lignite-firedboilers and the 12 MW unitsby gas fired boilers. Both the units offer a potentialfor repowering. The esdmatedrepowered capacity is 720 MW. 29. All Qers. Thereare severalsmall cogeneration units with a totalcapacity of 55 MW. 73 - m 2 Page7 of 7

Qpraftan d -MaintenancePractices

30. Eneo Remont,a governmentowned company, is responsiblefor all majormainance of the power and districtheatn plat. in geeral, once in five years e plantsundergo a major reconstructionor rehabilitation,colloquially known as UDouble Genera Remont. During this maintece period,major parts in the boilerare replaced,the turbineis overauled, other e ment replaced or reconstructedand tested for performance. Ite expected iciency improvementfrom this major recouction is to achieve an efficiencyonly 4% less than design. EnergoRemont bas several facoies whichprovides services needed for this rco on andalso ma tes severalmajor items of equipmentused in thesepower plans. Anotherornizadon knownas Teh Energyalo assistsin the designand production of smallspare parts associated with electical and controlsequipment. Bulgaria can manufacture60% of all its powerplant spare parts requirements. AM ~ 74 ~ Page 1 of 14

* B~~~~~IULGARIA

1. Thereare1,975 MW of hydroelectc capacityin Bulgaa, makig up approximely 18% of theCOEINEK's total inswlled capacity. Altogether, there are 87 operatig hydroplants,however, the 11-largestplants ave 77%of the capacity. The largest singlehydrpower ptojectis the Be lmm- Sestrimo-Ca hydropowercomplex (Rila complex) located in the Rila moutains. It currenty has 735 MWof capacitysplk into three sepate plas (Belmeken,Sestrimo, Momna Ilisur andacounts for 37%of Blgaria's hydrocapaci. Mmeaeoond big hydropower complex Is the so calledVacha or Rhodopecomplex located in the RhodopeMounins withfour opeatingpower plant (Dospat-Teshel, Devin, nonlvmnovtsi,Krichlm) and totalcapacity of 380 MW. Ihe thi large complexis the Arda rivercomplex with thee powerplants (Stdn ladee, Ivaiovgradand Kadizhali) with a totalcapacy of 274 MW. The avaRablehydr capacitydepends largely on the watersupply in the reservoirs.In the winterof 1991-92,available hydoedectic capacity ws between750 and900 MW, wel belowthe total installedcapacity, due to the droughtin BulgaiaIn 1990and earlier which resuted in thepartal depleton of the reservoirs. hesecapacity figures are basedon normalopeaDons on a mohly basisthat would meet sprn minimumreservoir levels needed for municipaland agricultra supply. In fact, instantaneoucapacity can anddid increaseto approximately1500 MW or above,though at a penaltyto geeation duringother periods if minimumreservoir levels are to be met. HydroPower Stations in Operati (over5 MW)

Ito. Yo bvowg is ta olled Desg ActualAv. Actul of statios In Opraetics Cm"aity Anual AnnuaL D dsi so ftt tive astEn Orntlcs Since (NW) Gbner. G4netatiec Gborattinc Ohez 5 NW (YeOr) (SOa) (SWb)

1 76 Ul1ske est- 1924 S.50 29.00 29.80 102.768 2 16 laker ssime.onv 1927 6.26 49.00 35.41 72.z7 3 76 Elska lilt 1i20 10.00 41.50 47.76 115.061 4 s6 VAG" Yach - 1 1833 14.00 21.60 21.88 101.30t S 17 lskar Fbl Tsarkva 1934 7.80 43.00 38.00 0o.47n 6 8s Cbya Asenitac - 1 1951 7.20 30.00 24.04 63.1,3 7 1 Los litek 1852 5.45 14.00 13.77 98. 368 6 32 Rositas ositsa - 1 1954 7.50 22.00 21.04 69.732 9 63 TurWda* .Diaitrav 1055 7.00 17.00 13.00 70.47V 10 64 ITadJa Stara Zage. 19es 22.40 n.oo 59.24 82.28S 11 6 Darea Setsie 1956 S.90 34.00 24.52 72.12S 12 19 letkr Pasarel 18S6 32.50 77.00ee8.2 66.091 13 20 lukes Ickalyan. 1956 22.40 73.00 73.78 101.075 14 5 B rsie ratroban 1857 6.00 33.00 25.03 75.852 15 16 laker 3B1laker 1057 1S.60 42.00 20.81 70.66$ 16 48 Stareratak 1957 40.00 167.70 1216.62 75.50O 17 71 Ad" Stude 185 62.40 217.00 186.76 67.451 16 49 Stare 3ledne 1959 128.00 440.74 330.66 77.072 19 50 Stara peabtrs 1050 64.90 202.05 136.19 68.39% 20 57 topolnita Alsko 1962 8.00 29.00 21.56 74.341 21 70 Arda TOpclnOiA 1964 106.40 165.00 114.34 69.302 22 65 t?dWJ aroaly 1S65 14.40 32.60 16.36 50.251 23 72 Ara Jirebtabv 1ess 106.00 217.00 175.72 80.982 24 so0 8.3trita Ivailograd 1069 21.50 71.40 57.05 70.06X 25 61 8.Biatritso bpsa- Lak 199 20.00 60.s0 57.41 62.60t 26 62 8.9i2t1ita LilyAovo 1071 14.20 48.10 3t.66 60.375 27 51 YVah andaki 1972 60.00 116.20 102.10 61.43Z 28 55 Vacht Teshel 1972 7.00 21.35 25.40 77.24X 2 54 VYac vYa - 11 1973 80.00 197.40 164.03 83.551 30 46 S"triaka Kritoci* 1974 240.00 421.00 231.00 52.492 31 47 wliv. Setrio 1074 120.00 106.00 100.00 55.052 32 53 vYach HminaslUSu 1975 160.00 245.00 167.96 88.532 33 45 triva AntanivwactaI 1976 375.00 "56.00 306.00 55.04X 34 87 l.listritse Salaken 1061 28.00 05.00 55.64 56.572 35 52 Yacht spoAdhv 1s06 60.00 122.00 69.80 57.212 36 86 P.9istaitae bev 1s02 21.20 70.80 0.00 0.002

TOTL. 1936.53 4350.94 3016.51 69.33X _ - - - - = - 75 - Amua I Page2 of 14

2. n 1991,which a waspoin out abovewas a dry year, hyd ectricplans in Bulgari geusrated2.44 TWh, 7.3% of total electricitygeeation by the COE and 6.3% of total electricity generatedin the counety.Based on the rAte capacitiesof instaUedunits, hydroelectricplants shunld genate 4.5 TWh in avere preipiato yeam and 1.9 TWh in dry years. t appears dat the economicallyexploitable hydropower pottal in Bulgaia is app el 10-12TWh. However,this figuredqen very muchon the agg economicsof hydropowerand the valueof the servicesit providesin additionto energy,som of whichare ianeous start-up,opina flexibilty, load- followingcapability, peaking operability in a stopst mode, and load managementthrough pumped storage.

3. Considerablehydropower capacity is undercontruction or desigpIn Bulgaria.Pumped storage -apacityof 864 MW are under constuctionat Chaimwhich is part of the Belmeken-Sestio- Chairacomplex. The first two uni at Chaia, 2 x 216 MW,are almostcomplete and NEKhas diwcated thatthey willbe completedby April 1993. The othertwo unt, also 2 x 216 MW. ars scheduledto be completedin 1995.

MAMlmde amHyomo Scheme 4. This developmentoccupies the north-eatn parts of Rila mountainand with its total potenal of 2200MW and potentialannual electricity generation 3947 GWh is the biggesthydro power Complexin Bulgaria.Breakdown of phasesof developmentis follows: - PhaseI 735MWf1190GWh inopueationsincel974 - PhaseII 864 MW/1180GWh underconstruction (pumped storage) - Phasem -270 GWh preparaton - PhaseIV 600 MW/1203OWh plannd

S. he mainreservoir of this projectis Belmekenwhich will also servesas a headpond of Chin pumped-sage powerplant (second sge). Bemekenhdrogpounwed-one ov at= is the first stageof Phae I of the developmentwih a tota inslled capacityof 375MW and 560 GWh ual electricenergy generadon. Its urbinesoperate under a headof 730 m. In its powerhouse are insalled five set8consisting of three pans - urbine, genor andpump. Pmp capacityof eachof the three coonent sets in the pumped-sge power plant is 52 MW. The secondstage is Sestimo nrpoweggm g with an instlled capacityof 240 MW and gneation of 430 GWhdectric ene annually.The thid stageis M{miaIZisuapower plat witha totalisaled caity 120MW. It has two 60 MWvertca Francistbines and geneaes 200 GWbelectric energy auly. Theturbines are desiped for a headof 251 m.

6. Theoperational results for the period1976-89 lead to makethe followingconclusions:

- Water divered and nt used for power generationfrom 1976 to 1989 amountsto 1031mdliion m. In recentyears these deviations mun up to about30% of the flowin the cascade. lTus, 140million W' weredivere in 1987,100 million na of thmfor waer supplyto the capital Sofia. Tbis has resultedin averageannual loss of unproduced ener of the order of 218 GWh.

- In recet yearsthee weresome cages withrespect to the ole hydropowerpls play in coverg powersyses load. Thishas foundits erssion In extendingthe duration of the day-timepeak and backingup of failedcapacities in the na s porwersytem. - 76 - Annx Page 3 of 14

- Sesttimoplat opaes at maximm capacty 200 MW intead of the dedi capacty 240 MW. A reconstructionof the trbines and the gnerats will result in increasing powerplant's capacity by about40 MW and generationby about64 GWh. In order to increasegeneation the reconstuctio of past of the equipmentis planned. 7. For the majorpumpe-storage a ), th upperpond is Beme andthe lowerpond is Chairadam (completed),with maximumgeodetic differc in water levd deevadonsbeing about 700 m. Theundergroundmachinehall is22.S m wide, 111.35m longand43 mhigh. Poursio-stage pump-tubines,each 216 MW whengenating and 195 MW whenpumping, will be Insaled in it. Equipmentfor the powerplant is beingjoinlymanfatred by Toshda Corporation(Japan) and Bulgarin engineeringwork. In the transformercavern (12.60 m wide,96.20 m longand 19.55m high)wil be installeL six power transformers.Duration of Chaira pumped-storagepower plans conuous operat is limitedby the swage in Its lower reservoir,Chain, with useful storage4.37 millio l wmh guarants maxlmumduration of operationof 8.5hours whengenerating and 10.7hours when pumping. With the commissioningof this power plant, the nation's dectric power system will have anothr powerfulhydropower plant with excellentload-following actss. The role and the operaig functionsof the Chairapumped-storage power plant willbe:

- operationduring the peak demand hours; - allowingthe studyoperaion of the nuclearand the thermalpower plants for 24 hours duringthe year; - overallsystem regulationof load; - exchangepower flows regulation;and - short-termemergency reserve in the power system with excellentload-following characteristics.

S. ITnhearee of exisdn = of Mm a aoson wheresignificant efficiency improvem canbe attainedare as follows:

- AnAlysisof operationand the nece y reco ion andmode on othe hydraulic stuctures: intakestrucres, canals, els. achstep to decreasewater losses by the properoperation of the Intakestrucures will result in dectri generationincrease.

- Modernization(upgrading) tie main itemsof equipmentin the hydropowerplants in order to increasetheir efectiveness.

- Provisionof altenaive watersources for the main waterconsumers (except Sofia, this case is consideredseparaely below).

Thesemeasures requires detailed technical and economicstudies which shall take into acoun boththe experienceof operationof the eistng capacitiesand the requirementsfor Imprvement.

9. Water suly ConWilexRila Curently, the deficitin watersupplies to the capitalX coveredby withdrawingwater from the Belmeken-Sestrmopower development. This worsensthe power-generatingcapacity of the developmentwith the reductionteaching 220 GWhper year. If this sitation continuesin the yearsto come,the approximately100 millionnil of water per year necessary for the capitalwill cause a reductionin generatedelectricity to the of 350 GWhper year from dha cascade. Consideringthe additionaleleccity geneated fromthese watersby the iskar river power plants,the net losresfrom unsold electricity are esmated at 260OWh per year, or about 13 millionUSD per year. With this in mind, the constuctionof the Ria watr supplycomlex will result in restorlng the dmien erv ch st of the Bdmeken-Sestimopower developmen. The new lia complex -77- AimDZ Page4 of 14 ebnis dt tasfe of 20 smIwat from th Ril iver Io th lW dver. To that end wo tunnelsof dia 3.60 m eachand 16 km and 9 km longwould be driven Totalmv aescordng to desg ar aboutUS$22 million - US$18million for the tels andUS$4 million for theotier stuctures. Th construction prram which covs pro-fesbiity sues, googica invetgatio aong tunnels wutos,thcal designsand teder , peparatonsfor the teder and contractingand site cnestrtin willspread over a ped of fouryeas. IQ9 oAnaactlvesoludonwhich . could pwv coniderablythe operaton of theBomekeSr deveopmetb thetransfer in it of 75 millionmn In an avra dry yearfrom the Mestariver. TheBulgar Govenmenfavors such a scheme,but k wouldneed to beage withthe Greek overame Thisscheme, together with the Rila watersupply complex, would fl Belmd reservoirat the begnbnmg of the autumn-winwer season. The additial transferof watrs i Belmeken-Sestrimodevelopment wl generateabout 370 GWh anmnally on r andthus the 299 MW capact In the xisingpower plants, currentlyexperienidng water shortages,wi be loadedto thek full rat. Chena Mea damwould be buit closeto towships (Yakora) nd pt of thewaters In the esrvoircould sove to problemsof theirhwter supply.The sheme en th constructionof 20 km of tmnels,2 damsand 3 pump stations. The necessary caia Ivestment ountto US$95millan and constuction time 4 yearsaft agreen is reached withGream.

YAut HMk== Scheme il. Thepower plant of tbisscheme utilize the energy-poducing potential of theriver waters Inthe central and the westr partsof th Rhodopemnain Afterlaving themountain these wers are utized for Irigatin and war supply. Until 1986, six power plants with total ited cacity of about400 MW n-d annual eltcty geeration774 GWh have been cmmisoned. Thedevelopment Incorporates tdo"owing projec A. Dospat- Devinsection. I operason;it conpises: Dospat- Teshelhydropower developmet cotg of Dst reservoirwhich stores440 million in, pressuetumnel 46.2 km longand Teshel power plant - instlledcacity 60 MW,annual generation 166 GWh, head 246 m, discharge 26 m'Isec;

- DeviDpower plan: installedcapacity 80 MW,anmual electricity generion 122GWI, head 156 m, discage 73 nm/sec;

- OsinasWpply condult presendy in deign, to asfi 10.07million mn of water fromOia riverinto Dospat reservoir thws increaig electricitygeneraon of dh exstg powerplan by 21.5GMh; tbis figr willbecome 24.8 GWh after constuctn the Srda Vachasecion. B. Sredn Vachasection: under prpaation; twovaian schemeshave beean developed: o of pumpedstorage capacity; it comprises:

- lTsnkv Kamalhydropower projec comprsinga rservoir storing130 million 1n1and a pumped-toragepower pla at thefoot of the dam- instlledcapacity 4201352MW (4 reversiblepump - ubines 105188MW), annual electricity geneaion842 GWh,. anna consumption985 GWh. -78 - Ae 3 PageS of 14

- M bhakovohydropower project comprisig a 12million m wate stoae ad a powerpln at the of thedam with installed capacity 35 MW(2 tubin of 17.5MW each) and annual electricity generation 56 GWh.

(O) Coostruct}onof a hydropower prot-ct consting of a dam odin 130million e' anda conduit- supplledhydrwpower plant with Installed capacky 90 MW(2 turbinesof 45 MWeach) and annual generion 183GWb. C. DolmaVacha secton: in operan, It comprises:

- Antonivanovtsihydropower project consisting of a 215million n wamtstworW anda hydropowerplmntlpuped-storage power pla at thefoot of th damwhh to nstalledcaqcity 160145MW, amnal eecticity gerain 245 GWh, annualelectricity conmpion 100GWh.

- Krichimhydropower project consisdng of a 15million min wat sorage, conduit- suppiledhydropower plant Krichim with inslled capacity80 MWand annual electricitygeneration 195 MW, as well as two small hydrpower plans ( 2 and Vacha1) withtotal installedcapacity 21 MWand electicy gna 44GWha.

AaHMkgoowe Schme 12. Thisdevelpent is situatedin thesouthe mostparts of Bulgaria,next to the border withGreece and Turkey. I consistsof threebig hydroprojects, each one compdsig a reservoirand a powerplant at thetoe of thedam. Theriver carries 2500 million mi in a yearof aveagerainfall. Mm higet powerplan is Kardzhalicompleted In 1964. noereservoir ha1s a totalcapacity of 533millioR ma nd the instaf capalty is 106MW. Underan averagehead of 80.Sm, the desigsdeicty geniatlonshodd havebeen 165GWh. In thelast 1Syear, it basbeen 119GWh onthe aveage. The rt hydroproject, Studen Kladenets, was completed in 1958. The dam impoundsa totalof 489millon W. lbhepower plant has an insaed capacityof 60 MWand should generat 217GWh at an avra head of 59.5 m. In recentyeas, generationhas been 180 GWh on the average. In 1966, Ivailovrd wascompleted immediately before the botder with Turkey. Thisreservoir has a tal vome of 180 millionmn. Thepower plant has an installedcapacity of 180MW and geneae accrdn to deds a tot of 217GWh. Average head is44 m. However,annual generation in the IS15 years has bee 162 GWhon thearage. Thelower generation of StudenKMadenets and Ivailovgrad power plants is dueto thesmaller flow than the planmed one, lower averae headat the power plants because of intenivewater reases fromthe reservoirand the worsenedefficiency of the machines.In the caseof Klarduiali reservoir,an additionalproblem is the needto maint lowerwater levels for damsafety. 13. Theplanmed development covers the stetchof Ardariver from Sredwogorti viage to theback side of Kardzhaliresemir. Theconstruction sme enviges fourAstges: Madan,Ardo, Linbio andKitiau hydropowerprojec. Totalinslled capacityis 175MW with annal electicity generation485 OWh. A very importantfeature dti ng Arda riverfrom the otherrives in Bulguaais the seasonalcoincidence between the maximumriver flow and the hihest elecricity _amumpdoeduringthe winter season ths allowingconsiderably smller stornes fot nud retion of wateos.Te powerplts willbe operatedonly according to theneeds of thenationWs dectric power systm. Madamhydropower project is the upper- most stageof the cascade. I consistof Madan reservoirsorig 135million mi, undaergod pere tel 700 m longand Bial Izvor hydropower plant- Itled cpacity46 MW,annal generation110 OGWh, head 88 m,disge 62l sc. Ardiuo bydropwe prqlet is thesecond stage. It consistof a powerplant - inslled capacityS1 MW,anna , i _ ~~~~~~~~~79- A3o Page6 of 14

generatlon150 GWh, head 88 m, discharge68 of/sec- anda 108m highconcete arch dam hmpouding 93 milolomi of water. Uublnohydropoww project is thetWdstage. It coist of a 56 m highdam impoundIg13 millionmn and a hydropowerplant - instled capacity22 MW,annua genatn 66 OWhhead 38 m, discag 68 m'/sec. Itnlia hydropowerproject is thelower - mo stae. It will consistof a 72 m highdam impounding 32 miion ' anda powerplt atthe footof thedam - inalled capacty38 MW,annual geneation 106GOW, head 55 m, dichae 80m/sec. Besidethe abovepower plas, anotherte run-of-riverpower plants will be built: Siogortds - inalled capacity66 MW, nual goneion 22 GWh,dischge 30m/swc, head26 m - takingwater from tee Intakestructures on Arda,Chena andMadanska rivers. MNlk Arda on thetiver of thesame name - installedcaqciy 3.2 MW, aual gertion 12GWh, disge 2.8 mJisec,head 13.7 m. Pumnopols at theback sld^ of Kadahdireservoir on DavidkovskaMalka Arda river - installedcapaciq 6.8 MW,amual genation 21 GWh,dIscharge 7 mn/sec,head 114 m

EydrR Power ComDexes,on the DanubeRiver 14. Danuberiver s thenorthern border of Bulgariawith Romania. Tbis strch of theriver from mokrv to thetown of Silistrais 471km long. Thegeodetic head at theaverage muld-annua discharge 21 m andthe average slope of theriver in theBulgaian-Romanian section i S cmper kmL he avge ana HowI of the orderof 173bilion mi. Tis meansa hydropowerpotenti about 10,900GWh, out of which4,000 GWh can be utized by Bulgaria. Ihe chaa scs dischargesof theDanube in thatsutch are: averagemult-annual discharge about6,000 m 2/s averagemaximum dicharge about11,000 i'/s aveageminium discharge about2,000 in/s maximumdischge throughthat stretch about16,000 in/S Fromthejoint Bulgarian-Romanian design studies and investigations ofthe Danube river, thereis a plan to buid two hydropower projects - one at Nilmpol-TunuMagurele and one at SBistra Kalarh. Thesehy&tto power complexes would yield the followingbenefits:

- electricitygenadon; - provisionof waterfor the irrigationof landsin Northern Bulgaria; - provisionof ater for the supplyof industriesand households; - ensuringnavigation throughout the wholeyear, thus allowingto increaseload capaciy of the vesselsand eliminatelosses from stoppageof navigationor partial loadiagof vessels;according to 1987data lossesamounted to US$500,000;and - socid efects fromthe improvementof infrstructre and coications. The studiesmade envia the followingstruct for each of the twoprojects: - twohydro power plants (one for eachcountry); - two overflowconcrt dams; - two navigationlocks; - an eardl damIn thecenter of riverbed and dikes connecting to he banks; - railwayand highway interconnectng Bulgaria and Romania; - eilectricand telecommunicationlinks between the two countries.

15. Alongboth banks of the reservoitsprotection and drainagestrucures would be buit and - 80 - Ane Page7 of 14

_aUa_ _er Niopol- Siitr- Tur Maguree Ka s Retentionlevel m abovesea level 30.75 18.65 Desg head m 9.9 7.6 nsaled capcity in powerplant of each country MW 400 265 Electricitygenaton in powerplant GWh 2193 1640 Capaity investmentin Bulgaianpa milon USD 6W S0

Bi~& Cout

Inav s 54% i|nx70% Agricture 20% I-Eletion 3% Taupotaon 17% iSLocald m s 3% SocialbaneR 6% mpodedmso nd equip 14% Inlut 3%1 | 0 s 10%

Tearalo, of nom,asumberod dtbackto tpromjwet Ilnhighcostl afloodbigof l. A m thomough costibast analysisnmeds to be caniedout, but It Is not at al car that benfi out weightl oats

NMlaH3*90=we PeOW9Men Scheme 16. ka ver iamongs hegbig rivet In Bulgaria It comesfm the Rila mountinand emptiesin the Danube. Itsota lengthis 368.8kn, witha fal of 2,414 n. Mhe r c_atm area ocpies a teitory of 8,366k In west Bulgari The part of the riv of intr to buid smal powerplat Is a stretchof the Ikar canyoncrossing Soa PLainamounain betwee the tos of Novi Iska and ChervenBriag. Thisstretch is 149km lwg wih a fall of 413 m or 41% of totalfaJl. Avage slopeof dver in this stetch is 2.77%. Ihe waterca t aean s about7,000 ki' coving the part of the Fore-Ban, westernStaa Plan and the Danubianrolling plain betweean waehds of th Ogsta riverto the westand the Vit ver to the es. In Its uppercoure, dte sa river flowis typically mountainous,and in dte middlecourse, it is deformedunder the influenceof t Isekarmult-anua baancng resewvoiron one hand, and the Sofiafield and the lowhills surund it on the other. The averageflow in the consideredstrech variesbetween 716 ni in the upstm sectionand 1,600in in the downsteamsection, the averagedischge vying frm 22.7 m'isecto 50.2 msIsec,rspectivey. 17. Exiiug H3d=m PI . Thusfar, three smallhydro power plants have baenbuilt with a totali ed capacity2.3 MW and anmiualectity genertion 13 GWh,a folows:

- Mezdraplant new the town of Mezdra, head 8 m, totl bstalled capcity 2.0 MW, annualdectricity geneai 10.4 GWh; - Roza plant new Osletsrway station,head 3.6 m, tot Inlled cwcity 0.16 MW, annualdelticity generation1.7 GWh;and - Iskra plant near Roman riway station,head 3.6 m total Istalled caacity 0.18 MW, amnualdeacty geneaton 1.0 aWh. 81 - Annex Page 8 of 14

18. NM SmWi Po . In the prefeasibiity suy of 1982, 49 new sites for low-head hydroplans wereexplored. Totalitaled capacitywill be 133MW withannual electricity geneaion 712 GWhin a year of averagehydrology. 'he amnualhourly udlzation is 5,700hrs. Thesesmall hydropower plant wouldbe constuctedin three stages: Stage 1- 1993-1994 five plants with total installedcapcity 21 MW and anud electricitygeneration 120 GWh; Stage2 - 1994-1996 nine plants with totl installedcpacity 24 MW and annual electricitygeneration 134 GWh; and Stage3 - 1996-2000 35 planuswih total iostalledcapacity 88 MW and electricity generation457 GWh. Sum5inzed dataabout theplant to be built at stage 1 are as folows: - desin dihge (per plant),48-60 m Isec; - totaldesign head, S1 m; - totalinstalled capacity, 21 MW; - total eletricty generation, 120 GWh; - hourly utlization, 5,600hrs; and - toa InvestmentUS$21.5 million.

