Map of the World Oceans, August 2013

Total Page:16

File Type:pdf, Size:1020Kb

Map of the World Oceans, August 2013 Map of the World Oceans, August 2013 60 90 120 150 180 150 120 90 60 30 0 ARCTIC OCEAN FRANZ JOSEF ARCTIC OCEAN SEVERNAYA LAND Ellesmere ZEMLYA ARCTIC OCEAN Island QUEEN ELIZABETH NEW SIBERIAN ISLANDS AUSTRALIA Independent state NOVAYA Kara Sea Laptev Sea ISLANDS Greenland Sea Svalbard ZEMLYA (NORWAY) Bermuda Baffin Dependency or area of special sovereignty Barents Sea East Siberian Sea Banks Wrangel Island Bay Island Beaufort Sea Jan Mayen Sicily / AZORES Island / island group Victoria (NORWAY) Island Baffin Chukchi Sea Norwegian Island Sea Arctic Circle (66°33') Arctic Circle (66°33') White Sea Scale 1:35,000,000 Davis Denmark Robinson Projection Strait Strait U. S. Faroe standard parallels 38°N and 38°S Islands Gulf (DEN.) of Bothnia 60 Hudson 60 Bay Rockall Gulf of Alaska (U.K.) The Sound Bering Sea Labrador Sea North Baltic C A N A D A UNITED Sea Sea Bremerhaven Sea of KINGDOM NETH. Hamburg U.S. NDS Okhotsk ISLA Felixstowe Rotterdam IAN EUT Island of GERMANY AL Newfoundland Celtic Zeebrugge Antwerp Vancouver BELGIUM Sea Guernsey (U.K.) Gulf of StraitJersey of (U.K.) Le Harve St. Lawrence KURIL Dover ISLANDS FRANCE Sea of Azov St. Pierre Bay of and Miquelon Biscay Tsugaru (FRANCE) Occupied by the SOVIET UNION in 1945, Black Sea Strait administered by RUSSIA, claimed by JAPAN Caspian ITALY Bosporus Sea Barcelona Yingkou New York Sea of Tianjin SPAIN Ambarli Japan AZORES (PORT.) Gioia T U R K E Y Dalian Valencia Oakland U N I T E D S T A T E S Tauro Dardanelles TURK. Algeciras SOUTH JAPAN 1972 Indian Qingdao Hampton MALTA Line of Control Nagoya Tokyo claim Yellow KOREA Roads Busan Sea Marsaxlokk Kobe Yokohama International Date Line Long Beach Line of Lianyungang MADEIRA Actual Gwangyang Mediterranean Sea Control C H I N A Osaka Los Angeles Bermuda ISLANDS Strait of N Savannah (U.K.) (PORT.) Port I R A N A Gibraltar Said Shanghai M N O R T H P A C I F I C South P Louisiana NOR T H ( Houston O 30 J 30 - S A CANARY ISLANDS Ningbo Suez East China - P Bandar D (SP.) A Shahid Sea N S Canal Abbas N H O C E A N ATL ANTIC A Rajai ) Midway Persian L Strait of O Miami/ Taiwan Okinawa S ) Gulf Islands I N T Port Everglades Khor Fakkan OMAN Hormuz A Strait O P (U.S.) EGYPT U - Y A Minami-tori-shima Dubai Ports Xiamen ( J O C E A N EGYPT K Gulf of Mexico Gulf of Oman U (JAPAN) SAUDI Guangzhou Y UNITED ARAB Tropic of Cancer (23°27') Taiwan R Windward British Tropic of Cancer (23°27') EMIRATES Shenzhen HAWAIIAN ISLANDS Yucatan Virgin Islands Passage Virgin (U.K.) Jeddah ARABIA Kaohsiung Channel Islands Honolulu OMAN Hong (U.S.) I N D I A Luzon Wake Island Mona Kong Luzon Philippine U.S. ISLAS Cayman Is. Anguilla (U.K.) Red Strait Northern (U.S.) REVILLAGIGEDO (U.K.) Passage Saint-Martin (FR.) Gulf of Mariana Sint Maarten (NETH.) Sea To n k i n Strait Johnston (MEXICO) JAMAICA Saint Barthelemy (FR.) Salalah Jawaharlal Hainan Islands Atoll Nehru Dao Sea Kingston Puerto PARACEL (U.S.) Navassa Port ISLANDS (U.S.) Island Rico THAILAND (U.S.) (U.S.) Guadeloupe (FR.) VIETNAM Manila Laem Martinique (FR.) Socotra Bay of Chabang Caribbean Sea (YEMEN) Arabian Aruba Gulf of Aden South (NETH.) Curacao BARBADOS Bengal ANDAMAN Ho Chi Guam (NETH.) Sea ISLANDS Minh China (U.S.) Clipperton Island (INDIA) PHILIPPINES (FRANCE) Panama SRI Andaman Gulf of Sea MARSHALL Canal Bab el Mandeb LAKSHADWEEP SPRATLY FEDERATED STATES OF MICRONESIA Balboa (INDIA) LANKA Sea Thailand ISLANDS Laccadive ISLANDS Sea Colombo NICOBAR ISLANDS PALAU Kingman Reef (U.S.) PANAMA (INDIA) Palmyra Atoll (U.S.) Strait of Isla del Coco Isla de Malacca (COSTA RICA) Malpelo M A L A Y S I A Celebes Sea (COLOMBIA) Kelang Kiritimati MALDIVES (Christmas Island) GALAPAGOS PENEDOS DE Gulf of Guinea Tanjung Singapore SÃO PEDRO E SÃO PAULO KIRIBATI Howland Island (U.S.) (KIRIBATI) ISLANDS Pelepas (ECUADOR) (BRAZIL) Equator SINGAPORE Baker Island (U.S.) Equator Equator 0 0 Jarvis NAURU Island (U.S.) Annobon ARQUIPÉLAGO DE FERNANDO DE NORONHA K I R I B A T I (BRAZIL) British Indian Sunda I N D O N E S I A Ocean Territory Strait Java Sea Banda Sea (U.K.) Tanjung Priok Tokelau SEYCHELLES Diego (N.Z.) Garcia Arafura ÎLES MARQUISES Ascension TIMOR-LESTE TUVALU Sea (Fr. Poly.) B R A Z I L Glorioso Islands Christmas (FRANCE) Island Timor (AUSTL.) Wallis and Sea Futuna Cocos Ashmore and (FRANCE) SAMOA Mayotte (Keeling) Islands Cartier Islands Great Gulf of Coral Sea SOCIETY Tromelin Island (AUSTL.) (AUSTL.) Carpentaria Islands American Cook Islands ISLANDS Juan de Nova (FRANCE) (AUSTL.) Samoa (N.Z.) (Fr. Poly.) ARCHIPEL DES TUAMOTU Island Barrier FIJI (U.S.) (FR.) (Fr. Poly.) Saint Coral VANUATU Helena Niue Mozambique I N D I A N Reef Sea (N.Z.) Channel Rodrigues Martin Vaz Reunion F r e n c h P o l y n e s i a (BRAZIL) Bassas (FRANCE) MAURITIUS New TONGA Trindade da India Europa Caledonia (BRAZIL) (FR.) Island O C E A N (FRANCE) (FR.) (FRANCE) Tropic of Capricorn (23°27') Santos Tropic of Capricorn (23°27') Isla Sala y Gómez Isla San Felíx SOUTH A U S T R A L I A Pitcairn Islands (CHILE) (CHILE) Saint Helena, Ascension, Brisbane Norfolk ÎLES TUBUAI (