19. The feasibilitystudy covers the sttch of Wa rive from ChervenBra town to the river mouthat the Danuberiver. The consideredstreh has a fall of 60 m and a lengthof 80 km, or 22% of total river length. Averagedope of river In this stretchis 0.075%. In this stetch, only one hydro planthas been so far built, Koinare,utilized discharge 30 mefsec, head 6.4 m, installedcapacity 2.1 MW,electricity generation 9.8 GWhin a year of averagerainll. Ihe river's natu flow,in its lowr course,varies between 1,649 mIllion nil at Chomiakvtsisite and 1.779million mi at Bregaresite. Powerstudies have revealed that the instind capacityof 22 MWcan be utilized1,459 hours annually in the peakperiods. In the remaining2,361 houws, electricity will be generatedduring the day-timehours - beyondboth peak. Totalelectricity generation will be 91.0 GWhin a yearof averagehydrology. The availablepotential in the lowercourse of Islar river wouldbe utilizedby sevensmall hydro plants. SmallHydro Planu In the PlainStrch of the MaH l River

20. Ie Maritzariver is the dver withthe biggestflow entirely in Bulgaria.Its averageslope in the Pazadhik-Svilengrad etch is about.01% with a eatunent area 16,720km 2. lhe investigated stretchfrom Pazadzhik to Svilengradlies in the Thracianlowland. Herethe river crossesthe Plovdiv and the StaraZagora fields and the Haskovorolling country. 'he sectionupstream of Pazardzhikis of no iterest to hydropower development because of the smallriver flow. The constuctionof 20 small hydro plants Is planned. The stages follow one after the other, and have low heads ranging between 4 and 9.6 DL The design discrge through all turbinesets has been assumedthe same - 40 m3/sec. A seriesof dikes willbe bufltto protectthe lowlandsagainst flooding which is unavoidablewhen raising rivet lvel by 4 to 10 m. Averageanmual utiizability of installedcapacites would be 2,700h. The hydro plas wll opera durig the peak and the medium-loadhours, depeqn on the multi-anumal sesonal and daily regulationof the utilizedriver flow. Total installedcapacit wouldbe 220 MW. In a yer of aveage hydrology,anual dectricitygenertion wouldbe 597 GWh. - 82- Am1 Page9 of 14

Sowerd2Q Schem 21. TheSuma river stua at 2,180m abovesea levelfrm the southernslopes of Vtosha mountin Its water catme a has an verage height abov sea lewd 900 m and is purely mountainousIncharacter. The c m aea is surroundedto thenorth by Viosb, Plans,Veria and I== mounti. Ihe Strumariver vaUey, in its middlecouse, s boundedby thewester pas of the Rila- Rhodopemssf t-etweenthe eastern flte dopesof theOsogovo-Beastsa mounain range and the wester faultedslopes of Rlla, Piun and Slavika mountains. The exlod strch of tie river coversthree canyons-Zemen,Skl and Kresa. StageI coversZemen cayon. A totalof 10 low-head run-of-riverpower plats are envisagedfor cousuctn TIheirtot head is 79 m, rver dope nthis setch being 100m. Totalitlled capacityof pla Is 12 MW,and total decricity gaion 48 GWh& in a year of averagehydrology. The nextstages of coversSkrin and Kresa canyons. In th case, the possibilityof conauctingaother 17 lowheadpower plant withtotal isled capacky47 MW and total annualelectricky genemion 199 OWh in a year of averagehydrology has beenconsidered. The amual utilizabilityof the plantsis about4,000 hour. Designdiscarge is between10 md 60 m3/sec. Total installedcapcity of the power plants of Strum developmentwould be 59 MW, and their annual electricitygeneration 238 GWh.

22. Followingthe preliminay asm of the opating hydropowerplant under consideration,an eimation of the potentalitiesfor upgradingof eachpower plant was given, including furtherstudies to detailthe respectivemeasures which will resultin capacityand geneaon Increaes I eachpower plant The followingstudies would be requred:

- 'Measure of sets efficlency,pressure and seep lse in water conductorsstem, Iluding the proement of a completeset of meurig equipmenw

- Post-msuement moicatin to icrease de tictygenesation: * repak of runne * rephcementof runner * cleaning d Insldationof penstocs * repairof supplycond kis.

- Refurbishmentand upgradingof: * pressureoff supplyequipment of butterflyvalve in valvechamber * axialbeins of hydrosets * repair seing Of spherical vaves * sealingof butterflyvalves and their controlsystem * speedgovernors by usingtheir own conol sysem * btt sealingto tubine s * excItatonsystem of hydrosets and voltagegovernors * systemfor powerjoint control -83 - Page 10 of 14

Replacement of. * pumps,compressorS and filtersof coolingwar and parsed-ir sytem * seasingof pumpsaft to thcom turbinesets * seadingof jointsof pressurepenstock * gates to lowerbalaencig pond * o proecdonof pressue penstock * anti-corrosionprotecton of structues * generatorcircuit breakes * disconectingswitches * decical equipmentin outdoorswitchgew * aomatic synroion system * equipmentfor secondarywiring * detectorsand eqipment for speed- followingof set * insulationof generatorstor windings * voltagegovernors * levelm _uremew:system * sysm for automaticfire exnguishingof the field * instrumentationand automaiccontrol equipment -ntallationof: * levelindicas In upper and lowerbalancing ponds * venlaton system * systemfor power joint control * stationaryfire i singystem in switchyard * fish protectionstucturs Repairof: * gantriesand platform in switchyard * waterconductor system (canals, tnes and pipeines) * civflstrucues to remove leakages * power transformers * disconnectingswitches of outdoorswitchgear Contuction of: * retainingwalls on slopeto switchyard,power plant and river ban * civilworks to removoleakages a GIS MDANUU t

#ftlm.". 3 0~~~~~~~~~~~~~~~~~~~~~

t ^ ^ _ . a | /~s~.

-c 4~ Dn~~~(45km_tfl 04 It ||

- SM UmgW8~Om ii Ir .~~~~ _41#" 8 em IiI iL tZ t . aZ j ! . 0 j * ~ i~~~~~~F

0 wunni _sW,, | * ,,,,, w~ J

I _-*aN _.___mom,"w^W_S m

.__ " . LlmsbkuimUuishmu " | | _ Hs g > r2 * t

g g - AC~~~~2uhEspmm ,a*u. hn=ex 3 Page 12 of 14

h_*hin Igoi - a

X~rU^ ,III __

< H R~~~6j15i|1 11"s 0 I1 MAIN HYDRO POWER STATIONS IN BULGARIA * N~~~~~~~~~~~~~~~~~~~~~~~~3 XPRJO M up=R coomMumCO -~~~~~~~~~~~~~~~ ftmwP0 Pw Su"i m* SMNWI-Emb *%" M UTM

PL*=OoAA of.es&m sta

J~~~~~~~~~~~~~~~~~~~~~~~~~RW %4. (I) Mm. 5 . mm mm (40 we wmai) MMO~ MA (716w MAn US mmm m 195) AX* cmmono owwSVWA ( - NW I

w O # { c_ Vz_r o L k " W"D_t~~~~~~~~~~8 X¢~~~~~~~~~~~~~~~~~~~~~~~^~

00 Ita *&WAa~

gi ~ a 1"8" .a~~~dwA NOON- V S

SW "|^"as "ws~~~~~Ie k%-4 N11 - Eoma - It an- o

VA4* >+* LJ**1:40111 * ag sum~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- lg.gI OQ

Z 0 _ ___ _ :S * :l | S | * t0 X },s,_,"~~~~~~~~~~~~~~~~~~~~~~_"X_ ~ 0 - 88 - Al= Page 1 of 7

BULGAI

TRANSNL%UMQSYSIM TA1 U AND PERFORMANCE

The Cur TansmissiopSn 1. The high voltag systemconsist of 400 kV and 220 kV systems,but with one 750 kV interconnecdon(tie lin). The subasmission levd is 100kV and lower. In this report, aton i focused entirely on die 400 kV and the 220 kV system (the High Voltage systm) which cons_bt the bulk power tansmissionsystem.

2. TheInernal HighVolte Systn. Boththe 400and the 220kV ystem form aclosed loop configuationrespectively, which essealy coversthe entire country. The 220 kV systemhas severalalternate paths tt Cone intermediatenodes of the mainloop. The tamission systemis not a bottleneck. Adequate transmissioncapacity is availableto meet demand.

Baki Deskon and Statistdcs.

3. A bri desption of the currentBulgarian System is givenin this secdotn.The 220 kV networkwas staeed in 196311964and was essenally completedabout 20 years ago. The 400 kV networkis more recentand was startedin 1973and completedin 1984. Obviously,there has beenon- goingwork, some expansion and upgrade, but the majorportions of the systemswere considered fnshd by the datesindicated. 3) missies, Thetotal length of the 220 kV systemis 2283km, that of the 400 kV systemis 1844km andthat of the 110kV systemis 7809km (overhead)and 44 km (cable). The portion of the 750 kV lineswithin Bulgariahas a length of 85 kn.

4. High Ylt Substations,The ummberof highvoltage OM substationsare:

* eIghte 220 kV * eight400 kV * one 750 kV The tablebelow shows the list of tho HV substationsIn Bulgaria. Hi VoleDh AInBulgida Aleko Kremikovtsi Antnlmno'tsi Kula Balkn Mada Bedmeken MarUZatoDk Blagoevgrad MaritzaIztok 2 BobobDol Metalurgichna Boy vt Mizia Braznil ObraztsovChiflik Burgaz Petrikh Varns Pleven Vetren Plovdiv GAESCbira PyrvaKomsomolska 0. Qakhovitsa Radomlr Devin Sestrio -89 - Amnex4 Page2 of 7

Dimo Dichev Sofia Zapad DMZ Sofialug Dobrup Stolnk Zatitsa Tryrditsa azichene TES Sofia Kanobat Teshl K. Georgiev Uxuadjovo Koziudui d lrboe are a totalof 263 substaton at the 110kV level. AUof the countsreflect the highestvoltage at the substto

S. IsThe nmber of 220 kV transmers Is 37 and there are 25 400 kV transformersand two 750 kV taforms (each consit of three singlephase units). The total nsalled capacityof the transformerswere made by TROof the fonner East Gemany and are rated at 630 MVA. They are of singlephas design. Thereis a spare singlephase unit avaiable. The newer 400/100kV nsformer are of 3 phasedesig and wer bufltby TRO. The tmsfomers haveproved to be quite rdiabledurizg the twentyyears of service. 6. Itaformers of twotypos have bee pursewd froma Ukminiancompany. One Is rated 200 MVA,220/100 kV and t other 250 MVA400/110 kV. Tity 200 MVA and four 250 MVA have been isalld. 1 the spig of 1992,a Mulgarianransfmer rated 133MVA per phe was talld at Zlatlisa. 7. S l=RUMMW M Ther are severalshunt reactors instaled throughoutthe Bulgaian networ. Tere a t reactorsat:

N.PPKozloduy - 3 uni Stonik 3 units lizia - 3 unr Dobrudja - 3 uni TPP DimoDichev - I uni SofiaWet - 2 uni B 4goevgrad - 2 uni Bus - 2 unts Ihe reacts at SofiaWest, BlaoevirA and Burpasare conn d to the teriy windingat 31.5 kV. Each shuntreactor unk is 45 MVAR. 8. StaticVar Co are insalled at VARNA750/400 kV substaton. Ihey are conneed to the tertiay widing of the 750/40/15.75autofomers and opere in the range 100MVAR (edctlve) to 200 MVAR(capacitive) for each of two uni.

9. a All brakes a air blst and are made by TRO of the forr Est Germany. Al 220 kV breakers ar rated at eIher 10,000 MVA or 15,000 MVA. There are no known poblems wih teupTing capability. - 90 - AMA4 Page3 of 7

10. The400 kVbreakers were also buit by TROand hae a ratingof 25,000MVA. The ntepting capabilityof thesebreakers s also consideredadequate. There Is an annualchecking progrmfor maintece. The400 kVbreaker at Kozloduyhas been replaced by an SF6breaker built by ABB,but th hashad some problms. The750 kv breakerat VARNAis o SF6. here s a CB servicecenter established at Plovdiv.The 400 kV substadons use a breakerand a halfscheme. 11. ium 2flt ,Lin. TheBulgatn powersystem has interonnectIons with the neighboringcounties of Romania,Yugoslavia, Greece, Turkey, and via Romaniato Moldovaand Ukraine(both of theformer USSR). The tie lines ereas fbllows: (a) to Romaniafrom Kozloduy - one double circuit 400 kV line and one 220 kV line; (b) to Ukraine(via Romania) from Varna - one750 kVline with 85 kmto theRomaian boundary; (c) to Moldova(via Romania)from Dobrujda - one400 kV line with 207.7km withn Bulgaria.This line is seriescompensated; (d) to Greecefrom Blagoevgrad - one 400 kV line with 72.4 km withinBulgaria; (a) to Turkeyfrom Thermal Power Plant Dimo Dichev - one400 kV line with59.1 km witin Bulgaria; (t) to Yugoslaviafrom Sofia West - one400 kV line with 37 km withinBulgara; (j) to Yugoslavia- there are alsothree 100 kV lines, as follows: * fromBreznick 64.1 km * fromPetrich 49.32 km * fromKula 40.3 km 12. TheBulgaian power system is partof theItategated Power System (IPS) consst of:

* Bulgada * Hungary * rmerEast Germany * Polad * Romania * theSouthern USSR Network (Ukraine and Moldavia) * Czechoslovakia 13. Sse Needs. Becauseof the ageof the equipment,operating and mainteane costs areincreaing. The Blulgan auhoritieswould like to usethe newer gention of circuitbreakers, but becaueof highcost, the teplacement will be done incrementally. Serious problems anticipatedwith the tenoperating (total of 13)210 MVAsingle phase tramsrmers which have been in opraton since 1973.'They have not been sen for factor rehabilitaton.Only the necesary decical andsmall repair has beendono site. Theserhould be replacedwithin3-4 years. The workhas alreadybeen strted at Mzia,for which a cont cths beenexecuted. Talks have been conducted to arrangefactory ftes in Bulia. Mhefite 45 MVARshunt reactors have maitnan problems.They were not adequately sted n the factoy. Theircircuit breaks needto be replaced.It is esdmatedthat U.S. $10milion is nded to rplace thesik shunt reacors that have failed. For some of the400 kV lines, the conductor - 91 - _nex Page4 of 7 and groud wire needto be replacedbecau of loss of mecanical strength. Due to the reducdonin industrialdemand, the systemb experiencinghigh voltages during off-peak load covditions. Studies have indicatedthat 200 MVARros are neededat two locations,tentively, Varna and Sofia West. Currendy,some unconventional mens are beingtaken to keepthe voltageswithin acceptable limits. In somecases, this has meantswitching out some400 kV lines and the 750 kV lines and has resultedin higherlosses. All investigationshave shown fhat the shortcircuit levels in the 400 kV, 220 kV andthe 110kV system are belowthe capabilitiesof the circuitbrkers evenwith the additionof the new units at Belene(now cancelled) and witha hypothetcalthird nmclear plant at Silestraor Burgas. Therefore, giveatat shortcircuit studies will need far more extensIve100 kV data collectionby the WorldBank team, it does not appea that suchstudies should be conductedwhen studying the vanousscenarios. If necessary,NEIC could be askedto performthese studies since the iput is alreadyavaiable to them. All 400 anm220 kV transformerswere made by the ex-GermanDemocratic Republic and are out of production.There is a lack-of spareparts, so reservesets are used to replacedamage. lhee shouldbe replacedstarting in a fewyears. Thereappeas lsoto be a problemwith disconnects which are operated by pressurizedair. The reliabilityis not high. Planne Eumaign of *e Ta;ion Sve

14. Recentstudies concted by the Bulgarianepers haveindicated that the 400kV system will be adequatefor the foreseeablefuture and a higherbulk power transmissionvoltage will not be neesary. Purihermore,it is plannednot to eand the 220 kV system- fiture expansionswill be limited tohe 400 kV andthe 110kV transmissions.A 400kV linefom Stolnikto Zlatsa has been completedsince 1989. A 400 l:V line f*omZlatsa to Kodovois 60-70%comple"t. A doublecircuit 400 kV line betweenKorlovo and Plovdivwas planned, but constructionhas been deferred. Similarly, the doublecircuit 400 kV linebetween Kodovo and Tsaravetzis deferred. A new400 kV substationat Tsaravetzconnected to the Mizia-Vana400 kV linewas also planned. Thiswould enable the demand in that regionto be suppliedfrom the 400 kV networkinstead of the 220 kV network;thereby reducing trsiossion losses. Aother 400 kV substaionat Dobrich,where a syncnouS condenserwould be installedwas planned. The synchronouscondemer has beenacquired, but is presentlynot connecedto the network,since work at Dobrichhas beensoopped. Ihere werealso plans to add400kV transmission to the NPP Bdelane,but the cancellationof the later has also resultedin the cancellationof the trnmission lines. A 220 kV line from KozloduyNPS to Vidin is under construction. .l is s configuredfor a doublecircuit line and workon this has also beentemporarly stopped. It is aboat ViIA complete. - 92- Anx Page5 of 7

Intermectkms Sa Trate

16. As noted previously,the Bulgaran power system s interconected with all hie neighboringcomtries which are Romania,Turkey, Gree, Yugoslaviaand alsoto Moldaviaand Ukrain of the former SovietUnion. In the past, about 800 MW could be importedfrom the SovietUnion (Ukrne) at periodsof peakdemand witb 4-5 TW Importedanually. TbiswaS im d overthe 750 kV line andwas undera contual agreement.In 1992,the expectedenergy import was about 2 TWI. Ihough becauseof problemsat Koaioduyactua importswero about 3.3 TWh. The contractuali agreemensare expectedto be renewedanualy. Hiorically, a btatial part of the peakingcapacity; and spinningreserve has been providedby the Interc ed Power System(IPS) of the CMEA' countries. Onejustification cited for the use of a 750kV lin to the formerUSSR was that it wouldhave sufficierlncapacity to providethe additionalgeneration nseded within Bulgara in the evenof the lossof one 1000MW unit at NPP Kozloduy.Frequency regulation was the responsibilityof the IPS and flow occurredon the 400 kV and750 kV linesfor thi purpose. Bugaia's trde in electricitywith RomaniaX, Greece,Turkey and Yugoslaviais small. Tradewidt Romania is limitedbecause of capacityshortages in Romania;with Greeceand Yugodavia,trade is limitedbecause, while Bulgaria is part of the IPS,' Greeceand Yugoslaviabelong to the UCPTE,and IPS ad UCPTEdo not operateIn parallel. Tutky is apparendya high cost energyproducer and so trade withit is limited. Thus, the only majortrade agreementis withUkrine, but there is seriousconc aboutthe abilityand willingnessof Ukraineto providethe energyand capacityin futureyears, including1993. 17. Possiblesynchronous operion witbinthe UCPTE(hence disc ing Bulgariafrom the IPS) will require the Bulgarianpower sysem to meet UCPTEreukements for controllability; frequencyand tie line regulato N-1 security,reacive powersupport, voltage stability, etc. Whilethb load-frequencycontrol system is one item in the World Bank loan, and the triparite studieswith Yugoslaviaand Greeceprovide some encoura t aboutpossible operation within UCPTE, fiuthet studiesand upgradesare likelyto be neededbefore this can be a reality. At preset, the optimui saty for Bulgaria'selectric power sector regarding rconnectionand trade wouldappear to be: 1. Continueagreement with Uamine. 2. Graduallyupgrade the dectric nework and dispatchand controlcapabilities to meet UCPB stalndards.

Whileelectrical generadon is notthe subjecthere, cleartyany increasesin trnal energyproducdon and imp.rovementsin utilizationwill help to reducethe dependenceon imports. OAI p_400" Z"A 400a 'mai nto

> M~~~~~~~~~~~~~~~~~~~~~~~awN : ~ ~ ~ ~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~ok po eb

t 1 _ 7~~~~~~~~~~~Rous D

t-M h /.AcoZ .8~~~~~alkan Tvardfs 2 2

_iS - tob Lst

\\ | \"~Anonlva;HMSI v ejTeshd )s Q Wa~~~~~~~~~~~Thermlpowerstaft x _~~~~~~~~~~Uunzoo_n wae poe s50io"ne B_ _ J ~~~~~~~~~~~~~~~-400kVlransngsslonine 00 * / o _ _ F ~~~~~~~~~~~~~~~70/7o4noWsubstatbs} 0

Thessaloniki(Omc) cBaaeEd¢ile 400/11KV*6wo *, 0 220/IIO Wv8bstaloDn Annex 4 ;94*1.g _ _ .tPage 7 of 7,

1jIl 13.5 « 1,

I-, I jS=SIALI

i* - -- X

. S~~~~~~& .1 1S kL I rk At

a..,5 I

B~~~~~~~~~~~ ^ rIo~~~~~~~~~I~~ ~ ~ ~

r.~~~~~~~~~~~~r

I I rn

9 1 8 2 ' .10 6 _ti § 1P -96 - Page 2 of 39 or fotlantof data; aind(c) addidonalresources required for the data prepaation. As a reslt, someof the analysisare basedon publiclyavaiable informationand the best professionaljudgements. 3. The main c teistc of the Bulgariaenergy sector Is a shortageof domesticprmary o.g resources. The country has In abundance low quality lignite, and reltively little hydro potial comparedwith its neighbors.This poverty of rsources has led to an extraord ryde oeone SovietUnion for suppliesof everyresource and for tie technologyto utize them. Mostof oil, ai g, someelectricity and evensignificant quantities of coal were all iported fom the SovietUnion. As a resul, the energypolicy was to concentratedevelopment in the nuclearand coal sectors.

'k,~~~~~~~~~~~~~~~~~~~~~I 1I95 39W '33 . 0.9 i 7--; ~' .. 404 ' 65.9 -43~ T40.3 1996 4140oU 34 '4, 71 -4k$ : im 6340 51.5 63.9 7610, 474 L3 9 7340 48.9 |

.1998 6530 36.1 4.0 1800 497 744.0 314' d730

*~~ooo~*m s7*.z 26907 4 6.1 190 4.

XX XX i}NE8 !X |q - 97 - Anme S Page 3 of 39

4. Ihe secnd importantcrc is hig ener consumptondue to a highproportion of power-intensiveindustry. Of totalpower use, 43% wentto industryIn 1989- halfof it consumedjust by the chemicaland machinebuilding industries. Mmedomestic sector consumesabout 20% of all electricity,while commercialsector take 10%. OtherwIse,a big chunkof the power producion i8 apparentywiten off as lossesor consmed by the energyIndusies, pardcularlycoal. 5. The safetyconcers teladveto the Kozloduynuclear power plant as wellas uncertailties in supplyand highercost of theeimported fuel in combinationwith deterioratedchaacrstcs of the generatoncapacity brought Bulgaria electricity supply below demandduring the winterseason. The supplysituation would be criticalif Bulgariadid not experiencein the sme periodsharp decline in the electricitydemand. Electricityimpors was complicatedby lack of finamcialresources and unreliable Supplyfrom the IntegratedPower System (IPS). Studiesdone by the Greek,Yugoslav and Bulgarian authoritieshave shownthat paralleloperaton with Greeceand Yugosavia(he UCPTE)does not indicateany serious technicalproblem. However,this option is also very limited due to blockade Imposedon Yugoslaviaby the UN andthe difficulteconomic siaion In Bulgaria. 6. Threedemand forecasts have been preaed in conjunctionwith NEK. Theseare a minimum,a mediumand a maxmumforecast presented in TableS.1 and Figure5.1. Ihese forecastsassume a comparativelyconstant system load factorover the forecastperiod of around65%. TChisis comparablewith the presentload factorof 64%. Ibe forecastsincludes auxiliary consumption withinthe stations. Generationplanning also requiresa goodrepresentation of the systemloading pattem and informationhas been collectedfrom NEK of hourlyloadins overthe past 20 years. Thesevalues have been averagedon a normalizedbasis and monthlyload duration curves derived. Table5.2 gives detailsof loadduration curves. Systemd.emand is higherin the winterthan in the summerdue to heaing loads,and the annualpeak occurs in December.Detafled changes In thesewill undoubtedly occur as the consumermix changeswith the evolvingeconomic situatiomn

7. ExistingPower Sstem. The breakdownof the existinggeneraton capacityof the Bulgaian power system by fuel type at the beginningof the year 1993 is shown in Table 5.3. Tables5.4, 5.5 and 5.6 give informafionon existingthermal units, hydro plants and rehabilitation program. Table5.3: FixedSystem Summary of DependableCapacities (MW)

1 ~~~~~~~~~~~~~~~~~~~~~~~~~oa

100 1940~~~~~~...... 0 1... _994 1 M 499$:24443403 J93$.V-.19*$.. $19 $80 9_9001

6 Sa.g.7 - 98 - Am Page 4 of 39

TableS.S: Geraton of theE HydroP41SX Under Difet HvdloContons

.1~~~~~~~~~~4- -99 - Aex Page S of 39

Table5.6: FswdSystem Thams Additonsand Rctr6mwt (No. Sof Added1993-2010)

Rk.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..

MA23~~~~~~~~~~~~~~~~~~~~

8. ~~CandidateUitsb: The candidate units are defined as those unit tbat are not cufely firmly comlmittedand thiat could be added tD the generation system before the ed of the planning horizon. 1Thegeneration system expansionpath is opflmize by selecX thielestcost solution oblaned using thie WASP model. Ile following were conidered as candidate units: 120 MW gas fired combustionubmbie plants, near hydro station (Gona Arda, Sreden Iskar, Srendna Vacha and Nikopol), rebiabilitationof the thiermalplant (Varna, BobovDol and Mart East), rehabilitation/repowaringof thie district heatig and industi pln Sofia (uni.s 6 and n. Tracho Kostov, Russ (unks 3O. Shumen, Republika (units3-5), Pleven, Plovdiv (units2 and 3), Burgas, Devira, KrembwW, Vrata and Stara Zagora The chaursics of thiecandidates are given in Table 5.7. The district heatingand industrl plants were combined in three equivalent group each with the code name:-KRVS, BURG, I)EVI and PLEV, REPU, TRAI, in order tD overcomethe softae limitations. - 100 - Ann Page6 of 39

.. . "'"'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~......

!EkS~~~~?hSI~ p olbmfta

line detafls of the m"ainthermal plants to be rebabilitaed as well as distrct hedg and industia PIants are given in Tables S.8, 5.9 and S.10. The characeristics of the hydro plants are prosa in Table S.ll , while the investmentcoss are presented in Table 5.12.

9, Discount Rae. The, discount rae used for this alysis was 10%. The use of dis assumptionfor the long-termplanning pumle has been agreed with COE and NlK.

10. Costof4n. rn v . 0Meexpected unserved energy is the pobabilisicaly detemined amount of yearly -electricitydemand tha is not suppliedbecause of generatingdeficiences and/or Shortages in basic energy suppliers. The cost of unserved energy is included in thieWASP objective function as a way to consider explicitlycostJreliability trade-offis. TWus,if the unit cost of unseved energy is assumedto be zero, the least-wst expansionplan will followthe mininm allowable reserve margin. Conversely,if the cost per unit of unmsvedenergy is assumedto be very high, the least- cost expansionplan tends to have reJ1ativelyhigh resenrvemargins. In this study, the basic cost per UDit of unserved energy is assumed fo be represnted as a function of thieunserved energy. Ihe reserve matgi and reliabilityof the power system were not set in advan, but they were obtainedas a resul of the optimizationantlcipating the unservedenergy cost given as c = a, + A2EW + AI* DVE,)2, where Et is total generatedenergy, and E, is unservedenergy. 'Me coefficientswere demined as: a, = 0.30 $/lcWh, a2 = 0. a3 =0. TabLe 5.8t Okla lwove fMtau Ces.te:stt.s ALttu lotosugblulmst4gbaUtli s"

17, - - ~~~~~~~~~~4 , 44

3, 491' 90~~~~4/ 4 / 4.4Neat. fleet. '5ae5 .~~~~~ ,Jee~~eeee4 lumee. ~ ~ ~ /

UItAt 3 2020 1007 2450 59 ~ 39 04 10 1 ~ .0 42~ ' 5 44-. 0. L7R ~

UnitS 214 UnitS 6 "

2015 .

UnI~~0 201823 , 10 . "3 g4

UnIt1 '23 ~201082 1' 2S;. 044,. I-.

Unit S 2010 ' 4 4 ,* Un1t4 I4 ~202I 425 AU 4

"It 49 2$94. 920: 9409~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 44 A

UnIt.4 2011 100 #,0 14 33-20 0257 0400 0..0 41O7't4 0. 375 X. 4 Inst*20 S 2012,1.40 2,000 2333 2304 0251 0400 9.0 522.44 4 54 0.1 3.770'~~~9A. URIt.0 2,9972022 310 1.40. ~ 3)04 NO0251 0490 0.0 X0.1 -102- pap 8 of 39

T9bl 5.9 Do Hedn PI RU8 b 9Pblat

I '~~~~~~~~~~~~~~~~lo

1~~~~~~~~~~~~~~~~~~~~~~~~~* -103 AneAa Page9 of 39

11. ~ ~FuEd . he prices of the fossglandnuclear fad wL wasasumed in the ulysb are presetd in TableS. 13.

* /k*m3,kcalims ** Ston. - 104 - Page10 of 39

T_ bWI A HYLA hCN 8CNARASUO

dn t*

._ _ .__ 17 9 44 21 10 44 22 11 44

11 0 120 13 0 120 14 0 120 t8 0 120 13 0 120 14 0 120 0.*l* v 2214 0 120 16 0 120 17 0 120 i1 0 120 21 0 120 22 0 120 22 0 120 28 0 120 27 0 120 24 0 120 2J 0 12i s 0 120 24 0 120 U9 0 120 1s 0 1t0 go 0 120 Us 0 120 28 0 Ig0 1i 0 120 1i 0 120 17 0 120 14 0 120 17 0 120 s 0 120 15 0 120 18 0 120 19 0 120 4417 0 120 to 0 120 21 0 120

22 7 155 as 8 ISO 28 8 1In at 7 15 s5 8 1n as 18 In0 a2 a 15B 50 10 158 4 10 1n so 1S 180 42 13 1SO 44 17 16 44 18 165 52 16 160 4 10 1O 45 14 166 as 17 15O 60 18 1a 4a 14 165 so 17 16i 98 18 1n 44 13 180 Gs 16 1i6 as 17 15 26 8 168 as 10 156 34 10 1I8 28 t 15 34 10 1SO as 11 10 s0 6 1In 3S 11 155 IS 11 1go ______84 10 15 0 44 1 12 155 42 1s I50

so By 400 108 57 400 118 Q7 400

so o57 400 2Ob S7 400 13 57 400 146 57 400 174 57 400 183 Sy 400 1sr182 or57 400 210214 67a 400 22225 era 400 197 a7 400 ST 400 225110 Sy 400 107 a7 400 210 a7 400 22 or 400 182 87 400 200 ST 400 210 a7 465 118. 57 400 112 57 400 140 57 400 21 57 400 140 7 400 147 87 40 126 S7 400 148 57 400 155 a7 400 ____ 141 b7 400 16 67 400 174 57 400

CAP..DAephmbI Energ - 105 - AM.S Page11 of 39

Table 5.12 SUMMARYOF THECAPITAL COWSS OF ALTERNAlWES

CombustfionTurble 147.60 221.40 369.00 11.92 3 20 ImportedCoal 594.00 891.00 1485.00 19.21 5 30 Combined Cycle 294.40 426.70 721.10 15.03 4 25 Marrtna 62.10 93.20 155.30 o08 2 15 Eobov Dal 72.20 108.20 180.40 a8o 2 15 Varna 7&00 117.00 195.00 10.02 2 15 Kromlkovbs 127.60 191.50 319.10 10.02 3 15 surmgs 125.10 187.70 312.80 10Q02 3 1E DCbina 146.00 21.00 365,00 10.02 3 15 PIeven 211.10 316.70 527.80 1002 3 15 RFpubica 22.20 33.30 55.50 .08 2 15 TraichoKosov 13.30 200.00 333.30 1.02 3 1S FIukdzedBed 57.00 867.00 1445.00 10.02 2.50 25.00 Nuceiar 1035.50 1551.80 258830 22.6? 80o 30.00

Hh&O Flant cu!Y camX^

SWdenIear 428.20 642.30 1070.50 8.08 2 SO GomaArda 221.90 332.80 554.70 22.67 6 so Sredna Vacha 21930 32.0 54820 22.67 6 50 Nikpod S63.80 875.70 1459.50 26.00 7 S0 _. . .~~~~~~~~~~~~0 - 106 - An S Page12 of 39

12. Reiabitiq (m_ LOLP). The systemreserve margin Fg *2 and reliabilityare very often given as Opimal Reaty VSUnrved Energy constraints of the system optimiation. In our approach, the price of unservedener was given at the outset so that the system reserve S_o marginwas obtained as a resultof the X 8 optimizationand is consistent with s \ economicallyoptimal levels of the ! |L reservemargin. A weak point ofthis , as _ approia-h Is that the prlce of the L ib X unserved energy cannot be precisely 9e * determied. In order to provide a l I I l * better approximation,an additional o04 ** * ** * * analysis has been done so as to obtain 11111. 11 functionalrelations between long run 9 1 2 4 * O 7 * * X 0 margial cost, unserved energyprice Iatio of UnsaonedEneagy Prio to LRMC and system reliability (reserve margin). The systemwas optimized with unservedenergy ' 3 equal to NItRMC, N = 1, 000, 10, so as to obtain the systemreliability level. The results are preseted in Figure 5.2. High price of unservedenergy will requestvery higb additionalInvestment and wouldhave little incrementalcontribution to reliabilityof the system. The economicallyoptimal system reliability as shownby the resut presentedon Figure 5.2, is at aroundLOLP value of 3%.

13. LeastCost Eansion Plam. The resultingleast-cost solutions for the eighteen cases (three demandforecast an six nuclear scenarios)for two differentoptions (high and low repowering of cogneraion plants) have been obtainedusing WASP/ computerprogram. Hydro power pltu generationhas been representedby three hydro conditions.A specialmodification of the load durAtion aurveshas beendone in order to representChaira pumped storage plant operation. Ihe main results and conclusionshave been already presentedIn mainparts of the report. In this annex, some of the most importantresults and analysisare going to be presentedin more detail in the form of tables and figures. Tables S.14 - 5.16 msentgeneratons of differentgeneration unit types (ydro, thermal,nuclear, district heatingand industralplants) over the period 1993-2010 for the scenarios 1, 3 & 4 (ow, moderateand high nuclearscenarios). The generationof all hydro units correspondsto the averagehydrological and plant avaiability conditions. The possible anmnuvariations are taken into accountbut not presented. Tables5.17 - 5.19 presentsaverage annual fuel requirements. The Tables 5.20 - 5.22 give the breakdownof the total costs in the period 1993- 2010, as well as presentvalues of the total systemcosts. Thesetables are followedby the Tables 5.23 - 5.25 which show the least-costplan generationplants commissioningdates. Followingthese tables are the Tables5.26 - 5.34 withgeneration of the individual generationplants in the period 1993 -2010. The Figures 5.3 - 5.5 illusaes the capacitydevelopment for three different demand forecast and scenarios 0 and 5. The last three Tables represents the breakdownof the ttal systemcosts for the low repoweringoption (imited gas) in the period 1993 -2010 (rables 5.35 - 5.37).

41 / WienAut=etic System PlamingPackge (VP), a CoqputerCode for Proer GewerationSystem Expasion Plaming. TAWLE-6.14 ENERGYGENERATION Y TYPEOFANT (OW)

pape oft3 16 1094 10 19s 17 180 19 20 20 a0 g0 2004 *.OS gm 2007 2008 g00 2010 SOENERO1 Am Numl

HYDRO 2446.12 2445.12 2446.12 2445.12 2445.12 2446.12 244612 2084.78 2684.75 2584.78 2684.78 26478 2684.78 2684.78 2084.78 2084.78 8167.1 8157.1 TlERMAL 21662 84.5 200. 2185 228434 26.1 246.1 24002. 24024.0 278 26088.6 8 .1 mI1& 27401W82742922626i 25020 NUWLEM 970 97526 972 0752.06 G752M.06075 2 9752.07 56 2 0720 02.0 0720 02 0720 05. 02 0752.0" 0752A DSRC 67.46 37646 180.04 280.25 0.8 84004 022.66 08 8 787 8827 76.44 678.07 512.38 660 6140 06.17 068.9 INUSTRY 12027 871. 20.19 m6 4.6 05.72 10809 120. 7870 447.0 6562 647W6 18.7? 024.183 980 1287 237 2 304 TOTAL 85"21. 342 28 .034860.7 3 A.486751.0 8794 88.8 19042.1 89424 860 40200.7 40785 409627 41889A 41m70. 42277 41545.

JM@;AIO * b

HYDRO 2446.12 2446.12 244612 2446.12 2445.12 t445.12 2445.12 204.78 20478 26678 2664.78 2684.79 2684.78 20478 2084.78 2684.78 87.1 8157.1 _ THERMAL 12400 10024 s070.71 107840 1101 260.1 2406 24004 240241 2561 26_ 2638 260.1 27210* 27401.2 27429 26. *006 NUCLEAR 210o4t 21111 210066221127.1 211861 072 975. 07506 075. 6720 07506 0752.0 9750 07O.6 0075.0 075207 0520 076. DISTFIT 5.11 1.81 121 814 2.4 848.04 0"2 958.tA 06 787.27 81.2 78L44 078*7 512*U 5J6 615 81 V MOM INDUSTRY 146.6 1OM2 140.9 0.0 4.71 5672 168 1260.0 7878 447.05 562 647 19W7? 624.18 068. 1287.27 2367.02 8604. TOTAL 86213.0 84822 82061 842.4 856661 3751.0 37646 8865.s 89042.1 89424. 86800W140209.7 40785 4066*7 413881 41m78 42277 4254.00

HYDRO 2446.12 244512 244612 244512 2446.12 2446.12 2445.1* 244.12 244U52 244.12 2412 2445.12 2445.1 2445.12 244.12 2445.12 2445.12 S817.1 THERMAL 12480.1 IOA 0070.71 10784.0 1105 190t 0.s 20143. 20615.2 21087.0 21520 218082 228a1 22071 228J 23720 240812 2250 27107-71 NUCLEAR 21084. 21111.2 21066 21127.1 2t112610s6S60 506M.6 1s0 61.016006 150661 150061 1506. 156s I5wa 16066. 600" 1s06 1566. DISTRIOT 66.11 1.1 1.21 3.14 2S. 186.01 278.61 56.57 '47A75 864.04 86 800.78 1"09. 94.6 12514 18126 486. 744.04 INDUSTRY 148.4 16020 1400 5.0 4.71 16e3 20.41 71. 2601 221 22.8 21.54 8.72 22.7 80, 0*47 76.61 2507.11 TOTAL 85213. $4282.4 S8011 348365 5665.1 3679.6 70 3866.6 8A9040189482.2 810*IG40256.54079A 40997.9 41394.6 41784.7 422821 42546*48 00 I9 TABLE-.15 ENERY GENERATIONBY riPEO1PLANT(W)

pe.E-2of a 193 1994 196S 1996 1967 196 109 2000 2001 2002 2008 2004 2006 20 207 200 2000 2010

HYDRO 2445.12 2446.12 244512 2445.12 2445.12 26084.762634.76 8157.1 8157.1 8167.1 3157.1 8157.1 8157.1 3157.1 8157.1 8167.1 3167.1 28927 THERAL 29221123 4 2681. Ml 2256262.172 20167.0 26414.7 2962.7 310t72 81151 31461* 80157 8075A*82 1 2 t918 2 M87t7X804 NUCLEAR 072* 975. 0500 07 6 08752079752 .7 97060 976 6507 0752.06 975206 075 07506 072*6 6752.06 970752.0 70752.06 DISTRIC 1227*7 717.S 51.2 0.8 1132.71 12476 12.A2 104.16 1O2.3 1082.7610458 10276 069 07.26 92S2 1006 10016 1066.92 INDUSTRY 2227.05 2425207*6 167A6 6S7.5 1875 207224 861.41 m244 2448*0 264*S 8201t5 4056" 842* 4ss0o1 469.4 50877 605 TOTAL 3273.4 9806 41416.4 42461.4 489002 44706 4567 4207.5 4628 473822 478955 46600.1 49226* 46008* 50448 51008* 81766* 5212.13

YDRO 2445.2 244612 244512 244.2 4.1 2*4.76 64K78 817.1 8157.1 8167.1 8157.1 8167.1 8167.1 8167.1 8167.1 3167.1 8157.1 32.7 THERMAL 140 16.416 *1762 18782 10644 274062 27M7 26414.7 2t67 810072 31151* 31461 20715.7 82078*21512 M21 rM3 a847.25 NUCLEAR 8121 22110. m21186a 21180A 21126 0720 0752o 0752.06 07520 0 7 600 079A2066750 0720 072 07O2. 67* M62* DISTRICT *81224 80*2 60.72 170M 2M1*4 1807* 1412.S 1064.1t 1 6 1022.76 104S5* 1027S 6.2 078o 62S2 10.S6 10016 1OU2 INDUSTRY 10a0 171.7 214J* 572 5.06 842.75 440S s1a41 8292.44 244a04 846S a0* 46060A SUM2 42.00 46. S07T7 0 TOTAL 86365 s8s123 41416A4*56S 43696* 44784 40 4907* 4562 478220 47655460.1 432*608 6t0448*51008* 65176*9 s2166.18

HYDFO *2445.122446t2 *44612 2445.12 244512 24.76 26674.78 815.1 8157.1 8157.1 8157.1 8167.1 8157.1 8157.1 8157.1 8167.1 8157.1 8157.1 THERMAL 146O04 16*. 17206173I 2 168442580NM2 2 8* 8486U.0250 7 26760 271450 2671 104*2817* 2387* 23662 2g261 NUCLEAR 21121* *1186*821* 21566*1166*211*A 21509A6t 15066.6 4506* 150*A 1506 15066*106 *15066*150661506w* 15065 15066 DISTRICT 283.14 66*2 00.78 7681A0 261*4 106*5" 1102.19 A18 .06 64 9"61.8 61S 30S 70.14 304* 69272 3004 S456 INDUSTW 18 171.7 214*6 6.72 .0 604 1208 2664*5 2257.75 1775A *086"4 2851.46 2261.65 *6174 3246.71 2514* 800.11 472.76 TOTAL 86o6. s89812 41419.6 42504A 4896*44101.2 4 46211 *2t.2 432 4784* 476a 46602*4 .4 9605* 046*516 51AS7M7.4 163.?7

\00t TPAow.e .1 EoNyW4R iONmsyroreoppLAN(wfio

1ow 1604 16 116 107 1ose 1w M0 2O 200Q 200ga0 200 2002 2 2008 n 20 tO

HrORO 2446.12 2445.12 2445.12 2446.12 244.12244.12 264.75 8157.1 8157.1 8157.1 8157.1 8157.1 81157.1 3817.1 157.1 8157.1 82. 6072 THERMAL *220. 211391 21" m.* 0w7 a21845 807Asa s 9 SOMA.. 7082. 37 - 871.0 8M2788 6 ago" 8627.0 101 NUCLEAR 6762.06 0670 075207 076207 0750 07 6762.0 075. 072.06 52M? 07206 07.0 076.06M 620 02 .0 620 DISTRICT 1227* 717.6 318.2 1306.12 12551 0.20 1079 061.15 067.S 012. 0.0 0.4$ 600* 884*0 86724 860.24 1077M 1a6 NDUSTR 227S S26 6 1420.2 1161.28 17251 4682.8 1t649 1624 14324 186.AS 22*7 SW1B 2N842 8004.13 3444*576.4 77A5S7 TOTAL 8784 8308* 41415A 481 46151.8 47107.54017.4 60212.4 510211826. 6271 65380.4 54626 47.7 56417.4 57856 606 A.49

HYDRO 24451 2 2446.124451 *44.12 2445.12 246.12 2647 8167.1 8167.1 157.1 3157.1 8167.1 8157.1 8167.1 8157.1 16?7.1 86.7? 5204.72 THERMAL 148064 1566 17520* 1I6616 2120 846 *5207 8 845 860A4 87082.$37501178 So158O88827 8 *677 82210*1 NUCLEAR 21121.6*2110213 1839 21120A*211*075.0 06. 07620 0720 076.0 075.0775206 907520 075.0 0 06t 076. 075.0 06. DSRC 224 60.2 ".72 186.75 81*.94 8O2 1076.7 681.15 WAS 012.8 50 604 6* 846 87.24 80.24 1077 156.6 DUSTwRY 1890* 171.7 214.6 116S 10.62 175*1 462.1 62.0 164 184824 1.S 220*7 81.S6 26.42 804.18 84442 5 4 7757. TOTAL 83885*86812.8 414190. 48364.1 45174A 47107* 40178A 60212.4 61021*3 51825.7 52761 6860 64626.1 6460.7 56417A4 5655668M SCM fgm K 68580.4

HYDRO 244.1 24.12 244612 244512 24412 6K78 26475 857.1 8157.1 S7.1 8t157.1 8167.1 8a7.1 s817.1 8a7.1 3167.1 8157.1 87 THERMAL 14604 1u54 175 *116 *2130*2818*06 25147 2*406S 27846 2796A4 81020.1 8 04 1*76.1 164*8115.7 82106.6 8 NUCLEAR *1121* 21180* 21120* 21120*1120* 1Su66 16066 16006* 180666 1066*16066*15066160661600" 16066 16060 1506. 15066 DST 228.4 6002 00.72 17.06 260.8 1218 18.4S 16074.0 106S 1044.1 10o* o6 04MM 00 63AS 61*1 W44S 1022. INDUSTRY 180A5 171.7 2146 606 17M6* 81214 577314* 4067 usW5G 874*7 4857* 4082*4 42701 46445 4685* W2 TOTAL 8ss8 82* 4141* 48s34.1 46170 47007.1 414 501780 5104 518183 2782.2 68 66 17.1 6498&. 56412*5577* 661.1 5O5A$3

@0 0 C TALE-6.17 FUELRUEUEMENT8TYPOFFUEL

peP-I of 3 1903 1694 1998 1000 1997 199 190 2000 2001 2002 2003 2004 2005 200 20 2001 2009 2010 SCENERIOtI LOW leh

LIGNITE '(MILLIONTON) 30.084 20.196 33.67 33.850 34.393 32.605 32.583 32.745 32.874 32.472 32A3 32.s 3255 32.461 32.511 32.8 29. 27.007 COAL (MAIWaNTON) 3.776 .271 2.06 2.322 2.675 3.454 3.80 3.640 3.911 4.147 4.263 4.25 4.116 4A27 4608 4J40 4.407 3.435 NUCLEAR (TONOF FUEL) 45.500 456.500 45.600 48.500 45.500 45.600 45.500 45.600 45.600 450 45.500 4550 4S.600 46.500 45500 45.500 45.500 45.00 N. GAS (BILLIONM**3) 0.039 0.003 0.000 0.001 0.000 0.000 o.34 0 0.138 0.078 0.0 0.113 0.240 0.146 0.175 022 0.51 1.304 F.OIL (MILLIONTON) 0.064 0.054 0.010 0.006 0.012 0.027 0.032 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0000 0.000 0.000 0.000

SCENERIO3 ModeMatNocla

LIGNITE (MILN TON) 22.S 21.039 19.704 20.640 2296 32.80 325 32.745 2.674 32.472 32.5n232.845 32.645 32.461 32.611 32.0 29900 27.007 COAL (aLLIONTON) 0.627 0.177 0.086 0.102 0.228 SA64 3.07 3.649 3.011 4.147 4.253 4.205 4.116 4.427 4.508 4.540 4.407 3A435 NUCLEAR(TON OF UEL) 9.172 96.499 98.424 06.573 06.610 45.800 4.60o 4.00 46.00 48.500 48.00 400 400 46.600 48.500 46.00 45.600 45.500 N.GAS (IWON M--3) 0.000 0.000 0.000 0.000 0.000 0.009 0.034 022 0.136 0.078 0.099 0.113 0.248 0.146 0.175 0.226 0.511 1.304 F.OIL (MILLIONTON) 0.000 0.000 0.000 0.000 0.000 0027 0.082 o0.00 0.000 0.000 0000 0. 00 0 0.000 0.000 0000 0.000 0.000

8CENEPIO4 (1ht Nuelsa)

UGNITE (MILN TON) 22.935 21.039 19.704 20.646 22.396 31.00 30.720 31.229 3053 29.37 30.170 30.373 30A4S 30.e42 30.814 3095 28.832 26.484 COAL (MLON TON) 0.627 0.177 0.086 0.192 0.326 1.572 2.038 290 2.470 2.647 2.766 2.849 3&808 3.067 3.180 3.300 3.612 .136 NUCLEAR (TONOF FEL) 06=2 16.499 98.424 9S.73 98.619 70.6 70.297 70*07 70.27 70096 70*06? 70.206 707 70*96 70*98 70.29 7W00 N.GAS (BIWONM**3) 0.000 0.000 0.000 o0n0 o00 0.002 0003 0.012 0.004 0.003 O 0.00 0.015 004 0.00 0.010 0.135 0.444 F.OIL IMILLIONTON) 0.00 0.000 0.00 0.000 0.000 0.001 0.o00 0.000 0.000 0.000 0.000 0.000 0.0 0.000 0.000 0.000 0.000 0.000

Do. tln w TASBIE-5L8 FUELRUBIR3EM!NSrSiPEO FUFEL

1993 1904 1966 1S96 1997 1998 1099 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 M01

SCENERIOItNw.) LO

LUGNITE iMILMONTON) 30J.7D 29.412 34.549 34.586 34.848 32.774 32.709 32.781 32.784 32.780 32.781 32.i78 . 32.770 32.774 32.772 29.872 27.029 COAL (MILLIONTOlN 4.469 4.80S 4.640 4Jt38 4.620 4.867 4.S22 4.149 4.578 6l059 5.11B 5,160 4.807 6.248 6 6.2 6.261 4.64 3.400 NUCLEAR (TON OF FUEL) 46.500 45.500 48.50o 45f5 45.600 45.600 4 4SA5.00 46.5 4J.500 46.500 45.500 45.100 45.500 45.500 450 456 465.0 N. AS (BILUON M1'3) 0.143 0.146 0.105 0.265 0.711 o089 1.042 .391 11.20 1.133 t.212 1.21 1A70 1.332 1.429 1.516 2267 3.146 F.OIL (MILLIONTON) 0.065 0.098 0.090 0049 0.038 0.044 0048 o.o 0000 0.000 0.000 om 0.000 0.000 0o000 0.000 0.000 0.000

OSCENfRO3S (odtato Nht.aXf

UGNITE (MILUONTON) 25.631 26.443 29.014 26908 31.398 32.772 32.767 32.781 32.784 32.780 32.781 32.778 32.774 32.770 32.774 32.772 29.872 7.028 COAL (MIUON TON) t.232 1.231 1.371 177 1.934 520o 6.281 4.149 4.578 6.059 6.116 6.160 4.69 5.24. .258 58.6 4.684 3.4A00 NUCLEAR (TONOF FUEL) 98.547 98.630 98.632 08.632 98.32 45 .600 4.6500 45.50 45.600 48.600 4565 45.600 45.500 45.600 45.600 46.600 45.500 N.GAS (BILUONM*43) 0.0 0.000 0.000 0.000 0.000 057 0.770 1.30t 1.280 1.133 1.212 1.261 1470 13 1.20 11.616 2267 3.145 F.On. (MLLUONTON) 0.001 0.000 0.002 0.008 0.00 0.062 0.063 0.00 0.0 O.' 0.000 0.000 0.000 0.000 0.000 0.000 0.000 o0.0o

80ENERhO4 tHhh NuIea

UGNITE (MILUONTON) 25.631 26.443 29.614 2898 31.306 32.696 32.603 8.W7 32.543 32.564 32.617 32.633 32.6 32.619 32.654 32.605 20.81 27.022 COAL (MON TON)4 .2 1.231 1.371 1 1.934 4.244 4A31 3.809 4.185 4A0S 4.07 466 4.355 4.82 4.87n 4.959 450 3A33 NUCLEAR (TONOF FUEL) 08.547 96.30 98.632 oa.32 9 e62 70.297 70196070.29 70.296 70.20 7029S 70.7 7021# 70.297 70.20 709 670197 70106 R. Ga (DILUN Ma--) 0.000 O.0 0.000 0.000 0.00 0.121 0.212 0.77 0.399 0.313 036 0A1 0." 0.496 057 0.A30 1.26 2.151 F.OIL (MIUIONTON) 0.001 0.000 0.002 O.008 0.005 0.034 0.040 0.000 0.000 0.000 0.000 0.000 o0.o0 0.000 A00 0.000 0.000 0.0o0

. , . _ . . . , . . _. _ . . . : _ . .__ _ _. _ _ ._ : F ffi~~~~~~~~%J$J TABLE-5.19 FUELFrUIREMENTS8Y1TYPEOVRIEL

1993 1994 1995 196 1997 1996 1999 2000 2001 2002 2003 2004 2005 2006 200 200 2009 2010

SCENERI0 (LOWNu A

UGNITE (MILI-ONTOM) 30.370 2A.412 34.540 3A07 34.880 32.781 323m 323779 32a779 2.779 32.779 32.780 32.779 32.781 32.780 32.779 29*72 V.028 COAL PMILUONTON) 4.459 4.806 4.640 4*61 4*14 4.099 4.381 3.829 4.273 4.678 4.789 4*31 4.684 S.228 6241 6.246 4.88 3.476 NUCLER (ION OF FUELJ 46.500 4S.600 46.500 48.800 45*00 48.800 4650 4048004SJ600 4604l 48045M0 4SX45*45.WQ 46190 4580 45L.00 46US00 N. GAB (BILLIONW^3) 0.143 Q145 0.106 0.200 0.818 1.875 2.060 2.46a 2.33 2.294 2.421 2A.3 2.662 2.479 2.568 2E25 3.121 3563 F.OIL (MILLIONTON) 0.086 0.098 0.090 0.047 0.046 0.026 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0A00 0.000 0.000 0A000 0.000

SCENEI Sl0ader. MacIsd

UGNiTE (MILLIN TONN) 25.31 26.443 29.614 32.7M23.689 32.781 32.77 32.779 32.779 32.7793L779 32.780 32.779 32.781 32.780 a2.779 29.872 27.028 COAL (MILLIONTON) 1.232 1.231 1.371 1*30 2.079 4.099 4.381 3&829 4.273 4.678 4.789 4.931 4AS4 5.22 5.241 5.245 4188 3.475 NUCLEAR (TONOF FUEL) 98.647 98.60 96S32 98.632 98.632 45*i00 45*00 45.500 4S*00 45*00 45*00 46*00 465.00 45.600 46*0 45.500 4500 45*00 N. GS (BIaLIONM3) 0.a00 0.000 OD o0o.1 0.001 1.875 2.050 2.483 2.37 2294 2.421 2.483 2L62 2.479 2S* 2625 3.21 F.OIL MII TON) a.553 ION 0.00t 0.000 0.002 0.003 0.007 0.026 0.034 0.00 0.000 o00 0o.0 0.0 0.000 0.000 0G0 0.000 0.000 0.000

CENER 4 IHhh Nuebi

UGNrT (MILLION TON) 25s31 26.443 29.614 31.075 33.703 32.73 32.736 32.777 32.764 32.774 32.777 32.757 32759 32.748 32.756 32.75 29a67 27.029 COAL (MILLIONTON) 1.232 1.231 1.371 1.84 2.083 4.731 4*3 4.210 4.33 5.120 5.199 S2 45 5.10 5.213 .207 467 3446 NUCLEAR(TONOF FUEL) 6.54708.80 8.6S2 06.62 68.62 70.297 70.27 70.29970.27 70.29 7X97 70.269 7097 70-o6 72 670.0296700 70.296 N. GA (BILLION M"a) 0.000 0.000 0.000 0.000 o0.o o.30 o0s1 0.963 001 080 0.21 1.5 1.476 1.322 1.379 1.436 2.128 2*6S f. OIL (MILLONTNI) 0.001 0.000 0.002 0.007 0.000 0.045 0.040 0.000 0.000 00 00 0.000 0.000 0.000 00D00 0D000 0.000 0.000 0.000

.10 - 113- Annex 5 Page 19 of 39

TAM-6 TOTAL6Y 087 WADC0227-MIMMM

WAR NULE'- FUEL OEM CA AL 00 TOAL PO VEA UCER FU OM CAPITAL EN8 TOTAL PV 16 am 46.00 mu. a.10 46.40 1067 17. 16 a1. S0.S 1. 2o 01 mm6 M 1t04 161 400 264.6 2. 104W.66 mm 14 10m 6u 11s1 6. 1.7 3. s6. 1i6 11t70 1. 2001 2760 21 lo7 61.60 16w 17a a 1U 4m 2a0 W6. 4 6l6 11.7 64 54.20 me" 1M 1021 7. 161 .5t.0 161.02 1t7. 106.0 147 W7S S01t 17 11.70 6.0 286 6L7 1A4 1211.7714 10 117 1 6 161.01 271O 105 m6 awl 16 .00 o02 0.6 .10 1442 10l6 a.7s 1 1A. 101 1 0 146L0 14. 0 471.72 1"W0 LO O10 10A 16.10 11 10 62W. 1W 1.0 4016 16 4610 11.42 66.6 S7LI 100 0O. 46.21 1O 41.00 16. 101612 MA 1M .00 427 171.60 41.00 166 61$ 0 am0 0.00 6 6 16 V0 1UAS:1000.0 471.0 00 1a 601A 4t.10 10.6I 2.0 16,00 4016.2210a" a102 O s021 "05 11.10 16.61 102U 45 2002 76. 416.12 161.70 110 16.0 0" 32 a2 a0m MA4 m. 1O. 14. 102e 401.J SOO L0 4206 1711 40 16&6 1 *t5 m6 6 A0 66 0 1 1L "140t2 . 7. 24 a10 427.6 172 4.10 1446 7.60 A76 ge06 .O0 640.14t 6 4 1 163.0 06 20 am441 17652 44A0 14S 601. 2001 a00 0.0 6476S M150.2 111.0D 1A 1ta# m 0 20.00 4 171.0 61.6 1LI7 6.6 20.6 ae0 0.00 663.n2 665.0 1M.6 1 02 1W7.2 mm6 200W 20.0 41 10 1160 12.7? 7.17 200A46 a0 0.0M065.14 6661 216120 1474 t1 m47 s1 20.00 44061 171 16i.0 161 61210 17.11 200 00 6 1 s 61 4.12 1112.6 SO2.10 20 2 41. 102.42 60. 14.10 766.7 1668 2010 0.00 602 417* 0.00 101 1S 212.6 610 200 466.40 2gum 0A. 1146 771 u1a TOTAL 74f7011046.60S 202640 S01.861662*66 TOAL 6.O 7461.10 2000.1 11720 220.101SMS7GM.70

VOR NUCLEARFt,¶L OEM CAPTAL 1366 TOTAL PV WEARNUCLEAR PFEL O&M CAOTAL ENS TOTAL PV 6l6 47. 01.2 S11l65 6.0 02 60 6 ,6 1 am0 M.6 110Ot 60O 0A01 468.1 46610 4 0 607.00 1277 27.60 1.6, S1 4747 1664 76.10 2606 12l.71 10.0 1.27 4407 4.7 13 Gm0 2 6 146 46a 1.6 6.o70 441.67 1 6.10 268.74 11672 O 1.3 46 400.0 3IM 11010 600.190142 20S.1O 141O m7s02 6a7 t1 100 SL 16 210.00 10.2 741.6 W6.21 l7 1.0 621.10 144.12 140 1o W1.2 m40 1607 160 27 137.20 1114 10.16 66.6 6 16 WA.60 901 1646 146. 1 M7.2 476.08 1l6 65.00 001-9 16.0 14L.6 1 774.7 4S1* I1 40. 40.16 160.61 4610 042 6 176.7 160 460 406 160.1 4.10 10A2 67.70 070. 200 20.6 427.47 17Ta. 41.00 1. 616.6 0 2000 42747 171.60 41.00 15. 600 160. 201 2.0 42010 17.6 V7 16.00 302 0A4 2001 o 42L10 17064 27.0 16.0 0,7sun2 .7 2002 76.6 41.12S 160.70 it" 1. 04s. 1 6 O2 60 414612 160.70 11A.6 16 666I. 26. 2000 20O 426.4 171A4 100410 16.0S 13 26m 2 00M 426. 17.4 60.40 1. 61O 26M "4 20.00 42as 172.1 40.0 1 1ao 2376011 004 M. 427.16 127Lt 40a.0 144 3.60 36 20 1. 41641 176.2 44.0 14.66 .0 S01.6LI.S 2A006 1. 41041 176.62 440 14.6 6011 5. 1006 20.o 40 176 61SA6 1.70 0 200*o9 200 20. 440446 1706 61.6o 10.70 6. m 2007 2000 441.71 176.0 110. 1Z7T 70.17 MO4 O0 20.0 441. 176.60 110.60 177 7617 200A4 20m6 200 440.61 176 160.10 1. 6B 107.11 206 1.0 440.61 176.0 106 16.16 a" 107.11 2000 2o 467.2 16.2 6. 14.10 766.7 10. 2000 2. 4.42 122 600 14.10 76.76 166.26 1010 2.O0 466.60 2t04* 0OM 1A84 nanT 140.16 2010 10.0 466.60 26 0.0 "110 78.71 1016 TOTAL 760.40 MM6.42 AS 1072.10 210.1 12617.6I S606642 TOTAL 014 66. 2O6. 11.10 216.0112084.661*

SCM0O4 S_6AO YEAR NUCEA FUEL OEM CAITrAL 6 TOTAL PY WAR NUCEA FUEL OM CAPffAL EN TOTAL Pr 136 66.00 2 t9110,1 60 0O0 401.10 4t1.10 1690 6A0 0J 110.01 6LO 01 401.70 4t1.7n 16t4 610 26 117.1 2.O 1.V 460 414 1sm INA 2g 117.71 20 1.27 60 401S 166 12L10 4 11.72 91.60 1.a1 .0 41t0 1M 1WM0 260.4 116.72 .0 1.67 61.0 476U4 166641 160.00 2m60.2 18 20 1SAR 76 1.76 13 16.0 2A4 11.1 100 11.71 760.66 661.10 1647 160.0 16.7 107.20 121.40 181060. 606.2 1607 60.0 216.66 116.7 t206620 710.2 401.8 16 77.0 1464 1 AS SM10 11u W7. 4MA16 1 75.0 207.0 110.12 72.0 1247 1669 L6s 166 a0 66S6 1 3 1sm4 Ii2 6 I6 60. 16 6O00 2S 14 40 11* a" 0M,70 2000 40 S51 16s77 41.0 166 010.72 S16.O 200 60 6. U146 70lO 16.2 a6 0 200m 40.o 6Ot1O 13.1 27.50 14.0 6 262.17 2001 116.00 0. 146. 104".6 1W7 60.62 12L 1002 60.6 11 166.1 11*O 16.27 D617 270 2O00 O6* 01S0. 1460 .O0 U27 6S2.16200 200 40.00 06.0 16.2 66.10 14.4 6170 206 4K 13.60 017.2 140.4 16.1 11.13 661*206.0 2004 40.00 071.6 40 640 1"M 60.1 17.0 2Ci W6610 6IT.O 160.70 1I6.1 11.? 6.21062 20n6 400 66. 161*4 0a1 14.12 62T.7 20.0 20 660 0a8 11 OM1 10.0 611.04, 1t6 100 40.00 087 1624 1a0 1147 64 17 am 66.6 167 147 o00 1S10 61 160.2 2900 40.0 0L64 1SO.62 06 t9 610 16 200 60 68a 16 00 1. 2.1O 10640 2006 40.0 606.1tO 176 60 16.0 MA6.6 16. 106 a .03.612 t166. 16S. 016 6616 166 gmn400 4"0 mm 6. 14 174t 146.1 2000W 60 406 170.7W 0.70 14. 6. 14060.5 20O 400 410.7? 1667 A0O 10.t a6 110.4 2010 .0 420.6 164 0.00 10S.6 6O.0 16S17 TOTAL 121040 17.162M 5 1046.1 2. 112676 60 TTAL 1OWA 601.2 2044.6 000.7 1O0.S0111416.100166.2 - 114- Annex5 Page 20 of 39

TPAILS-L TOTALGWBT000 WADFOOAPC-U10WMU-

" _ . : _ I _ i Acam._ WAAtIICLEA FUM OhM CAPIAL ENS .TTAL PV-EO. WA NUU.E RU. M CAPIAL ES TOTAL PY 199 3.0 0 LO 2.04 144.10 W410 16n 10. 10 4no 148*0 47.00 2.1 S1.10 S1.1 1904 10. 46* NCO1 4A4 MAY 1611.4 ""W6n749 40 1 =L0 .0 076a 700.01 1s" 11.70 MM 8 46.0 17. 1467 1290 1026 07.0 467 104 17.0 0.40 047.80 7 19 11.70 0." ULM UU7Q 1G, 16i 1130.19 1 P0 4040 10.S 203* 16.0 1011.4 71 1W 11.70 60 mm 01.1* 17." 12U10I P01 109 t1?17 007 106S L70 10s 1094 714 16 0.00 mm1 1a6"10 1s0 1146 0 0 10a .m 1a" 0 120 105 044 0462 t 0.0 .0 2sAC t 16 3970 1 1W WM " 1M0 16.0 17.7 0.4 40.12 am0 o00 a 2.6 2W6 41*0 .1 a 0 VM 2O0 2N M1 21. 41* .AS $04 4 2001 00 6 0 MM .0 1.10 "I.2 400G 2001 0e 6 2M1I. 2. 18. 42.0 S0 a001 O.0 0 1 20 M.6 10. MM 410.11 a2 75.00 606 901 11 20a 876.14 071.67 =100 am0 662.1 212.1 7010 10.4 1026.0 00m0 200 10.0 me6 21244 08.1 12.1 660.0 001.70 6 O. W7 2. 1.7 180 111s1 M6 26 100 6m7 210 S0 1"M P1.64 06.4 3006 0.0 ML.1" V71 20.40 17.t9 1t. S 006 00 66 M." 40.0 10.0 00AS 670 am OM INLt MM.6 40 I?.W ttLeO 4110 am mm "a A s &S M" 306 .0 960 21108 4600 17.J2 1426 4150 200 10.00 886.25 306 127.00 16.00 0.10 162.46 2007 0 70. 70.48 60 10 1 4294 2W7 . 1 096 2.0 17.10 1107 9. 1080 0.00 718.72 201.10 610 1e.19 10.11 09.41 200 10.00 61.0 52.74 14 MM 116 2.10 20No .O00 7140 10.04 14L70 17.70 116.2 261 no 2. 062MM9 801 21.51 1004.0 t 16.70 11 00 0717 0 0 16.I0 102 26 210 20 MO7 U214 00 2.21 36602 18014 MOTA 740 11714147 429.0 2168 12001.01122S O TOTAL 07A.00666.1 074 0.6004 107916 8201.74

WAR NULAR F OhM CAPAL D0S TOAL PIV WA NlEA MUL OMW CATAL N TOTAL 100 47.50 00.49 1t09 10t. 0.0 490 494 19 60 016.1 110 1 0.01 6 07.4W07.40 1094 6400 9" 4t 14401 0 O7 640 6946 100 76.1 000.4 102.0 0 2.09 674.66 320 1096 0. 0040 1400 1A 20 74N4 616.46 106 6O6 0 0 107. 460 00 02A9 517.70 i I m6 6a4 U010 1i9s0 0 9 21.6 1 12. 6A49 m1 290.0 19.06 " 72 100 10.0 16274 I75.9AO 2070 0 0609 17 1500 M868 1 4 M400 11 11459 78272 096 6.0 47.0 107 171.0 104 0. 67J4 109 00 446 202.0 2800 324 1110 0t2.40 109 40. 475L70 240 40 1646 . 400 1900 46 6 M0 70 16.04 0S1 161.1 2000 20.60 40L672 7S. 9M*0 200 6m6 4441 29O0 27.6 60.0 212.5 41 W0 6S06. 444L9 00 26.0 4076 W.26 64.8 1 a1i 66.1S 2 27.10 on" 2.4 WA*0 160 0. 00S64 2001 76.0 7 m20m0 1.a10 200 W S mm6.2 2. 69S 109.01 11*0 a2 S604 74.75 2S00 20 5. M9 69O 100 0106 010.4 am 2 67.8 21.4 0.10 10j S06S 051.70 0e4 620.6 32W 6100 16.46 60 M49M1 2 m00. 92160 1S.4 071.54 S04647 =006 19.0 3.01 06. 4070 10.M 49.04 2. 200 O2S0 1 4 . 4. 107 00 28079 am am 601.01 210 127.00 17. 006 S 20m0 20.0 1 6 36 1.00 16.0 97610 262. 2007 20L. 540. 2.09 270.Q70 101 1066 26. 20 . 601. 2 2.60 17.10 1106.77 29 2006 20. 621 2406 220.80 100 16.1 2M0 2OM 000 60i 202.74 16040 21t2 1402 270.10 1000 200O 120 2507 0. 10M 69 14 2M 3.00 M* 2.0 06.1 21.31 1004.0 216.70 2010 20 006 27012 0 20 0.9 162. 2010 20.00 0 * 14 0.0 21.21 9062 180.14 OTA^ 7964 069071 17. 090 1001 7401.4 TOTAL 142004197441 2118 .0 76 16296 76

22W_4M0 4 2fI:WlO WARNLEAM FUEL OWM CAITAL ENS TOTAL PY WEA NUCLEA FtUEL.O CAITAL ENS TOTAL FV 1UP 600 016.0 116.70 12.0 0O. 6512.0 112.4 1w 60 16.18 1107 12.0 0.01 60.4 60004 1034 00.1 0m 10.1 0. 2a "9 1094 160.09 620.t 11110 067 2.0 67 56 1006 1210 . 1076 47.40 0W. 0 0 56 106 100 060 W 02. 0.00 7110 1 a7.7 10 160 06711 M2 20 10 047.17 711.61 16 10.0 06 1t 200.1O 10 907.4 661.60 19W 100 0 * 166.64 6M2.00 151 S074 low1 000 60 t 6104 04.4 16.14 050.1 0S105a t0 770 4074 170* 15. m96 6o21 10 16.0 007S 1.1 110.0 10.0 760 4.7 190 o0 4K04 101.1t 1S 17.0 7.9t 40. 1A 4100 14.04 1.40 17.51 6S66 076 2eeD 406 4.S 106L12 41.00 16 7. 40.S10 2000 6 410.0 1091O 410 20WS 70D 04A4 200t 40.00 49646 109709 270 16 7040 0 6 201 116. 421* 170.17 27.6 101S 754 061.77 O20 0 401.42 104.S 11 2 6170 0S670 M 0 424 171.3 1 1021.16 0111 0o96 20m0 40O. 04* 17.11 01o 1t0 tt 0.4 900 07.WM4 4 106 66.70 100 74.4 090 2004 40.00 51.4 9I9S1 10 16,43 00.2 22 2004 0 441.2 17129 60 10 769.61 2 O00 40.00 2 01 4.2 44.0 14 02.0 2677 20 6 48. 16. 760 16.09 601 28 2S 40.00 621 2050 11A. 17. U046 27 am06 6s.8 10071 206 1m 1* S7. 27447 2007 400 6S7.4 s267 . 14 107.04 276.0 207 0s. 4661 20.9 261.00 14 1084.04 286.4 200 49.00 546.6 11 216U0 20.2 1S0 6 W.2 20 00 64.76 210, 216. 10.72 oR.06 206 2m 40.00 6mm 11a 00.0 11 00 1m 2 06" 0212.0o 18.07 00.21 206 t101 40. 16* 207.01 0.0 4 t * 1 9 2 0o0o 0 o*40 207t10 0a. 106 606* 17.6 IOA 12040 S76 6014.0 11670 28.U 1491.14 71M TOTAL 16"6.701*83141.70 1 0 291A.4- 140617 0 -15- Annex 5 Page 21 of 39

TAML-&= TOTALSWSTMrCS

YEAR UClER FME OSM CAPIAL ES TOTAL WV VEAR NUCLEA FMU OM CAPIAL EN TOTAL PY 166 a8m1 408.6 mm.8 140.1 04.00 "A116*56 0 106 am.0 416.71 146.0 47.10 1.18 P1.iS 1.13 1194 I10 41QA0 164.0 MA.1 7104 208M 8148* 1164 10.6 4308 16.1SL t6.11.66 fi7.8840. 1I06 11.7 mm6.6170 aw 668.6 M0.6 1is" 1606*8 11 P."0 46. 141.16 466.6 8.4 1166.0 05.6 168 11.70 615.1 am0 161.6 1.0 la0.1 10066 1006 P.60 4168 160.15 470.4 11.6 1166.1 067.77 186 11.70 644.1 13.0 21.5 10.4 1167.1 776.71 1 IVA17 68247MO 66 04 0.00 MM. 127.1 846.46 1016 0.00 601".60 143.5 11.60 6.0A 1148.64 71IT7 106 a0.0 86A.6 10IL" 18U0 10.8 1017* 601.6 1"0o 0.00 727.04 16406 141.0 10." 1168.89 SI.4 1060 WM.0 66.6 00.0 16.10 10SM 871.8 461.65 1000 OM0 741.0408.M MO.6 60.71 1310.71 871.60 10M0A 00 10.4 131. 41.00 1.14 60M1 474.16 2001 0,00 788* 104.08 120610 1M.1 11001 664.14 100 10.0 NS.76 UMi 17.80 11.12 107426.1U 2001 0.00 766.61266.A6 16.0 6.10 1116.1 47.00 200Q 75.60 MM.6 168.14 11.60 UV.0 664 406.67 200 0.00 7T6OM 60600 66.70 10.16 1117.2 410.6 100 100 646.5 0.10 8WU1 11.6 071.7.674.66 2004 0.00 746.6 106.6 S6.10 1L6.6 1168. 40676 1004 10.00668.m 8 1.00 760 11.071008.16 16.61 1006 0.00 717.17 100.6 #7400 17.0 1101.7 411.11 160 10.0 671.4 106.6 146.0 11.8 100.1 M60M a00 0.00 766.8 1L6*8 400.10 17.46 1604* 416.71 106 10.0 WI.7 106.I 146.8 10.44106*" WAS. 1007 0.00 760.1 4.m 181.1 16.06 166.1 461.16 1007 10.0 660.72 1L46 268.10 16.0 1181.0 811.44 1008 0.00 771.06 181* 146.6 10.4 1465.8 160m 100 10.0 68a.7 2gLT7 #1D 13.8 1171.6 16.4 1000 800 60* 167.? 0C4.0 10189 MS1116 004.11 100 100 711.1 166.71 66.40 12.04 11*41 011*6 1010 0.00 766.1 108.1 0.60 16.86 11441 .26 1610 100 70.1 001.0 0.00 10.14 1046.8 107.4 TOTA 74.70 11060.7 4366.4 44S6.70066.6 14446.0 117067 TOTAL 67.0 10048.60 16M1*1661.60 10.10 14660.6 0148.81

VEARNUCLEAR FUEL OWM CAPITAL ENS TOTAL Pd YEAR NtCLEAR ROEL CAM CAP1TAL 0NS TOTAL P1 160 47.80 077.7 126.66 17.40 0.0 610A4 67.4 10M 60.0 816.10 116.7 10.1 0.01 610* 100 1004 54.00 14.4 140.T 2111.6 1.A 7MM8 7M1AD 1604 76.10 ULM1 112.10 10.00 1.00 720.4 668.12 106 6M.8 406.6 146.4 408.40 0.0 10211.1 844.12 100 68.10 046.00 16.8 410.00 O8 00 17.6 816.1 1606 111.60 434.0 166.4 64.0 10.1 116.8 688.1 1066 110.0 68.0 180.8 mm.1 0.14 1172.10 06.8 1007 118.1 471.76176* 4101 10.6 181.4 641.0 100 160L00400.1 160 410.10 10.60S U160761.

10o0 40.10 M0M6 10.6 18.10 ISM M7M8 464.0 106 46.16 166A.6 104.0 16.10 10.6 6602 467.67 1000 1.60 616.44131.6 41.00 13.14 01M0 476*1 100 WAS6 610.44 21A1. 41.00 13.14 061.70478.11 goof 16L80 6S3.76 MM.1 87.6 21.11 017.S 46.0 am0 17.6 N2.70 MM V7.6 11.12 611.18410.7 100 788 MM 168M 11.80 3.07 060L70 406.1 101 6am1 .0 mm 11.80 13.07 06640 400.6 1000 10.00 646.61 016.16 66.1 11.80 071.76 074.66 1000 10.0 846.61 116.18 86.10 11.80 071.76 174.6 1004 10.0 666.76 261* 76.0 MA.0 1006.10 660.81 1004 10.0 666.7 161.66 76.0 11.07 100110 8621.0 100 10.00 671.44 180.4 146.0 911.6 1060.8 16.0 06 10.60 671.44 160.4 148.60 211 10008 60*4 100 1000 671.71 210.8 146.0 10.44 106.8 817.1 100 16.0 671.70 1M.6 14.8 10.44 100.6 617*6 2007 1000 660.71 100.48 168.10 1004 1181.61 811*4 100 10.0 68071 2 6 138.10 I0.0 1161.01 811*4 1008 10.00 688.7 1477 107.1 16.8 1171.60 160.4 100 10.0 60675 841.77 107.0 11.8 1171*560.46A 1000 10.00 711.27 156.7 84 04.0 1110.42 141.6 10 10.0 711.1 16671 68.4 14.0 1110A2 041.66 2010 10.00 706.00 101.04 0.0 108 1046.8 107.4 1010 10.00 706.6 101.0 0.00 104 1048*4 07.46 TOrA 7664 1065.661611.10 166.10WA S2.16810*48846. TOTAL 01.1 10136.6 0760.1 1661.70 113.7I 18062428600

VEARNUCLEAR FUEL 08M CAPITAL ENS TOTAL FV VEAR NUCLER FUEL OM0 CAPIrAL ENS TOTAL PV 10es 66.0 818.11 116.0 11.6 0.0 611.48 811.4 1068 85.60 01.18 110.7 11.60 0.01 86.0 6S80 1064 68.10 10.4 112.10 46.6 10 16.181 516.67 104 180.6 0SU.M 12.1 4.10 1.00 651*566M1.1 116 116.10 46.00 137.66 68.0 0.0 mm 661.71 106 100.0 0S6M 167* 64.8 0.00 784.1 600.0 1600 16.0 67.7 166.74 30.1 201 S61*5 716.14 1606 186O0 874.67 16.74 108.8 10.41 6M.1 601.46 1007 180.0 400.10 16.4 18m 18.10 1066.70 717.8 166w 0.0 400.0 160.8 118.1 I0O0 682.61 646.0 INS 77.60 612.1 187A 161.10 21.14 06.6 86.1 IS 75.0 405 16.70 146.8 10.87 54.81 624.4 1ow6060.00 662.10 166.0 18.10 171 840.8 47* 1060 60.0 464.0 176.0 48,40 *6 760.0 461.67 1000 48.80 67.0 1.4 60.6 61.6 04.7 488.7 100 60.00 401.70 167.81 46.10 MO0 810.67 416.0 1001 48.80 861.4 168.0 111 OM. 6M6O 464.76 100 116.00 466.6 186.7 43.60 11. 07 80.05 4066.4 1001 06.8 66.0 104.1 166.70 16.m 1060.1 46* 2002 60.0 800t" 10.4 68.40 18.6 61.6 665.61 1000 40.00 608.76 10M6 66.1 16.16 1001.0 16.1 100 60 510.6 166.10 147.00 11.M 661.80 M6.0 1004 40.0 101*4 2 1 16.6 21.6 664.1 1M.0 1004 60.1 680.0 160.1 106.0 21.70 "it2.0 064.7 1005 40.00 610.81 10.0 40.70 1.8 062.0 10.8 1008 68.6 8607 MM 104.40 16.01 660 616.4 2000 40.00 610.80 16.1 117.00 21.11 1081 NS1LIS 100 68.8 6171 116.1 111.80 20.61 1038.90 10.1 1007 40.00 613.1 168.4 1M.6 10.0 1166* 011.0 1007? 68.6 61.1 161.0 86.6 10.6 1184.8 811.04 100 40.0 OM.1 217.70 18840 047 1186.11 168.0 10m 66.8 660.1 16.1 116.1 18.0 1160.1 870.0 200 40.00 47.87 014.6 86.10 16.60 1041.10 M 0009 68.8 64.1 04.0 60.10 21.0 10861 115.0 WO1 40.60 660.76 1mu6 8.m 1.0 66.8 166.00 1010 86.8 665.1 260.0 0.00 16.04 1014 000* TOTA 1110.40 05714400674 1107.80 9 140.1 L168.77861.1 TOTAL 166.6 6061.74 1436.18 101.6 110.1 16610.467561.A TABLE- 023 OPTIMUMSOLUTON -MINI" ANNUALAOODMONS

=8CENER10 SCENO i CEIElO 2 SCENE 3 SCENERIO4 PLANTNAME CAP. YEAS PLANTNAME CAP YEAR PLANTNAME CAP YEAI PLANTNAME CAP.YEAR PANTNAME , CAP Y 1APNTNAME CAP.

* ~~Ms'tt.a 300 so*.s--

lwes - 1-

ISOPAP"N 70 RsPUblsa" PAP: p~Aapi*Ie IRpubAa 70 - - i - - 1000Usia 00 ~MuSoo 4W Mee 460 Mam18 I - Surges 1000 BUM"ug - - - 1000""P~ '~1~Surges 10a" . - ~~~~~~~~~*38Auibu1S ~~~~~- P bO* 10"05asbUMg.

210 "O~20 in 210 2Vsm10 Ven 9WeIOI

- - SchvOu200 obO,oWd BooDc 3 ccva so Dowd& so DOW" so 200 us 903oa -0 _0 _~ BaoI _0 _ m 4 Sa so_0 X0Baesu _ sol_ es S _i ISO i*0

TOTAL 001* 62 2Arn -117- Annex 5 Page 23 of 39

rt1~ 8 1la A§; |X4t x. t ti-

ai is il. f I I .

i11ixi! W liit

T~~~~-I f 'i~~~~

r~~~~~~iM

IM11 IXXIlEE 1 1'1 I I III 11 $I;

.. .~ gig 33I i 1;3g, #IS|11lgERII11| II IIIIf

F.u S- aT -

1s11i' 1, l 1 UolX II§11If11 g

Er<~~~~~~~~T SUL"21.1 2148.12 2146,2 446.122 2"L.12- 2148.1 "44.70 2647834.8 6647 244.7 main siai. 2maJo arnie awl. awms 0 *3 0 * 00 0 0 0 0 0 10A*t~444.77644.3 04I 010 0 0 0 0 0 0 0 0 0 * * *

MXVMO"OR w ... 1410*61 1417M*8 417.01 1481 44 u4 0*6 1466.6 us1* t425 141.8 t488.10 "mm* SW= 1446.18 14a.1 1470.3 UW2O141114880 7451* 14884 1465,17 1466. 1466.4 1,470AS, 1412ft 1460.1 1444. 1448.8 1466.8 1460* 14sm?1 14668 14o4667 470*8 2466 422 400A4 1440.4 146A.0 140 4614 14A146 1448A #466.0 14464 1460.4 Id664 146A6 146641 Uee 146.4 t446o42 1M463 "4OA 1 -MA0 0 * 146A 1400* 146A4 1,46648'14* If460468AS 464 140A46016 Id 1466.4 146A.4 1446.4 1464 14654 14654 1466 -MA*'M 143A* 142AI 148AI 141044 1464 14 14 146A644SUW484 6.14 14,164W414OL 16614 144G6.42142MM 1426.4 3148 0 0 *4 1106448 "NA44 11648124.1 116446SI 116AW MC"W 1L44611644811 "MA4=1=461441 4 1164A6 t16 11114.4611644 286.46 16va464* 146A 1464A1 40644 1464*4 1464* 1464* 14644 164w4 VA6IL" wsWL "Sam w * 146.4 146644 U46.4 1464.4 1020,04 44.7 mm.8 701.18 467. 1MU.M 0 0 0a 0 0 0 0 a".8 118.7 620 1*.6 1it"8 12814 12102 0 0 0 0 00 0 0 0 0 0 0 13.2WVA44 1766 110.6 11 126.0a. " 1L74 126604 6 0 0 1) 0 0 0 0 0 ~~1188.88 1108.91 80.7 667.18 966.7 118614 1118.8 181146 tg66.t to&"8* 43042 11 04NAM088 106*4 m7 146I 1246 6

0 0 0 0 ~~~ 0 0 0 0 0 0 07 00 : : : :~~~~~~~~~M47A 8S 8OI 0L4 70 0U a 6 0 0 PACOWN 0 0 0 0 0 0 0 0 0 a0 0 0- 0a

* 463.0\ 463.08 406701 43 48 483.08 483.06UM 4oi.8 487. 49M=8 483.08 48.0 4678*403. 457818 46768407618 76* 42808 4818.084m 4678*4ft807* 4878.0 463.0 483.0 4011L*84878.0 4WIL*8 40=87614W78.84878.84678.04 * 47040 430M 46750 78.0 0m 0am 0 0 0 0a 0 0 0 0 0 0 1.6 08 .8 0 0000 0 0 0 0n0 0 0 0 0 0 0 0a .8 0 0a 189040 WA41S MU 07 mm0 mm 0 a 0 6 0 0 0 0 0 0 0ot 0A 06.14 0 0 0 0 0 0 0 0 0 0 0 0

66.2 1w.7 1.A a.1 4.8 4 5 67 61 54 .8 66 61 .6 46 47 4 18

* 0 0 ~ ~~0 ~~a 40 *0 0 0 0 0 0 0 0 S 0 0 00 0 0 6 0 0 00 0 0 0 0 0 0 0 10 0 0 0 01 0 0 27*4m s650* 41641148 4884 488.648804m 48.4 4256.6 4654 46.74426*84286.7 66. 0 0 4868.1 40252.2 4162* ~~ ~~~~0 0 0 0 0 0 0 0 01"M66.01 23*1414m68*4363.74656.4Ma 0 0 0 0 0 0 1818.2 1618.1 33.26 4416.4 44680 4644 4466.48A 40R8* 44668 4644 4444 ~46444.4 0 0 00 0 0 0 a 0 0 0 a 0 0 40 0 __ 0 0 0 0 5.1 0 0 ~~ ~~ ~~~~~0161.16 13Ku1 178.6 423.04 MA4 Sa5.8 11a"7 8188 OM2 ___ 0 0 0 0 0 0 f'W.7 3018.7 am8 7.86 10.07a 746 7.67 76 7.60 27*6 7.28 am0 14. 16.U on".0

0 0 0 0 ~ 0 0 0 ~~ ~ ~~ 0 0 D 0 0 0 a 0 a 0 * 8661WM.~ 84065536450 4244.72a 3666.4 66751.6 07046.28666.6 06088 13.0 166658 4026.7 4015* 4MM6 41160* 41718.642 m7 iff65*8 TA8Is-W BIUwayounwUTVPtAmrYa3W)PoAUmEmmUFOFWMA1QO8IEANO0

'KVD 146.2 2446.12 2446.12 2446.12 2448.12 2448.12 244812 268478 265.70 264.76 2664.78 2684.78 2684.70 2684.78 2684.76 268478 3167.1 3187.1 V'i60S'M 0 0 0 0 0 0 0 0 0 0 0 o0 0 0 0 '0Mmt- 0 0 0 070 461.00 0 0 0 0 a 0 0 0 0 0 VMW480.410 200.4 160.17 0 a 0 0 00 0 0 0 a & a ______4 _ 4 ______a _ _ _ _ _a _ _ _ _ 0 0 0 0a 0 0 0 ZKM W GIL8 0mmMA a140264 403.7 0 0 0 0 0 0 0 0 0 a 0 W Stl 108.2 067.7 700.0 MAI 706. 1463.12 -40.2 46146 146214 1404.86 141862 1430.10 143400 1443.4 1441.13 1447.8 141.73 1470._ WWWO6~1 117SA* 1101.4 870.0 00.8 003L7 1400.0 140.4 147.0 1460.1 1442.6 144.2 140.0 1400. 1400.1 140* 1446.5 147.0 1460.3 '.M 14* 1200.6 1046.72 1166.2 1203.27 40 14 1400.48 1404AS 614 1460.4 1460A4 14046 1400.4 14M0A 14014 1400.43 140L.4 14684

14721 148.8 140* 90M 0PL40& 0M 0a 0& 40 40 OA$~~Gm~ ~Om 0MO_ 0" 0 0RA 0 0-a* 0M 80A.1W 0 0 o- SW 4O _N4O1 e 0 0 0 0 0 0 0 0 * ...-~ 0.80 0."2 06* 0 0 0 0 0 0 0 0 0 0 O Mp.: _y 0.1 _!00 0.1* F ys0 tot0 __ "ll*O * 0 0 * o 0 o 0o 0 a -- 0 o 0 0 0 0 ----e o 00 0.05 0*8 ~ i~ ~~ ~0*1 805 47 bz &a s 8 4.7 ~~~______.a_ _ 4.1a _ _.6 0.8 040 0* 41 0 OA 0 * 0' r ______4.0_ _ _ 0 Li I 0 0a a 0 * a - * 0 0 0 a It0 0 m 0 0 0 0 0 0 0i:a:J0 a01 0 078.264 *017a8.6 a100* 0 86 O 0 4 0 4 4--- 0 ° 4 ° _ 1LO~~~~" 0 0 0 0 0 0 1 0 0 0 0

Gm0 0. |05W~st'!!~~~~~~ 0 0 0 *4 040m 0a40a -. -&S0 111 0 090 0 40 0 0 O.SB70 '~~~' ~~0 0 0 0 4.70~W 70Ge-g--v- 4 e 1-9 § 117 O-O§ IIA X ?L 4 18.417882aWU0 -4 0.77 o8850g-7a-96.77 @fV2 0 0 0 1407.8 150.8 24. 488.8641.770 400 4884472 0 0 , a a 0 0 - 0 - 0 0 0 485 48 670 0 00 0 0 0 0 0 0 a 0 0 00 0 0 0 0 0 5 | §_40 0 0 0 e6.4 0 . 808 67 eD 0 e U eX o _ ao ao o 108.26 2.4 0604 126.6 680 a ao a a a J'| _02 O-WA O MA- O-M49 --.14:O93. ga" 8 e1 3O-84 o 40L o~ 4-A 447. 4O"5 -- ~-- W&eo*4oo

TRAI OA0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T07!.* 82184 00808. 8 86 .14 870O O07 O86.8 80 .?28082 28 1.11 40264 4 (WO 480 428G TANA-M. OuTpursY,uANTP"FcAMiIU VOFMA8AND806A510I

MATO$4 2446.1 3648.2 2646.2 2646.2 244612 268478 288478 3167.1 3187. 3187.1 3187.1 3187. 3157. 3167.1 3167.1 3167. 81571 15. "'m~~g6.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 266. 06047 606.06 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 *M0 8.4883.4500sum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 sAAW60.6 604 2688.10 884.2 0 0 0 0 0 0 0 0 a 0 0 0 0 0 a"868784.2 883.4 604. 04.2 0 0 0 a 0 0 0 0 0 0 0 0 0 1466.98 148. 14884 1488.4 1488.A3 1488.4 148843 1488.4 1470.2 14064 1488A4 14884 1466.41 1466.4 1488.4 1463.48 1469A3 14664 s~A~ 14884 146A 1489.4 1469.43 1466,4 1466.4 1469.A3 148643 1466.43 14664 1466.48 1466.4 1488.41 1486.43 148643 14664 14664 146.8M NOW 1488.4 1469. 1469.4 "S6.4 16614 14614 146643$ 146643 146643 t466.4 1460.4 14664 1466.4 148943 14664 14664 148643 146.4 ~~MA5~~:0 0 14664 4614 146614 146146 1466.8U 146146 146643M 14664 14694 16 14 14614 146943S 14 1464I4 I464 464 43i6318941 1486.4 146641 14864 14U.4 146044 148044 14*644 148644 143.4 1466.44 1486* 14664 148644 14364 1484 0a *A'4146041 1436.41 1466.41 148644 1460.4 146644 146044 146044 146044 14664 1469.4416 14 1466.4 14664 146644 14664 146 1864.4 13643 1831MA 166.4 1664.46 184* 1*6A4 16644 1664 18644 166.4 1IU644 10.44 16644 196644 110A 166.4 13644 864 14514A 14644 146441 1484.44 1464A44 1464.4 1464.4 146444 14844 154644 1456.44 14546 146.4 146A.4 1G4644 14664A4 146.4A4 146444 1184.0 1266.83 122.3166= 1316.2 1661* 0 0 0 0 0 0 0 0 0 0 0 a IM28.8 M31M 1ML.6 161.3 1664.3 112214 1626.4 0 0 0 0 0 0 0 0 0 0 0 1314.06 164.31 1342.7 16sm.8 1861 116.3 1661.26 0 0 a 0 0 0 0 0 0 0 0 1264.6 1620.02 1266. 1160.8 1"YO.M 1160S 17M.2 18636A 16407 1164 1607* 1666* 1186.6 1886.8 1666.6 18804 1604. 0 V 1121*6 1236.4 1177.62 1286* 1813.8 1369. 1376.06 143m1 1418.1 1417.61 1420.71 1411.61 13663 1601.12 1663.4 1668.8 1426* 0 SU4M6 66.6 866.N 1066. 786.0 08 1004.11 1172.34 1131* 1116.4 1187.66 0 0 0 0 a 0 0 *O~' 68.2 71046 611* 842.2 486.6 Wm6- 82M7 10M73. 1004A 689.1 1607*1 1066.16 0 0 0 0 0 0 *"64. 778.2 711.2 M6.5 82M6 61472 86A6 106402 1to0" 101.6 106.6 1071*6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~~ ~~0 0 0 0 0 0 0 0 0 0 0 0 0 0 * ~ ~~~~0 0 a 0 ~ 0 0 a 0 0 0 0 0 a 0 O 0 0 0 0 0 0 a 0 0 a 0 a0 0 0 0 0 48768 487.8 4676.0 437.847.4 4676.04 487.0 67.6 4676.03 487.084676.8 467.8 487.8 476.04876.04 487.8 4676.0 4376 108 467.8 466467 67604SM 48608 4676.04 4676.6 4676.8 47603 48766 4676.0 480 487.8 487808 4876.88 4876.04 467.0 467604 467608 666.13 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 000 V6~~'~ 0 gm0.6 376.6 26.6 86.6 16* 869.6 606.4 666.6 866.6 806.2 607.78 106.? 88.6 6654 604.7 388.75 30.1 PN OL614 49.18 17*7 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 '~~,UWW~ 0 0 0 8Sam 0 0 0a0 0 0 0 0 000 tax IOUS710.2 0 0 0 0 a 0 0 0 00 0 0 *0U~~Q~~ 0 0 67.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 gum~28.626.6 26*7 811.88 MM.0 282.13 so6 0 0 0 0 0 0 0 0 0 0 CM.. 161*0 181.82 161*8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WAS6070 7834 667.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mviolo 7466614.6677o,6 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 ~-ofw0, 273.16610462664 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.IN K'8412 188.6 266.4 442.6 62.4 3147 6.4 46.07 11. 6.46 6.2 16.6 186.6 73.11 144.1 mm* 26.6 866m" 00 0 0 0 ~~ ~~ ~~~0-0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 ~~ ~~0 ~~~00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188.0 0 3102.6 3179.12 18860 831441 6624* 167. 1V27 3162A42 811.2 816678 6214.A4 as".6 10066.66 '36A1.7 0a 0 21*1A3 O28.10" 4 8. 462.6248826 4662.6 4182. 4362.62 4882.6 4682* 4882.62 4381*2 462.6 4623" 466.6 486.8M~ "O6II~~~ 0 0 0 0 0 a 0 0 0 0 0146UN 61.20"4866.164684.346U438654820 4662. ooJ~ a 0 0 0 0 16182 1518.2 2670. 446648 44864 4466.4 44864 4486.4 4466A3 4486.4 44664 448843 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *mv ~~~0 0 0 142648 4747 160.8 183.6 62660 2662.78 216 W 27360 2762.07 7022LSS1 3670.82 8831.6 1878.64 4176.6 0 0 0 0 0 0 1IVA 887.8 366.0 181.2 846.0 421.16 74.8 646.8 67M. 37*4 666.76 11I 6 . ~"s 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 NAME ~0 0 201.2 mm.8 6 M6.2" 661. 76604 726.87 MM.6 76.6 72I.1 690.6 6MA.6 887.6 708.2 66276 717.8 W'RA,&A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.74 ,40 $&188A.4 86668 4146.W 42661424866.2 4476.6 48M.0* 48207.1 4663.2 478206 47066.66 486001 461. 4886.8 6046.846108803.f 81706068318613 TAMLE-8.1 PURMCUTPUTPLAWTM)PORAE6RU FOFST AND8O4WMs gt6VDk: 8446.12 8u4.1 23446.12 3448.1 346.12 3646 36478 *.16187 01I7. 8157.1 0157.1 0157. 0157.1 015S.1 3107.1 3157.1 107.1 0157.1 ~~SWD5~0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 82.6 W00.7461 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4;Sui or"? SAvS a 0 0 0 0 0 0 0 0 .00 0 0 0 72O 770 M0 a 0 0 a 0 0 0 0 0 0 0 000 a"6I64 7L6*0 726.1 604.1 700.1 0 0 0 0 0 0 0 0 0 0 - 1220 tuW 1m7ss ISMS. 0 1846.12 1460. 16640 14"4 1470.62 1460.46 1460.4 14045 146041 146040 146043 146040 13.8U 116SU 1384M0 141182 111*A 16048 1460A6 14004 1460.4 146A.4 1404 114 1460.46 1404 14604 1S4604 14604 146046 146.4 146.4 Ism~116.5 A10 1411A 1448. 145.2 1460. 14604 146040 146.4A 1 14 1460.4 146014 146041 14604 1W460 1460.$ 1460.43 1410.4 ~~'u~~: 0 0 146.1 1470.6 146NA 1460.40 1460.4 146040 1460.4 14604 146.4 146046 14641 146040 146040 1460 14600 144 Im4t~:1.00140AS 1400.5 141.04 143046 14S.4 1410.44 146.4 1430.4 14104 1410.4 1410.4 1410.4 1410.44 U41044 14104 0 0 MA s"A17.0 1431.0 141.7 1416.7 14408 Id6"4 14104 14604 14104 1430,4 1410.44 1410.4 1430.4 146904 143044 14304 1410.4 0 UA1 WL67.1 1101* 13066 116A.4 1604.4 1306. 1104.4 W*A4 13U4 1140.4 1046 11613 110.4 1I.A6 11044 1104.4 11A.4 11S"4 MA1:1404 14.5 14436 6444 1454A44464.4 1454441464.44 1444OC 145444 146444 14644.46 1464.4214 8441464A U44 148444 1464.4 1464A4 2V046" 816 271.A3 481.06 446.02116814 0 0 0 0 0 0 0 a 0 0 0 Sv.o 076.06 M..6As o.av 0 1"31. imi o 0 0 0 0 0 0 a0 83.4 66. 006.6 1118L741118.6 186.1 116.1 0 0 0 0 0 0 0 a 0 0 0 G"P7.8 66A1 618.1 M6M1 66A8 110.0 11604 116.8 1164 M1O. 186561 1167.0 186.0 116040 11678 1166. 0 0 $'- 46677 40.0 410*$ 710.8 700.0 11s"4 118.1 180118 1104*? 11046 110.0 1106.6 1360.6 1160 1?34 160 1104.1 0 126.7 11446 10748 307.6 77.011.60IXA 1106. 141.3 140.1 1417*81 1410.71 141181 1106.6 116.12 1164 10636 1404. 0 0.2 1.3 2.6 131.0 00.07 11610 1164.0 1172.84 1161.16 1116,46 1107.6 0 0 0 0 0 a 0 40.7 0* 0$ 4.10 0.3 10061 100.3 107.72 1004. 066.1 1007.31 1066.10 0 a 01 0 1.3 0.A6 1.0 00 66.7 7.0 160.6 110.6 00.0104 0.0 101060.6IOW107 107.6 0 0 0 I s..m00.1 1w01 S006.11100.111006.1 0 0 0 0 0 0 0 0 0 0 0 0 0 a 00 z~f~oomF606*I 66P0066.7I0gum 0 0 0 0 0 0 0 0 0 0 0 0 fmoomgom on= som gm o" 0 0 0 0 0 0 0a a 0 0 OWN4 4676.0 4676.06 4076.0 467.6 487604 467.0 46760 4676.00 4876.0 486.0S 406.0 46608 4676.0 4676.0 46786 48760 487.0 4676*6 EA 4067.76 486.84 487.0 MMS.0 46766 4W76.0 48.06 406Msc 4876.0 407G.o4 467606S4676.A 4670.06 4876* 4876.0 460.0 4676.4 46&0.0 ffaxom 22L25 0 a a 0 a 0 6 ~ 0 0 0 0 0 0 0 0 a 5W',80.26 SW 07 04 130.0 104.4 161.00 160.1 00.6 106AI M0.M 00.76 S08. 00.6 106.4 1SO.7 30676 MM.0 0a0 0.0 0.74 0 0 0 0 0 0 0 0 0 a 0 a 0 0 0 0 0 14A 0 0 0 a 0 0 0 0 0 a 6 0 0 0 0.06k-OA 0.16 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AMME 0 0 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HOA 2.77 0 2170 46,48 38.0 MA6 WAS611.06 0 0 a 0 0 0 0 0 M-a 0.10 0.A7 1.N0 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 0 38.47* 16.00 66. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W -WOOM,4 1.4A 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~61PR~0.16 0.0 1.18 6.73 6.66 1.4A 0.8 46.07 11.8 6.4 0.84 16.1 1606 70.11 144.10 23.0 200.66 10010" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 ~~0 0 0 0 0 0 0 0 a 0 0 0 0 0 ~~~~~ 0 0 0 0 0 0 0 386.6 $314.41 00410 SW.7 110 10.4IS 8110.5 3667 13144 6068.6 100M6 ~~MAI60'0 ~0 10M.6 10706 1301.22 4102.0 43622 416. 486.1 4121 4182.4 416.0 410.1 4182. 406. 4162.1 41828 4162.13 0" 0 ~~ 0 0 0 0 ~ 0 0 0 0 0 0 14601 2066.1 4166.1 4384.0 4166. :~~~:~ 0 0 0 0 a 0 1610.92 I510.2 4101.8 4162.8 3070.0 4466* 446.43 4466A3 4466.43 4466.4 446.4 4466A 4460.4 4486.46 ti ~~I'I~~ 0 0 6 0 0 0 0 0 0 0 a 0 0 0 0 0 0 b 1 a06146110446 * 0 SW S A a 159 WA U M O * WOk M$1M 4MOS %O 0 0 0 0 0 176.1 06.0 687.0 10.0 361.13 46.4 421.16 744.6 64.6 678. 637.6 06675 "Wa.f TAKE-5.61 m4MWYouTPtJ18YM.NTa)RFoRMu4MWFOM0MNDScUIR4

24415 24.12 244.1 6212 244612 364782847 26.1 2167. 21671 21717.1 1.t? 817 26.1 25.1 8167.1 3167.1 8167.1 M110 0 0 0 0 0 0 0 0 0 0 0 0 -- 0 0 0 a 0 0. WMAX 8 2A7 746.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 'MROWN 018.86 07.4 678 0 0 0 6 0 0 0 a0 0 0 0 0 Zan22. 7784 76.6 688.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WOIASW~Z Sam3 716.66 72.0 604.1 780.8 0 0 0 0 0 0 0 0 0 0 0 00 MA-134.7 1290.6 127.0 1160* 1646.12 147.2 1444.016 146.A1 14 14 142014" 1432.06 142.414N 14 14614 14614 1468.7 144. 147.26 - 19278 1366. 118.0 1411.3 11817 1470.0 U46* 10014 1446.6 1461.71 146.0 14614 1466* 147.3 1471.6 1471.68 1400.66 146274

MAU\ ~~0 0 1468m 1406 486 46. 40W404216.310A3 424 484 1460.1 16* 1624A4.8 1484 484 14.0 1401.0 428 416 400 404 42.410.410.413.413.41124 404 404 404 404 1677.S U14210 U142.0 146.78 44. 142044142 14 14824 143044 1482.4 143.4 1432.4 1432.42 1460.46 1432.4 14IN.4 1462A4 0 60 1702 1601S7 1894 30114.4 184A40 1304.4 1124.4 116.4 11N0C 30.4104A 4.40" 1804.4 1104 120440 1304.40 130446 180446 1004.40 6065 1415.471446.7 1462.3 1454.4 1454.44 1454.44 1464.44 146444144 14 14544 1464.4 1454.4 14544 1464.44 145444 14544 1454.44 4464.4 VMS"NAW 204.0 23687142 46136446.021144. 0 0 0 0 0 0 0 0 0 6 607.04 670.0 727.76 SOL"6 662 1264.46 1247*0 0 0 0 0 O 0 0 0 0 00 V42> 3641 04.3 SO6.0S 1116.74 1116.00 12404 132. 0 0 0 0 0 0 0 0 0 0 0 IAMF"A.6 Sam* 013.16 666 su8m 131*7 1288.4? 11* 1607.06 1274.21 1291.66 1262* 1226*6 1292*1 137.00 1is" 0 a Y 3 466.77 40604 468. 71.M 7400.0 126.0 1126.6 im 12R% 1243. 1266L10 1232.78 1186* 1154.44 1167* i2Mu 1346.67 0 MM227 110.0 107*S 207.8 MI7.1 106224 1162.2 17267 12L864 1162.6 1212.16 1106.6 111066 1066.2 1007.0 11646 1312.6 0 '~8OS1. 2.2 1.213 26 121.0 60.6 740.21 6544 9106.1 607* 016*4 070.6O 0 0 0 0 0 0 0 t00. f07 0.m 4.12 2.2 6404 am2 60.g 617.28 7200 7MM* 762.0 0 0 0 a 0 0 1* 0.66 108 68.73 7*4 646.7 766 044.62 00.79 778.1 652 672. 0 0 0 0 0 a 1Z 00.1m 3006.1 6006.1 3006.1 3006.1 0 0 a 0 0 0 0 0 a 0 a 0 OmW{S8066S72 62706620 06So"30SOMA?0, 0 0 0 0 0 0 0 0 0 0 0 gum4.6 226.6 2246.6 SU4M3 2246* 22606 224.0 9286.6 24.0 2240.0 34606 22606 286605 2646.05 284.0 ODOM6 8040* 220.0 40 3~0660 f106.6 3060.6 606.0 806.6 606. 2066.66 306.6 na6.6 3068" 0066.6 160* 6066.6 0066.6 0066.6 606. 606. 3066. 'Q4$ 486.06 4070.0 4876*8 4070064870.04 4670.0 467.0 4670.84860 45M 4076.03 407.0 4670.0 4670.0 4070* 407.0 4670.0 487.064670 605M 46.78 486.6 46.06M 4870* 4076.0 4670.4 46766 4870.0 4676.60 4070S.03 4878.0 4876.04 4870* 4670.04 4670.0 4676.0 4876.0 48606 9Pl"282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60.0 67.04 124 la.0 22* 212.6 g6.2 270.21 267* 871*60 2852 296.6 2515S 266 2a.2 2668 204.18 0.0 0.657 0."4 0 0 0 0 0 0 0 0 0 0 0 0 0 00 ~\~~p4C~1 0a 0 146A 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0.06 0.16 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 6.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27? 0.4 2.76 46,48 33.78220.6228.4 0 0 6 0 0 0 0 0 0 0 0 MM~14* 161.07 161* 0 0 0 0 0 0 0 a 0 0 a 0 0 0 0 344 *J 0."7 1.26 0 0 0 0 a 0 0 0 a 0 0 0 0 0 634 1006 63.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 amQ~6 1A* 7*6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M'2Mfv'~ 0.16 0*9 1.18 0.72 8.06 0.68 43 7*6 an2 636 6.0 6.a 20 O66* 1666 48* 61*1 34.9 0 0 0 0 0 0 a a a

0 0 1020.68 1070.6 301.22 4362.0 4364.0 4640" 4374.1 430.0 43680 4287*1 43670 4266.60 43865.24 4363.5 416.0 4362*2 ~~UOS~~'0 0 0 0 0 0 0 0 0 0 0 1400.25 270.4 4162.0 41368 426.26 420 43766. 6 0 0 0 0 0 1513.22 151&* 2071.74 44664 4466.4 4480.4 446048464 4466*,440 44604 4466* 0 0 0 a 0 0 0 0 0 0 a 0 0 0 0a 0 0 0a a O 0 4~~63.061184.04 264.3 20622 1710* 19002.1 210614 2826.1 2804.4 2617*S 300.2 216656 36002 w WORWIN, 0 0 0 0 0 0 140 m226 162.2 62.W 121.61 100.M 446.2 306.22 417.1 626.16 6MM0 660,40 ffi '-01 0 0 0 0 0 0 0 0 a 0 0 6 0 0 0 0 0 0 0 a 0 0 0426 A6.4 630.1 602.28 66.76 600.0 040.2 010.2 672. 627m I71667 60.4 A6$4 641.61 'I~~~'< 0 0 0 0 0 0 0 0 0 0 a 0 a a0 0 .0 0 ESM UN3066.4 60812.80 41412.3 42606* 4269L6* 44001.60 469100*46211.211 46836 47204. 4766.2 46620 43. 49MA406* 60446*61002 617774 6200. 8612146.12 16246.12 1646.1 9"46.1 1646.1 264.76 816717.1 .1G 6171 1167.1 67.1 66.1 8167. 616.1 0167.1 6167.1 6167.11 a 0 0 0 0 0 0 0 0 0- 0 0 a 0 0 26602676 4~~~%)900.47 G60.6 0 0 0 0 0 0 0 0 0 0 0 :~W.~~601.64 606.A590O.1 0 0 0 a 0 0 0 0 0 0 0 0 901.6169~4.4 0 0 0 0 0 0 0 ~~ 06 .1OK" 4.2 0 0 0 0 a 0 0 0 0 0 0 0 0 0 66.0 CO4 10O.4 00.2 00.2 0 0 0 0 0 0 0 0 0 6 0 a 0 MUM6 1466.4 1440.4 14694 1469.4 14694 1464 16914 1469;14 146A141PS. 4S4.46 146.4 16 14 1466.4" 1469.A6 146N4 14694 146.4 6466 d1494 44aA1614 141469 141469 1469.M14 1469.14 1469.14 1466141M 4694 146.4 1469.4 146941A 1469.4 14694 144.46 $469.4 1466.4 1469.4 1I6d4 14694 146.4 146.4 146AB4 146.4 M464 1464.46 1409A4 146AS, 14694 MAU. ;AOS1 146.4 1469.4 1469.4 14604 1469.46 ~~0 0 1469. 14694 1469.4 14694 1469.4 UN6A4 1469. 14694 1466S; 14694 1469.4 14694 146.46 146646 14694 14694 $ 1469.4 7M 146941 1469.4 1419.44 1419.44 141L4 1469.44 140WM 16 14 141644" 146.4 1419.4 1469.2 1419.4 14069.4 146L44 0 0~ 1694MM*$. ¶$O436 1W469. ¶4694 1*460 1419.4 ¶46A44 14OA3044 49M "KM.4 146944 1S469.4 1L4642 146 146944G 1O4694 134194 10A 646. 1464* 1464A 146.4 14644444 144& 1444 146444 144141A46444 1461414464441C 614 t1,,N% 146414 146A44U 14614144644A4 14644 14644 'OW 1it"1 1268.6 1212.2 122.7 6sa*6 1361.6 0 0 0 0 0 a 0 0 0 0 00 Iy~r~1I06 1611.01 116.6 16.6 1m6 1121 1121 a0 0 0 a 0 0 VAIS""1140 1647.01 1642.7 1"no6 0 o 160 116.6 116.1 0 0 0 0 0 1M4~1206976 0 0 0 0 00 1694.6 161.7 1666.0 166 1"K4M 116am 114.6 is6"6 1164.6 .4f5:1264.66 136646 1364M6 1664.6 116.6 I364.66 116.6 0 0 "am1 1269. lo6a6 166.2 1196. 1096.11 1099.4 1660" 109Wm 1169.09 l1awn low"6 110"9 11661 11on" 16I61, 0. '-V6 111*M 1*6 1177.62 1276.6 1666.76 140044 146.6 1422.16 141646D 1426* 1426. 146.0 142L.61 1421.3 1416.6 140L.0 1426.9 OS161.9 saw6660 100a" SSW* 46.0 a 70"2 0am6 947.6 666.6 64.0 -0 a 0 0000 SS$o0.60.7 712*1 6166 M77,7 670.06 11.0 644.0 06646 M06O 70M 770.60 61.16 0 as"4. 0 0 0 0 0 7192 711.26 66A4 700.6 SOL0 62.6 66.2 471 766 66.76 saw.6 0 0 0 0 0 0 ~~~~~~~0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OKOaiM 0 a a 0 0 0 a 0 0 0 0 0 0 0 0 a i~ * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g4CQ*o* 0 a 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MONO~. AMA7, 407.6 4M7.04 4870400 407.0 467.0 4676,06 4076.$ 4176*6 4676.3 46.06M 467.0 407.0 40760 467.6 46760 660 bwAIW 467616 4676.6 46760 4076.0 4679.04 660 46 .0MS4676.040MOS 30466* 4670.0904676.4 4676.0 46704 4676*6 SOL 467a" 467.647.4 670 ~'M*W>ffl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 286* 276 290" 602.6 60nes 3678 606. Sa6 306* 061 10.6 10.6 6004 306.1 106 60.1 806.6 306* m. L414 40.16 17.07 0 0 0 0 0 a 0 0 0 0 0 0 ~~0*IW~0 0 a 26.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 low~10.2 10.2 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 -MMMM 0 0 67.94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MW6S26.1 266.6 217.67 101.76 0 26.94 166L0O 210.1 0 0 0 0 0 161.0 0 0 a 0 0 0 161.4 161.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WAS,44~07766.46664 0 0 0 0 0 0 0 0 .0 0 0 0 0 ,i ~ 740*2,60146979.6 0 0 0 0 0 0 O *,0 0 0 * 64 - 276.1 0 a 0 a 0 MA$* 269.41 0 a 0 0 0 0 0 'g64PAM 0 0 0 0 0 0 0 0 16412 "6L.d6 269.6 616.17 276 4.6, 4.10 7.26 0.6 GM 6.0T 7 69.70 14.66 67.16 MO 166.41 764M.06 7-' 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 a 6070..0 0 0 0 ~0 ~~ 0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 811S.0 66O0AS 0272.1 6667.6 614*6 MIA1 08646.4 9717.01 9027.72 626676 6616.1 062176 1107.66 10261* DOm~~~ 0 0 0 a 0 0 0 0 0 0 6 1400* 2911.0 43628 4668*8 4662.12 4628M 4662. ~~~~~ 0 0 0 0 0 0 161I.2 1613.26 267.0 4466A6 44664 446646 4466. 4466.4 44664* 4466.4 446.4 446L46 ~~~~~0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 110046 664.6 170.32 469.2 176M 160.04 1264,1 1666*S 1666.1 2666.4 2476.6 2167.13 2627.4 416.0 '~~VEW~~ 0 0 0 a 0 0 61.6 6.72 166* 112.0 62.74 166.06 166.1 61675 367.1 469.0 6O.2 121.4 0 0 0 0 0 2176W46 0 0 0 0 0 0 0 0 0 0 0 2olis.21 0 0 0 a 66616I 64 01 44.94 O".6 672. 629.6 404.66 661.26 121.6 '~~~I 60.0 626.A2 676* 66L6*6 72.16 77.16 ~0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67S4646.2 8A.W&A666* 66006.4 4141646 46061.4 4651*82 47107.64 410176,46602124 61011. 61626.76 62761.7 61660.4 64626.1 66607.7 664174 676.6 6IM20* $6660.4 2461 446 .12244 6.12"i8446.1 _264462 244.11 254.8 16. 8157.1 8157.1 1167.1 815$7.1 8167.11157 .18 157.11167 .11 167.115.

SM8I,6L.47 74. m 8 0 0 0 0 1' 0 0 0 0 0 0 0 0 a 0 72O MAS 7W5* 7A 0 0 a a 0 a 0 0 0 0 0 0 0 0 MMM506J 71gwO ram6 78. 70 7*6m 0 0 0 0 0 0 0 0 0 0 0 0 12374 1286.8 1270.8 113.8 114.74 UNA8 14084 140848 146.4 1408 14484 1408.4 140841 14084 14048 14084 164 1408.48 WM . 1258.7 1866A 1184.0 18707 1856.8 146A0.41 U14084 14684 1408.1 4684 14084 14084 146A4 1468.4 1468.4 14084 140A$ 146M4 '11A214. 1184.57 140.4 1411. 1464.64 140.1 t4004 1468.4 14684 14604 14641 1408.4 1"4084 ¶40841 14684 1408.4 145041 ~~MA*'.'0 0 1468.60 14004 1468.4 1409,74 14841 14848 1404 146.4 1484 1408.41 14684 146.4 14681 ' 14Oa4 14684 146841 14.4 146NA IM*157.08 i 1401.8 14688188 1440.10 1418.4 1488.4 1488.4 148.4 141844 1488.4 141.4 14884 14144 141844 1430A4 0 0 IS"M1174"4MA 14814 1440.2 1418.78 14184 1484 "W4OL1884 444 1404 484 1414818 148148844 148814 148814 14184A4 0 MAR1172.81 111.7 1188.6 11448 1844 188440 1884A6 188440 18844 18844 18844 118.4 188444 18A4 18440 18344 184.A0 180.4 141647 M44M7 141248, 14644 146444 1464.4 146444 146444 1464.44 14K.4 1464o44 14644 14442 14644 1464.4 14844 146A4 1464.4 VM*~~264A028617141156.08460.11811 0 0 0 0 0 0 0 0 0 0 0 0 -08.04 078.0 727.7 1 Jo*10.81IM." 0 0 0a 0 0 0 a 0 0 V~ 826A1 84.8 60.0 10076 1118. 1188.1 18WM 0 0 0 0 0 0 0 0 0 6177.1 568 611.1 081.6 SOL"6 11s"8 180.8 116.8 1864. 1864.8 110.8 1804.8 1864*6 is".6 1884.8 1104.8 0 0 AN' 46677 408.04 46.8 60* 780* 1888., 1186.11 188.1 In". 1800.8 1186.8 1888.80 18886 loa6.n 1888.06 la"*188 0 '' 121.70 110.06 10741 10? 547.66 140044 14WM8 1412*6 142.4 1423 14148 4114 1416* 14214 143.82M 1425* 14"* 0 20921 1.2 2.88 24.74 110*47 47* 704.2 On=.8 847AS 8662 064.0 0 0 0 0 0 a 0 .4062 0.7 0.67I0* 2.80 8.8 1.08 44.81 8.4 7804 708.6 770.8 812.1 0 0 0 0 a 0 lie1 0.86 1*8 8.84 264 20.10 628.64 68.28 547.17 764.2 68876 08.8 0 0 a 0 00 *~pll4:. 8006.1 8006.1 80081 800611 W006.1 0 0 0 0 a a 0 0 0 0 0 00 3M(21.376*004.87 O68.?1OO87806.8 -0 0 0 0 0 0 0 0 0 0 0_ 0 0 22M 24U 24 2 2 0 0 0 0 0 0 0 0 0 _0 0 0 0 ::i:.:86a.87 008.1 805.1 8068* 100* a 0 a 0 0 0 0 0 0 0 0 a 0 IO..4878.0 4876M0 4760 4678.0 407.0400 4878A 08 4878.0 480.08 4876.0 4876.0 4676.0 4876.04 4876.0 406700 4876.06 Q4076.84600 K.. 4657.78 487.6 487.0 467.0 4870.0 48700 4876.04 48780 487.0 4876. 4876.0 4870.0 487.0 487.0 487.0 48608 487.0 467.0 U M ae2 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 00 0909 ~~0 68.0 074 54.10 146.4 8008.8 807M 80.8 80.8 860.8 80.8 808.1 W08S 10.8 10.6 10.8 108*5 108* OSO' 0.08 0.6 0.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 -0 0__ a a 0 0 0 0 040 0.06 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 05509'' 0 a 0.1 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 09409 2.77 04A8 2.7 10.0 40.24 166.121801 0 0 0 0 0 0 0 0 a0 '0i' 14LJA 181.87 161* 0 00 0 0 0 0 0 0 0 0 0 0 NA88 0* 0 0 0 0 0.77 1.28 0 0 0 0 0 0 0 0 0 0 0 0a a SW84 10.w 6S. 0 0 0 0 0 0 0 0 0 0 a a 0 0 64US9 141 7.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64P .1 0.0 1.11 6.m 4.70 4.8 4.18 7.5 0. O0m 0.5 7 68.7 14*6 sr.1 Om* 108A1 MM.0 ~a& 0 0 0 0 0 9 0 00 0 0 0 a0 0 a 0 0 0 0 0 a a ~ ~~~~~0 0 0 0 0 0 ~~~~ :0 8076. MIO 8867* 584.88 MA1 9040.6 0717* 8027.72 0878 061618 8621.7 10071.8810281 0 0 1028.6 1166.0 42884 486.8 418.8 418.8 486.8 4862* 4802* 4102 4162.6 416 18.2 488.2 12 438.8 0 00 0 0 0 0 0 0 0 0~~~~~~~~~~~~~~~~~~"148.0 82* 4802* 4162.8 41828 48an6 438.8 0 0 0 a 0 0 1618* 1618.2 1706 486648 4468.4 44684 486.4 4868.4 448848 44048 44668 484 0 0 0 :3 0 0 -0 0G 0 a 0 0 0 0 0 0 0 0 00 ~~~~~ 0 0 0 4* 6.8 MMu 488.2 17.8 1600.4 1264.1 160.8 186.1 2888.4 247.6 26-.11 22.54 41096 468.87 0 8 0 0 0 0 8.71 ISO6 112* 8244 166.0 144.1 888.7 87.10 449.A? 42 1214.41 211U ~lL~i.~ 0 0 0 0 a 0 0 0 a 0 0 0 0 0 0 0 0 -_0 -. ~~~0 0 0 am* 1"LO 4140 64.0 672U Oa" 604.8 651.28 01.08 68* 88.1 678* "I"121 ?71.1 a 8 0 0 0 0 0 0 0 0 0 a 0 0 0 0 A574046.1 WMZA168.41582.841104806IS4.14 7444 47107.64 4017848 6622.4 61801*6162676 6761.8 8800.4 844L 6487.7 6641740 8676.8 G 2 868040" 7455-6*4 OWasOuifirYPUNT"FCRWM6M1M F0671WAD 006464

S44.1 2461 44.22461 4612 264.70 664.7 0167. 0167. 0167.1 0167.1 0157.1 0167.1 0167.1 0167.1 3167.1 0167. 317. ~~DII~~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20. a"s<04 746.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NAWA 16.0667047667WA a a 0 a 0 0 0 0 0 0 0 0 0 0 0 wMAm:r4 ?AM 770A46766.662.2 a 0 0 0 0 0 0 0 0 0 0 00 0 P39M4~~666*1716*67mm 677.7280W1 - 0 0 0 0 0 0 0 0 0 0 0 0 "We1027 196* 127.6 107.6 10664 1470.5 1460.77 4 14 146447 1470.61 1472.71 1467.4 14. 14600 14604 14664 14664 1494 NAME: 120.78 1"6WA 1104.0 1407.0 1068 1469.4 1471.2 1470.6 1460.2 1471.26 1460.0 146.0 IMP.8 %k 147.4 14664 1466 146040 14690 t31166T 14004 1411. 1464* 1466.0 1460.4 14604 14604 14600 14604 146A4 14606 1460A41 14604 1460.4 14660 146040 149 OWW 0 0 1460.6 1469.74 1460A 1460.4 149.40 4614 146040 14614 146014 14664 146041*A 14664 14604 1460.4 UN60$ 1460.4 *1¶':1667.06 1401.66 1400.0 141.0 1440.16 14844 4 1410 41044 14804 1-W4144 18 141V4306 1414204IM441 14104 14804 0 0 IAS.07.6TF 1421*8 1426.7 144029 1480.70 1480.44 142044 1426A4 14004 14804 14804 14894 141042 143104 1410.44 14O.4 14194 0 lam'.1720 1061* 110086 110446 11s" 164 1046 11046 10461046 1666 120446lusla 110444 11044 Inca Into4 MWASC 1416.47 1446.70 1400.00 189646 12044 40 146444 148444 148444 146444 14844 146444 14544164 146446 V.4011* 146442 5C 1464441 46444164 145444 146444 204.6 22 2T142 427*6669.2 106147 0 0 0 0 0 0 0 0 0 0 0 0 Sam.670 67A$ Z73.70 96007 10060 1217A6 1296. 0 0 0 0 0 0 0 0 0 0 0 :~~.VAFI" 226.4 046.6 60.0 110&6.4 1110* 12616 1242.2 0 0 0 0 0 0 0 0 0 0 0 VAIW.':677*1 686.06 610.1 801*2 607.6 1040. 110* 1166.A 12M.4 106* 1067.2 1306.2 104.0 1864*2 18608 1160*6 0 0 V~ 466.77 4.0 460.0 667.1 766.11 1212.8 11204 1860.2 137004 107.0 1866.0 1266.M 180.72 1242.? 1104* 1360.0 1360.1 0 ~

0 MIUdUS05960 OPIOl a* CoAW P &UA,W

2A__ - -L

Ii- _-- I _L 1

o MIM cam + WO W. * SoN OP. UDD4.o or. X NEW a.

BULGARIA.DEMAND - CAPACITYBALANCE

. -.-Gt~~PO .---- _Sf CAD VA '---- + -1-

1093 1IS5 109? 1599 2001 263" 2005 2007 2002

RS(1303- 310

It I'l - -- /-

1SS1I I 19919S9S 2110 I= 2005 SW2e i (19S - 3010 a mum oEW + WKCA. cuO A. RDB v. CA. X *W C. 129 Annex_5 Page 35 of 39 Fig- 5.4 BULGARIA:DEMAND - CAPACTYBALANCE

. _ _-Z_~2 NLWCW_ BULGARPIA:DEAMAN -O'd CPCI BAANC

*O I=S IW 1"t 120010 SM 21107 200e to MMRS(13 - 2014 a umtimOhD * TOTAP. * 0own OP. A R1jIP. w. ML CAP.

BULGARIA:DEMAD - CAACITBAANE FW _t OP" ba* w s ,14--1 1 1:1 X -1 13 I1 X ==_3

7 4 ====

193 1fiM 117 1911 2001 2003 osM SWo 2ew

aM=ozm TM CAP. O ito. Roaw .w. X Not CP. - 130- Annex 5 Page 36-of- 39 Fig- 5.6 BULGARIADEMAND - CAPACITYBALANCE

13 ------a

12 _ _ l a

11 - _ _ _ .

aa

1393 1t55 1S97 19M 2001 2003 205 2007 2001 mS (3 - 2010) a WmJ on" + "a CW. O Do= Ca. A 9po.jW. CW. x mmC~W.

BULGARIA:DEMAND - CAPACIIYBALANCE PauwSpIdaes OS 0* (ISmIl 55

: - ~l--j-!-j- - - 1413- -

8 -_ _ ~_. _. .in LJ Lin :1 ----- a

2 ------

. - _ Ea

1SX3 1995 137 1t39 20101 2003 2005 2007 2005 lW15 (199 -2010) ONWJDD!MII + TO. C O,4 W11 a. A 998WE.C. x ma,r. WNW0 wlsoi 0681[i at mSol 0118* 0911 WJA05 Onel WiUUt si186 0 02169915*3 81S8 WOftt WI"J

Wm w891 a o01 SIM *19 Wmw oIS tSIos eAs LAs: cm AI cowS eo0 Mc 5w1 an A09nt m6a1wil £m Om SW W199 $V0i gnl oam 6 Wrezs 01 8OM W£61tO'su Ant6ewtO AMWu1 oIlS06 A321no9 1 965WI OmO Om0nno WmNot8 8116Wm19 611M"it wonoWt 60w191161 61610 OWOlPwoow 9003no Arms tsw gm we mi PlPRI' onm nu VI-ia Wn swe am 1l28 819100 am Om

WAN8695 911W19 8816611 Orlwas 03*Wll *158el6a8 O681 103063 Wiltl013 SP18190 01931 Orai *0119Wil OlB119 6Wtor01 00miese osw 966 zM 01 cobw VMtl WI OWN noeo 811 8 0 K1 W11 lOrm er* 0e61o 66r"O 88118 s*1o 8511 09*3 We" onto crn 9"1 855*1 06103 WS& orva W£tI 1091 Wol "a0 Wie6 ll 8151 a1 0 1r n W e8Omno £1611 or38 w80 3A16 3*IC owes *6ee aWl ont or" Wil £11 £ 011tn1 9M6 9 6 n1 Wmg g911 tt68 WOil tow S951S90 SM Om Wft to m O so 09a SOVI #AV 4t wi&W0I am o Will 89 *1 Nil 115" 5t W60 gm661 RWt WIGS W8 Wu 3M *586 0113 906 eWS 8lt 1S0 0U0 0011" cr,ss NW 96t a1 61181 a00 W tI 1Ul1 a8 0o0ro01 Ant

#W9 91* wIL 09 31160 Arm 6w11t Om Sww £16 30w 902 SO660 WMtOS. 31911A WAWJD.1 1tIN OmWIV0 ll0 "Vlts00161U VUlOi 010UWD 106Ad Iwo"WA 911N iVUdorO 811560 9113Ud UV1W0013OflN 016UVI

set" 01956t059 560two1 01181or9 1Mg6m6 01awilOO Om 9Mt6c 0 rtIA0d 8*WN *008Wol WllMoIn 86968 1 0'601rNO811 0068W0015 WMGm 6o10Gm '91 *981 ont Wlle 81o9 e918 mlu skiN 01£ *981X o06 t Will 9116 0ro£ 8106 81111 1WA0 918 00m 618 1110 Wa 10 111 eW 901 001 WIll 1190 0m 10w 0 1110£ 15 I 0w18SPlois 606 Oa 000 se 18061 Wu 0111 W1181 00100 t0005 2s# OlOS 011a 688 tWt W ,ll NW 61 w £le808 61g so 00161 lI cr11 66 16 I oASW AM 0t1t a1211 81 001 WIno61 O861 9 0W11 * 9t6 0W811 s*66

81991 UAgue& lm O"t"11 am038 oWwWml OR lOt" tli Om40`11 Omn6661 13081WAS WWIUelm Oma"9 0aimoot Wllt "Vow511 Wm1ee aneam6 s9o "IS90 Ant am W09369 9 O1191 1 96 re o 8n11 No r11 1s1, oWi 966 W096 u1, WIt 06 O1r1 t4t69 0AS 9 *tla C 1 "WI M91O6 8O1 09*0 00 9010 tOI la "In a W eol erta Oms # wo nt ala eovo ou woo cV O

111 011m 100 Om 10t 8lm a00m 96 et 610 Wu Wa 9111 5116 Om M6 Ad tWAS 018 OWr wP680 UWIDS Wm JOB Ad Wou -n& oJMn Arm lUle onuO As Ulm Wm gm81 rle Wll 9Oa 00 010 5 *10W£n WIm 03m trAce oI 0e

*0581 WS 18t O 1m10 WOW 016 M0 8*68W 011361116 Wl 9800 Wm 606 -:v UVI *n oov ow t Sr am Mtnese sao a" ors ss| Ulm esv Mt

SI *5 1 01 821 1*101 80= 81= 301 811 WSN9 010 960 WO W3A AwAo WK t wo esw ortog woowo Om am Sr OsL Wm rtl et aoo a" am w1166 611Wmu WCwI 0918ore IsrOWil WIOIow 001£"am eonumu WMBA o W51186118t OMs o 0916W631 961WM 8660SW 000On OmuV

Wm9101 916 " 9031AMott 00r1 69181Wm oemu0 W05mWu 1063gm 61181to 8111£AW OsIlt 0V1*3"Il armW6105 81A01 uSt oro00L 10I"9

081pe09 am01 O@1 05811 V09*1 6 Wtll 1W1 11 01 £30 86 051 *OsO sruo 65193rm 9661G 081 91161 1*161UNW 6661 60gm900o 6011 038£ 6100936 001 6OO1 16***9 6e1901 916111 016Wil ezIUU1 WillW 1 OW0 am610661 asks 9110s16 Nu83 oWleWI 01181o1 1191w811 01000 9661a6 snto wm wv o artu ton am Uoe O59s nWm0' onsrssW wes oon Zoo *VI01 lus orm Wm0 oom VOSi aW orAS ktA UIN OW 5106t OdAl9 on COI so'Wil lm a,"631 081 *lm1 98198 onl O66 1113 Wm01 WIl 081a 010 001812 0* g66am 86* 6EWt868*1 0 010O amWOS 016 8U6W O W* 96"l 16 1116 8611am U 031 O30803 06*tL 011300'0 11SO

09 WM OMSUUO U TW 9l- n W&W wtt Mt WA" Ws" on Om Wm WA lt sv g 'WC Wm m lo t M 0Wm l W m VC am am "et OWM AM OM OM& W"g Ptil1 elbOn$ "- ets Wm 9n tt O 0Wm Ulm Om met1| tti0 "us aWm Om OrS a _ _,,,WA we, W3h W O n m Ad w N noZWOD Wm W3101m wva."

61C~~~~~~~~~~~JOE 02

9 COOUdD_SOOT -V - 132 - Annex 5 Page 38 ~of 39

TAME-SM, TOTALYMTMOMOSTGI~NSWOPTOp LW OED -MEOWM USM

YEARNUCLEAR FME OEM CAPIAL. DOS TOTAL.PY-UC YEAROMxLNULA FUE 0846 CAPIAL. 14 TOTAL PY 100 23.1 463.0 2200*8 13.067440C 1654* 1654 115 0NA0 436.7 140 5no 2.1 67ay7 Ml6.$ 10s" 16.30 4060. 254.0 78A* 76.4 3112M 2066.74 166 10.0447.63663 MM5* 1.6 641* 686.7 uss n1a' 641.66 264.7 Oi 457.73 *MM6 1661.1 1"a 07.6 4"6L6 16.4 16.1 OA4 1011.21563L78 1006 11.70 606L" 00376 MM.6 61.7 366." 181.0 1IM 07.6 417A7 11.4 MM.0 1*7T 1010* 319M, 108 11.70 a76." 16M0 51.10 25.6 111.4 mu.7 165 117.80 601* 190*6 171.4 31.6 11103 766. 1006 0.00 661."4 1743 10700 40.7* 1010.6 647.4 156 60.0 61i.6 MA.6 Iwo 65.7 041.6 MM.6 108 0.00 60.4 1741 16.00 16.6 01671 616.7 1656 650 ML"9 101.6 860 16*1 MM.6 4767 no0 0.00 808.06 151.1 750 SI.71 1051.77 6667 OM0 3.0 61.6 UM1 146.1 43.6 66.8 451.6 2001 0.00 60.22 187.65 18.60 481 1066.0 606.01 2ml 10.00 MM.6 34.1 14MG 61 WA1.1 43507 2002 0.00 604.0 ML"6 171.6 ELm 1164.0 601 10011 76.0 MM.1 20014 10.6 OM.6 106.6 415.7 200 0.00 611.3 MM.8 102.4 mu.6 151* 47.6 6003 3.0 636.74 35.* 1W7.6 81.07 66M6 156.6 gm0 0.00 014.83 206.7 178.6 87.66 11467 4010 104 000 6M41.7436.13 66.0 S?A1 66.8 310.71 1008 0.00 607.0 106.7* 31.1 17.01 0132.62 16M6 100 10.0 416.9 34.66 ?0.10 136 66ac M7M 2006 0.W00 17.56101.46 60.6 16.13 1440.14 4180 6006 3.00 63.85 MM.6 117.60 16.6 1016.0 164A 1007 0.00 616.04 8006.1 667.3 1827 166.5 410.6 gm0 10.0 83.1 141.66 434.1 16 165.0 01.6 2008 0.00 631.6 314A47 418.6 .,47 110.1 103. am6 10.00 641*6 36. 4160 an.6 11864 10.1 2000 0.00 631.47 140.3 6.0 15.78 106.0 257.6 10o 10.0 6wig.11 14.6 177* 16.7 106S.16 306 2010 0.00 895.78 76L60 0.00 21.66 6927 166.4 1010 a.0 am3 100.0 0.0am86.1 010.0 161 TOTA 74.70 l037.1 637.07 6666.8 *144.6 14660.141130* TOTAL 678. 00264.7SO160 6624363SU 171604 66*

YEARNUM.EAR FUEzL OEA CAPITAL ENS TOTAL PY YEAR NtUCLER FUL OEM CAPITAL. ENS TOTAL PV 10o3 47.60 300A43131.06 16.10 0.01 410.0 406.0 16 60.0 316.13 116.7 18.10 0.0 611.6 6116" 1004 84.30 313w41 144.01 16 107 655.0 605.6 1104 76.011.41 61.10IOI 74.1 am0 60.63 665.1 1008 62.M 334.0 140.1 168.0 1.6 744.7 016,46 16s6 66.16 a4." 1S6 1M.6 a.0 74l.1 610.19 1090 111.80 364.9 166.5 19.2 16.60 06.4 M11M 1666 110.0 WA*0 163 16.4 10.66 10.7 761.1 100 13.8 16174 176.40 106 16.70 060.1 646.0 1907 160.0 1606 166.6 665.4 14.11 1060.6 MM.8 1906 87.80 474.6 165.7 171* 16.64 30.7 871.74 10a 66.0 612.6 10.6 141.6 67.17 0706 MA6 1000 40.30 476.70 MM.6 14.6 16.46 646.1 490.6 1190 46.6 620.18 101.6 1.6 16.M 016 816.16 2000 13.60 416. 117.68 65* 10.02 865.66 444.10 100 17*5 6304 22.00 151* 66.6 1021.60 80.14 2001 13.6 400.7 23.1 64.6 16.66 80.2 661 am0 17.6 617. 1004 10.6 6am1 10o5.0 461.66 2002 78.60 604.70 920.10 10.1 10.6 637.6 66. 1001 61.1 31*1 217.64 11.4 1.7 076.8 412.6 200 10.0 614.06 238.60 16.1 IS3 613S6 61*A gm am0 MM04 an"0 66.2 41*4 863.66 040.6 2004 20.00 610.6 MM.3 06.60 18.A 62.1 9M.0 1004 3.00 616*7 35.1 16.10 175 616.61 18L7 1008 100 625.8 MM.0 40761 16.25 64.6 270.70 200 10.0 616.44 10.9 6S.ID 6*G 11*6 29.u 20m 20.00 831.61 261* 117.00 17.60 92.1 am.1 1066 1.0MA 5.18 23.16 63.6 25.0 1141.1 190* 2007 10.00 64808 266.60 273.70 10 1086.7 106.73 100 15.0 664.0 2117.6 63.7 44.62 1366.12 *5.4 2008 20.00 862.6 14.6 32.83 10.6 108.10 36.0 OSM 10.0 041*643.64 426.00 68.6 1296.4 106.16 2000 20.00 66.0 253740 16.03 10.6M 044 2 000a 10.0 666.12 154.60 17* M .7 1066.16 35.6 2010 20.0 60.2 273.11 0.00 106 01066 18A0 2010 10.00 S63n 2910.00 0.00 66.16 010ow 181*o TOTA 7064 $6836. 3771. 1178.0 M90U 16660. "401 TOTAL 014M206640 703.8 360.70 N00W 17150.6 600411A

YEARNUCI.EARt FUEL OEM CAPITAL ENS TOTAL PV VEAR HUMOER FUEL OEM CAAPffAL ENS TOTAL PV 100 &6.0 *16.11 1611 11.60LS 0.0 61AS4 81143 im 86.66318.13 11.0 160 001 68.866* 190 631 1.411.0 1.0 10 605 666613 6.0 11634111.10 36. 1.0 634.73 666.1 100 128.10 348.03 117.8 66.70 3.0 673.1 666.6 lo6 110.0 346.0 137.66 300 6.0 700AD 57.0 1906 160.00 387.40 163.12 190.9 16.6 000.1 076.1 1696 168.0 66" 184. 644 10.6 716.7* 677.6 100 160.0 360.83 166.64 17370 16.11 0751 66.7 160 10.00 364.60 166.14 71.10 16.14 710,*5 401.65 100 77.80 487.66 162.0 100.6 26.1 661.64 63.,90 1996 760 19.8 186.9 17.60 10.1 077.6 410.77 I00o 603 478.11 181.1826.6 16.64 760.81 416. 199 60.0 400.8 16am6 10.1 17*5 610.0 17.1 200 46.6 4681 165 74.1 66.6 613M 43.6 200 00M0 413.14 11266 638021g 72L MA.6 2001 48.80 471.4 166.4 86.10 ELI? 3210 3666 200 116.00 415.0 171.78 64.1 10.0 70.6 66.4 2002 03.6 473.6 166.66 136 20.90 90.6 692.10 2092 00.0 43.60 171.25 106.10 11.1 780.1 330.3 2003 40.00 434.0 100.10 100.70 10.00 MA.6 34.1 200 67.60 431 174.04 211.40 M0.0 634.6 346.76 2004 40.00 446.6 10.6 213.10 10.80 9 936.77 100 66.6 437.76 177.07 13.6 104 101.0 666.64 2006 40.00 486.13 114.44 148.70 60*5 6.11 101.7* 100 66.6 464.6 106.61 30M 35.1 666.0 310.6 2006 40.00 468.8 212A6 1*4.6 18.1 016.1 266.41 2006 66.6 407.16 91110 2006 16.6 1061.1 31.8 100 40.00 476.3 218.00 166 16.06 1000.6 18.6 1007 m6.1067.1*916.0" 348.10 2401 1160.6 10.3 200 40.00 488.4 MM.3 63240 28.01 1005.16 181.6 200 68.6 618 30.7 166.8 41.18 1070.25 MM.3 1009 40.00 60.8 212.11 105.70 18.0 070.0 111.11 280 60.6 60.0 131*5 60 17*5 661*5 10.7 2010 40.00 816.6 251.23 0.00 57.34 647.40 15.0 1010 66.6 110.11 3470 OM 36M 670.34 17T1 TWTA 1210.40 8025.64361248 2411.60 404.17 164651 72408 TOTAL 1666.6707677*631*11875*65.1 10606066.16S A m - 133 - Annex 5 Page 39 of 39

TAULE.&607TOtALwtE0QO6AWUU'vN m4 LOADFOREOM-MAXUU

SCENW4 Oam I _ .. ,. _ ___ t NWUEMARJEL OM CMAL ENS TOTAL PV YEM NUOtA FUEL 08A "AAL ES TOTAL PV 10IS W0 47S0 2080.2 1.0 67480 1A41 162.1 19 0,0 408.71 148.00 0 .Z13 870.3 705 1014 1IS0 467.14 204 1016.707247 W.54 920 104 000 447.6 160 27.40 2 071. 80 IS1 11.70 402.0 16.0 12. 487.7s 22.0 1018.2 t 87. 40. 18.1 460 6U4 112S0 M.O 1l6 11.74 411At 100.2 02 810 1877.10 14109 1066 07M5 48.13 214.11 82.80 6.7 116. 801.26 100 11.70 48867 17.18 40z0o 41.14 11026s 704.00 1W7 ts7.60600.68 208.26 78.10 29.40 14. 8684 16 0.00 4074S 18Z,60 28070 37.0 "a" g16.52 10 a00 67 2000 40 218 116.2 7001 1090 0.00 61750 106.65 10.90 19.2 86St 4878 10 050 571.91 202.0 1880 00.2 105658 60s0.6 2go0 0.00 6402 210.10 185.20 .4 S07 801.5 2000 20.0 68o 00S 4a.77 i161 40.1 10866so 8 20a0 0.0 6MO 214.1S 160.00 1.76 *67.0 440.7 3001 20.00 WM0 2046 2S5 2842 10.8 610.27 2002 M0 620.38 311.01 2100 266 s60.4 47J25 2002 50 SU. 46.64 114 2U.0 1 . 448.2 a000 0.00 606 203 182.20 21.70 28.6 0W.00 2a00 20.00 612. 262.6 6.20 06.8 0S4 07.04 2" oa0 68 314.40 07.0 25.0 8.4 0076 34 s200 SO6. 288A 7100 10.0 0n.84 0W7.47 2005 0oa 7 2.00 18s510 4 95t2 513.0 05 20.00 07.7 404 1.70 eat3 1145.17 08t8 2aao 0.00 540.a 215.88 8 17.66 11607 00m00 2006 300 606 2. 0 000 1420.0 410.0 207 00 549.90 2318.0 5170 18.8 1002.O 2 2007 20oo 611.4 270.07 62% A2.00 160.60 412.8 2008 0.00 66S.59 2242 488.10 35 1240 207.70 2008 20.0 815.84 ff7.6 4.10 S0.48 138004 01.00 2000 0O0 674W87 22 177.80 20.4 SO.O 2317.A4 3000 3.o 812 S.401.4 177.80 27.8 11061O 347.D 20o 0.00 691.62 340.3 0.00 00I1M860.0 168 010 20.00 010 0 0.00 01s0 0.74 10.01 TOTA 74.70 ss0 ss$6084 641.00 2746.06 22452 1261.7 TOTAL 078.00 1010S. 4264695.00685.17 3020.21 0747.78

SCENARO2 SCENWOS ARNULELARFUEL O& CAPITAL ENS TOTAL PW/ WMR NUCLA FUIEL O CAPfITALEN8 TOTAL PV 1S00 47.0 07.78 120.6 2340 0.08 6750 570 10 S0O. 018.101 11.70 16.o 0o0 600.0 509. 100 84.0 084. 140.87 110AO 2.2 64 630.01 1094 78.O S32.3 102. 01.00 2. 627.A 670o. 106 6M80 4068 14,46 370.80 .06 87.07 741.87 106 08.10 048. 107.6 38OO 0.00 s87.9 682 lo8 110.0 486 172. 661.00 20.78 1304.09 070.8 1S6 130 0.2 16674 681.30 20.0 1268456 040.6 1097 1.86 406 181.12 56420 22.4 134522 18.60 1997 160.00 4003 10.42 6620 10.4 120860 880.8 8 87.60 66S07 20092 . 24.10 180.U2 73886 t 65.00 807 3002 044A0 31 17.A2 74.S6O 1o9w 40.90 671.01 28.10 185i70 00.82 1o00L04 68O 100 46.S 671A1 23M 186.70 0oa2 10S.O4 001.78 2000 288 688.03 8.77 161.80 4019 6IO.4 4.26 20eo 27.60 6s.0s 246.77 161.80 40.19 100.0 8816 a0 28.8 192. 240.5 2060 2842 1007.6 612.4 2001 27.60 620 840S6 206.0 232 1101.01 80.77 300 78.80 598.71 24584 11S0.O 2880 1060.64 440.2 2002 82.60 6.71 244 11$.40 30O 1064.84 461.09 20 2090 012.0 262.S8 60.0 00.48 0. 078.04 2000 20.0 620 252.6 693 5. 060.4 978.04 M4 20.0 60 364 71.00 10M 062.84O S0A7.47 20A.0 66 26846 71.0 0S. S024 074W 3005 2L0.O 607.8 2640 19076 S021 114S,17 064.8 2005 20.o 60.78 260A. 1470 6021 1148.17 086.8 20 20.0O e6016 28726 0280 00 1426.1 4104.0 2006 20.0 606. 2872 602.80 .s8o1 142601 410.0 207 2.00 011.A0 270.07 62S0 4Z00 1660.8 412.8 2007 20.00 11.A8 270.07 esO 4200 1560O. 412.8 200 M00 615.84 37.72 4091o 00A.4 1S0.s 601.12 200 20.0 616.4 377*t 400.10 00A.8 108.4 00.00 200 20.00 812.45 a01.44 177.80 27.62 11s.6 2347. 20e 20.00 612.4 001.4 170 27.A8 1A. 847.0S 2010 20.00 6O1.O7 006.4 00 g3t1 s06.74 10A01 3010 20.00 e01.07 336.54 00 GU1S 600.74 166.O1 TOTA 70S60 620.8 41041 45000 46ZQ0 10060 S71. TOTAL 14.30 9617.09 4118.0 46s0so 478.30610224 014808

22[MIW 4 8CEA340O 6 WAR NULEAR FUEL OM CAPITAL90 TOTAL PV WAR NUCLEM FUEL 081 CAPTAL ENS TOTAL PV 1l0w S66o 91a19 116.70 12.00 o.1 512. 612.40 16086l SLoo0 08. 110.70 12.0 0.01 580.00 50.3 low4 .o 2034 132.10 6S0 2.09 5. 5S0S4 164 1 0 083 16s2o 4S.10 2.0 657.10 507.s 1066 126.1 548.09 1t7.66 160.0 0.00 76629 6402 1*66 100.00 048. 107a." S7.O s00 764S 0.7 1S6 10.000 07672 155.4 062.0 20.2 1075.6 07.05 100 165.0 074.87 156074 100.0 0A1 817.12 614.07 1097 10.OO 40020 1.2 5420 10.80 1071.80 781.92 107 0OOO 400.04 16 05 10.00 721 622.05 tss 77.60 407.6 187.87 121.0 21.76 00.8 5626 18 75.0 408 18 76.76 20.54 771.78 470.0 s9o 60 267 100 32.10 M2027 825. 48.s5 1WO 6 460.s 1788s 66 2042 77.20 430048 2000 40a. 60027 320.s 60.00 .6s 014.6 48046 200o e0.0 466 204 60. 4576 81. 4.00 3O00 408 537.04 20.65 110.20 070 068.62 44720 21 115O 460.1 20. 160.30 20.74 54 447.6 3002 0o 6"41 20.aS 1440 28.47 1078.08 4O6572 2002 60.00 476.S 206.6 26 6 108167 4604 S009 400 56s81 327.2 160.80 81.20 1007.41 068.4 2000 87.50 400.4 2118 8774 08. 1187.12 457.9 30 40.0 870.4 2.20 14.20 21s 678 60.42 200q4 OM 601.01 20.2 568.40 2.1 11S840 400.92 2006 40.0 670.7 2.85 1800 05.92 10688.2 0060 200K 00 AS6 2870 240.O 3A44 1o00.0 040.88 2000 40.0 S64 20.74 014A. 21.41 1108.10 46.0 200e 8a8 67P.0 228.78 800 20.3 120687 040.0 30 40.0 s002 280 488.t00 SU 10.48 1s6.62 2007 66 0.31 2.41 S90 1s7 12606 087.a 200 40.00 WA7.8 9365 400.00 044 1404.15 0s014 2005 60.8 6000 283 80so 25.17 1011.79 814.a soo 40.0 67.6 26s.0 177.SO 87.7e 1001.99 27.S6 2000 60.0 81.01 3. 17.60 07.09011442 242.3 2010 40. s640 28014 0.00 40.7 04"0 187.2 2010 e08 677 2881 o0o 46.01 068.0 101.S2 TOTA 121.40 00so368 s1.19 9001.90 487.7 175564 818.4 TOTAL 68680 80. 06S6 s510 42A2 172V6 777000 St~~~~~~~~~~f

ill~~~~~lEr - 135 - Annex Page2 of 15

- Rapidstart-up ch tstics; a coldstrt takesless twohours whilo a hotstart takes less tha thity minu;

- Lowinstllation cost;

- Coolingwater reqirements are less- by abouthalf - comparedto fossil-ful-firedsteam plants;

- Highavailability and reliability;

- Lower erection/commissioningperiods.

4. Beca of thelimit scopeof thesudy, thegas turbin capacieswet estimae by proati the parametersof standadgas tubih t reovery steamgenerao nfgurion. Thefo, the termEsdmat Capacides wasused rather a calculad capacities".But for the purposesof ftis studywhich entails th broadexamination (birds-eye view) of severalgnesaion scenarios,this proting methodis nt expectedto contbute sufficiet inaccuces whichmay skw the outcomeof the study.

S. Mad=EwXnu AzIgtPoental was determindby assumingthat ny pln t is currentlylisted as operatingand uss or has thepotenti to use naturagas as foal couldbe converted to gastrbine repowering.It wa byond thescope of ftis stWdyto examieeach one of theseplants In detail,that is performpro-feasibiity studies, to Identifyreaistic candidates in the true tcnic and economicsense. Therefore,this maximum potenal shouldbe consideredas a flrststep in idenifyng oppornties forrepowering and the estimated maximum potenti maynot be reaizable. This poin has beenmade very clear in the mainbody of the t (pge 29). Re%own DesignPZamet 6. Someof thep anddetais tat havea ntor inuence in detemningwhether or notto repoweran existig cogenr facilitywe thefollowing: -ISdliof y Thesecould be districtheating facities with or withoutability to producesteam for industrialpurposes with back pressw and/orcondensing stem turbines;exist steamplants in refineries,pe e/chemic plants,metallurgical plan suchas Kremitovskifertlizer plants, etc. - In iedistict heing plt cat y, thereare sever un at Sofia,Ksov, Plovdiv,Shmen, tc. whichoffer the potenial for repoweringand it is anticpatedthat the coninuedus. of theseunits i esnal for heatsupply to thepputionw Durig the rr politic ad conomictransition, it has beennoted that severa industraplas in Bulgari inaludingthe Burgasrefiey, are operatingat reducedutilization factors, becauso of lackof feedstock andthe needfor capitalfor rehabiltationand Studiesneed to be doneto confimthat theseplants are viable. Therefo, thedesign basis for repowringcogeneration plan in theseindusti plantssod be basedoan the longterm economicand industrial developmealneeds of thecountry. While developng this desi bas suchfactr swu - 136 - A Page3 of 15

as end userefficiency (especially thermal energy) improvements and associatedcosts need to be introduced,while performing a detailedoptimization study.

- Age of existingfacility - Initialexamination of data indicatethat manyunits in the above facilitiescould undergolife extensionthrough rehabilitation and such life extension wouldlet the plantoperate at least anothertwenty years. Thelife extensioncosts would only applyto such systemsas overhaulingsteam turbines and introductionof modem instrumentand controls.

- Fuel Availabiltyand Price - Naturalgas Is the desiredfuel and its availabilityand the securityof supplyIs addressedin other partsof this report.

-Electric Energy Price - The price paid for electric power by the utility is sufficient to justifyrepowering.

- Ratioof Electricto ThermalPower - A detailedprofile of currentand futurethermal energydemand is necessaryfor optimizingelectrical power generation.

- limitationsj ~ite - Generally,required floor area for repowering Is small. A typical GE PG-7111EAgas turbinepackage with heat recoverysteam generator,deaerator, feed pumpwill require approximately 103 feet by 230feet floorarea. A typicalWestinghouse two WSOIDcombined cycle unit includingsteam turbine requires a site area of approximately220 ftX 380 ft floorarea. RMdU= and Licensingri - Caital costfor repoweringi.e. capitalcosts associated with installation of gas turbines, hea recoverysteam generators, life exension costs associatedwith existingsteam turbinesystems and other associated ancillary systems. U.S. experienceindicates capital costs for repoweringbased on additionalincremental capacit in the broad range of US$300/KWto US$500/KW.The estimatedcapital costs for this studyare withinthis range. The valuesused are closerto the higherend of this cost range,

- Financialfactors (mterestrates. paymentterm. etc.) -

RZepowffrgEamples 7. The followingexamples demonstrate this repoweringconcept applied to the exing districtheating facilities at Shumen,Sofia and the existng cogenerationfacility at the Burgasrefinery. Theseexamples are not pre-feasibi}itystudies as suchstudies require plant audits thorough site visitsand examinationof other pertinentdata and establishmentof designbases, includingeconomic evaluation factors. Selectionof typeand numberof gasturbines and heat recovery steam generators are all functions of these and the above factorsand, therefore,the type and numberof gas turbinesselected in the followingexamples are for purposesof demonstraonof the conceptof repowering.In addition,gas turbines were selected,based on approximatematching of the existingrated steam turbine inlet conditions. - 137 - Anmex Page4 of 15

ExamDle1 - ShumenDistrict Heatnt Plant

8. Thereare three instaledsteam turbin units in this plant. Each unit wasmatched with a gas turbineand heatrecovery steam genator consistentwith the rated conditionsof the existingsteam turbineunits. See attachedTable 6.2 and simplifiedheat balnces (Figures6.2.1, 6.2.2, 6.2.3) for technicalinformation. Simple economic analyses were carried out, assumingseveral operating scenarios (numberof hoursof full loadoperation) and resultsare shownfor ten andtwenty year pay backperiods. The costsdo not includeoperating and maintenancecosts exclusive of fuel costs. Calculatedelectricity ratesare for increasedelectric generatng capacity. The reslts showthat for all threeoperating scenarios the repoweringoption presents itself as an attractivealternative. Examle 2 - BurMs RefineryCogeneaion Plant

9. Methodologyusedis sameas above. Seea£ached Table 6.3 andFigures 6.3.1 and 6.3.2 for technicaland economicparameters. It is anticipatedthat tis refinerywill be modernizedand is expectedto operateat least 6,000hours per year. In addition,this complexis expectedto supplythe repoweredplant a portionor all of the fuel whichis producedas a byproduct. Afterrevamping of this refinery,it may be anticipatedthat at least two of the exsting four turbineunits will be in operation. The conclusionsare similarto the aboveExample 1. Example3 - SofiaDistrict Heating Plant 10. Thereare two turbineunits in this plant that offer the potentialfor repowering. The attachedTable 6.4 and heat balancesshown in Figures6.4.1 and 6.4.2 indicateconclusions similar to thosedissed above.

CMarijson between EBstimatedand CalculatedQqAgacti for the above exles H1. Table6.1 belowshows the comparisonbetweethe esimatedcapacities used for the study and calculatedcapacities for the aboveexamples. The comparisonshows that the differencesbetween the two methodsis withinthe marginof accuracyneeded for this study.

Table6.1

EstmatedCapacity CalculatedCapaciy Plbt Name,Unit (MW)1 (MW)2 Shume.unit 1 54 53 ShumenUnit 2 63 66 Sham. Unit3 464 BurgasUnits 1 & 2 (each) 295 299 Burs Units3 & 4 (each) 253 246 SofiaUait6 243 256 SofiaUnit 146 154 RdIed Rd Riad Rated Raebd Rdod tSI 9 1689t1s Osdtb1 AYlAbft sdbrt 7 TebAl Yewlotdsd Tmume Trw,biig Twbie bd t Sadie a efiItb Ttemd SkeinMmo Psemns einpemawPli(PLi) Row(PL CaposnhyEurwy Geneanon Towa_. Moawr Do.gC Tee. Taer. MW. 10-3lge- gaat- edme ha _ . SEK-4s P4-5 4 $0A Ss 480 s o . S6 TO Told Unt I() 12.18 XK46 P4-lUll low 68. 63 460 GU. NOWm 0 U2 84 Usil 0) 76 un*S l AH-13 P-04- 10 a" . 3 460 a6 NO" 0

FkItoIttr e le usIngh.detset)jofKWbln aido oruoeme 'tMeu or hiduemeWkm eeraropedy aft ftefrinumbwr

Fll W tbbrb"~Sheturin OSa Si.tetme Tl huaUl fleIlersure 1.w tObendfe oilamfgnubr Tforrsodt aardasfo ~amvs.WP

rsfeblillomorfielemes rduseg bls shm denmed s dmastoreduoed Pest ehleIaotIty ee aeoen h(eew e b

Bsebbe Sheae Turbin Sheedr Cwepel l4ut at Cods

Urg IxAES.4T4 46AS P6- 0 0 44.4 140 la

UrdtS Ix SE- P661 83.85 P530 U 4 137 18

The olondnbals dmple yb a_e o p _tva m d hd s Fud Ooieb so fofddelreu pod paddlibleo p_orivh Rep_ow g Eobet Costlses produ ost br eddoseas able rleitkproduedfleou_ po ed per Thennd Eshleo AddMI LaAbd L'du 'edaled ' uns pr Hilen hotrlBat hid ihlonal Lvslnd Levihed l_or qEobeliit buOM YeWr BMW Ee FudelCoM eMdAs Bdet yew egy Energy Fid Cot Cot oQ 1086lUB- u-wt- CosP cod( WSglgm gigwett- CoNS Coae MM brMo Urenter MM$ odo how Mm r $N.4w SLum cas hou 814.7 846 0.082 00 Unti 22 M8O 173.64 6s" .2 0.04a 0A 6M 297T7 1 6.8 0AM 0 uItI 27 Om0 210.2 Mm 8 00A oA0 O6oo SODA$ 27 264.2 4.48 0.02 0.020 .-d uIt 8k Is 500 144.81 t.0 2a 0.041 O 60e 241.0

(2) aed an 10 yaOr lb and 10t doowt rate nd d4 pw il. BTU of kdul od

dbdd cozdkIp daya d doesm hnctadente during nedn_on I - ed cdeo oeealodmiaduspubiodg rt gerorasdatem"ed _dod"hwudt fb htorr dea gnewaton omdono_ od i geeral, mostreeYand p_eoctwW om eeproducepWO plant a bod fom mnhly eruni mh aFCC. toodltiekfor tbuel mneil ualltyndqu * knotbAV Thror, th foreoi economcanay Is oonsnd.

R'-d R-ted RaPed RAtWd Rad 1961 1961 BoideTWO Twbine Yeartad TubIne TuM net Tkm Iklmt Ebutan Boon Usdo ThEma so1_" SteamFlow Prar Temperture Pow(PLI) FbWWt. Capa* Sne GemO n Tandy. AlMosphWer 0eg.C Tonahl. Tenon. MW. t:=GlatI t- Unit NA P0-10to N.A. 404.1 80 540 344 None sO NA NA. Unit2 NA P40-1201O NA. 404 ISO 60 844 No" 50 NA NA UnIts NA XT-60fl01) NA 324 80 540 140 None so MA A UnMt4 N.A. WXT4O" O(I) NA S 824 90 40 140 one s0 "NA . Notse Nu fn r pwa h s r bor des num berbo ndWsthe blo ibomtnm orr o tp of boie Firstl nhtUrbine indiaWt.t f wtubh andt Od nubr bdue generatorqay. te td mbrl the net pressu to the tbn, and th bfo numbers oeond to extracon prsue (1)WXT-e0o-1Oohas been appradmtd by)tT-040OM0/.2wldout 1.iabr. erato

Remaneidting boers ad repce wh heatrory am gneraors (se attdwd bd baheoa asn b e a. turbine Totadl o strbine Stam eisrfO Geeao Cpaty N Ratt cods Wbine CepecftyMW Capaty.MW MW K.anWh $ Ml UnrtI axSE-PB7111!A P400-130M1 24B6 60 268 16St t10.73 Unit2 SxGE-PG7iIIEA PUJ0-1801 246. so 211BA 1661 1087S Units 4xAS- T4410 1.8 so 2458 1803 7.02 Unit4 4xABS4 IT40*0110 18. so 84 1803 70.02

Theeeono pany baseden presn vau mhod btonl FuelCos t cos of fel reured toprodue adon eleti po oug fer powen. 0etictCotsthe produto ot fo diina lcrotypdudthogApoeng nsbtalled liowper lThene Beote AddtoW Lewled Leiwbd ins per Thermd Eeti Add_Ion LowIb Cost Yawr BEe &eg Fed Co1st ecaty ecbi* yer 0W Eeg Fad Cost 0_f1t Ucdtr 103 gisp- golgs_mt- COO" Coet(8 lgs-ggawaS- Cos( 0010 V MMS cares hor mm &Ww 84wr emm *y0ft $Rohr OQ Unt 1 104 8i000 1261.5 17 61.1 O.06 0.02O 600 MA 1074 18.6 00 0034 Unit2 104 8000 1261* 19 S1.1 0.003 0.0 690 780 1074.6 1.6 0.04 *A" UnitS 76 a0o 1474.8 22 OSt 0.0 am0 1A 88. 1 0.0 004 O UrJt4 79 0000 as t474AB22.6 0.03t 0.a28 M0 Set1 A4* tSJ 0 0.084

()Badon tOyarleand 10durteand*4per mllon oTUuloost p)Basden280yarsndO%dIsountrand$4perdmIlVoon SU fle nsad od* b prese daya doe notinchd durin ostucon Irs_ed os w eoad ding -d gp tubne g oreost daand hic 4m dat Or hbet r y dun geatrs andocnsrducioods Rated Rated Raed Rated Paed PBAWd 19M 131 190 Baileroe Turbine Yearnled Turbine Turbinebt TurbiIt nSurctnEsdraetaa Ebctule Themal Eb¢bk tePnmFlow Pr r T rt Flw(Ptl) RWoa( Capacity Eney Genrto Tontuhr. Atmosphwe Dog. C T=fh. Tonsar. MW. 1013gI- gmAVt 9

TOtlW Total Unit I TW-170 XT4n04oI12t1) 105 824 100 640 140 100 0 23226 484.7 77 Unk8 P-25-0010 196 203 100 640 170 83 25 aS Noten Number in par_nthesisfor Boler Inietes number of boerm and the flowing iomation corewonds to pe of boir Frst letter In the tWrbine dtes tqpe of tubine and the second number nidates generatorcapciy, the i numberIs the net presue to the turbine and the follwing numbers corespond to extraon pressure. (t) T uatteWf-50-9O .2 {(repoed)IapprodmateUd bFt-80-90110I1 2

Remoe exiding bers and repae wih hat rewcy seatm oenoeators(se atadcd heat balacs

Stm (as tubine Son. urbie Totdal Inalaon Gasturbne Turbine Genraor Generar Capacity Heat Rate Costs Capacity. MW capacity. MW MW allwthr SMillion

Unit t 4 x AB1-8 XT-0-9011.2 186.8 s0 236.5 Iwo 78 UnitS I x Mitsubleh-MW7OI P-25-010 128.05 26 1630 1867 421

The economkcanaldy Is sinple analys band on presem vaue method

Additionl Fuel Cost Is oodof fuel reqirdt produceaddonl lc"t power thoughRepowutn Eecriy Coat Is th production cost for additionaledhty proded hrougdhRepowen

Installed Hors per Thermal Etuo Addtiol Levdizd Levelzd Hou per Thermal Ekwt Addona Lelkzd Cost year Enr Energ Ful Cost Bectr Bc*l yar Eey Enry Fu Cos Elet e9MYj lvSglga- gIgwfat-hour Coedl CoOKS) 10agIa galt- Comm Cos( Mm$ calores MM ar *4whr &whr calodo howe MMa Skwhr $lNOr Unit 79 6000 851.1 1414. 226 0.031 0.029 360 510.7 84829 .6 00 0.034 O Unit8 42 w0oo 764.6 82.7 15.78 0.026 0.027 s300 458.4 6542 9.44 0.06 OA "X

(2) Eaed on 10 wr eband 10%discount rate and $4 per milon BTU of fuel os (S) Baed on 20 yawlfb and 10l discount r d $4 per mililonBTU of fel cos

nta cost Is psnt day and dons not inclte nhr duri construction I ld os wre eouktfd uino pgbed turbie gn cosddta nd hialho dat fur bearenee tm geeaors ed sonetnctioneds. TYPICAL REPOWERINGPIROJECTI

hEW OW

C hAIIUTRECOWE 1E/EMIOR MD C.tERAIOR I CEaTOR

To Industry Figure 6.1 0Q coI o O

. * ,{.,.- . : .\. .. s~~~~~~~~~~~~I 1JaT _~ 88NE UNI - 1

128.6 Goal/b, LMV NATURAL GAS

46,4491MV

S32.3 ec 1A TURBI;NE 629 t/h AIR INLBT 0 Goal/h, LHV I ATM _8UPPLENPN FIRING N iS OC 523.3 °CI To w4 w 629 t/h

FMWATER 127 ec rT8 EXIING FEUD WATER t | HR8G 4

| 39 ATM 6, 000 kV 80.5t/h s

-L AT,33.5 t/h TO IIIDUSTRY z TO2 INDU8STRY 10 ATK* 50 t/hox ... PLANT - S UNT - 2

148.78 Goal/h, LW NATIRALGAS

538.8 *C 1 ATMGAS ltlRINB 653.t/h SUPPLEMENTALWIRINOR I X kWV- V64.31 AIRIN gE

I ATM l --- J8UPT rfRIS @ is 'IC S38.8 ec, TO HRSO 653 t/h

127 *C , .EXSf IxSTw FEED WATER

1 39 ATI 6, 000 kW 93.5 t/h._ GMRATOEl

.1 ATUO93.S t/h , . ~~11ASS, 93.5 t/h o PLANT SUNSK ON 3

105.29 Goal/h, LWV NATURA GA8

_ _ ~~~~~~~38,0S9kW

~~M2~~~~MZNKICTO 543.*1 ec OAS TUR]:INE 485 t/h I X GE PG6S41-8 AIR INLET 0 Gcal/h, LW @

I ATM4 SUPPLEMEWTaFriNGK 15. 4C 543.1 .c TO HWG 485 t/h

127 OC I 181EXISTINGSTM FE5D WATER

| 39 ATM 6,000 1CW

4 0 DC~~~~~~~~~~~~~

eQ

TO INDUSTRY 6 ATM, 66.6 t/h o a

______Fi~ 0s' giae 6.34t

PLAN T BURGAS VIT=S - 1 2

663.82 Gcal/h, LHW NZTURaL aGAS

T:F--- 248,527 kW

GI U1FJTOR

532.9 eC aAA TURBIR8I gt 3102 t/h 3 X GE-PG7111EA AIR INLET 29.5 Gcal/h, LWV 1 ATM SUPPLEMENTALFIRING 15 'c 565 -C TO HRST N

127 Dc S TEMX EINSTN FIED WATER mm 50°

| 140 AM} 50,000 kW 404.5 t/h .

TURBINE ~~GzNIRRAM!R

1.2 ATM, 60.S t/h

10 ATM, 344 t/h Pun -M su Sas U - 3 6 4

514.53 Gcal/h, LHV 3&?URAL GA8S

_ _ P85#4~~~~~~~6S794kWt ,

- i=iwl~~~~~otup4

532.3 e¢ <:A8 IIRBIt ~2516 t/h 4 X ABB-8l AIR INLET 24.8 Goal/h, LIVI FIRSIN 1 ATM S= 1S eC 565.6 DC TO HR8G

lZJ[IISSIl0 127 DC X 8TEAH PFMD WATER 5140 AT 60,000 kW t/hj TR324

to Aix, 140 tlh Ma~~UTSOFIA -~~ UNITar- * 1

514.53 Goal/h, LIV K&TURP&LCmB

185, 794 kVt

S32.2 *C < G.8~~~~~OATIIRIN1$ 2S16 t/h 4 X A1IB8s

A:tR ruLm 24.8_V Goalfh#

I ATM 1 FIRM1 tSh IS DC SG56.6 *C

127 DC , ,STSCA MsTu

t0 32 0,000/ kSI 324

1. 2 ATM, 100 t/h

TO INDUSTRY

.0 AM,- 14|.... t /h ..... __0 PIAM-- now amU~ -

332.4 seal/h, XJIV NA!URAL GASB

_ 1~~~~~~~~28o9S2 k

.~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I 516.4 ec am Tmsre1 w 1581 t/h llrTWBSI8I-M7Ol

AIR nu= 23 acal V o . -

iS OC |565.6 B C TO mm , _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3

127 OC . eS4T.C$78"

| 100 ATM 25,000 kV 203 t/b -o'

1.2 ATM, 33 t/h f

10 ATM{, 170 t/h *----To IND o X

,~~~~~~~~~~~~~~~~~L.a.Ft \ . , , , , - w ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IBRD2423 2? 24. 232 26' 27

DanubeRPei >>t ~~~RO M A N I A 44. xSt oJ lb Ihalni'tso T*0Tsuntsareni ToIsokcJ, ond Vulkonesft

F E D. R E R

4r To Nis o hesaanki24%\ ":> \~~~~~~~~~~T R. KomobsE SE 4

I / A m -> ~~~~~~~~~T U R K E Y

^ 2 4 . ~~~~~~GR E E C E IHo 25 so BULGARIA MAJOR ELECTRIC FACILITIES

ELEVATIONSIN METERS: j HYDROPOWER STATIONS 750 kV TRANSMISSIONUNES - RIERS H 2200 5 THERMALPOWER STATIONS - 400 kVTRANSMISSION UNES NATIONALCAPITAL d__ory e C.Y 600 oe 200 1*110W - 750kV SUBSTATIONS - 220 kVTRANSMIS.ON UNES INTERNATIONALBOUNDARIES

MAY 1993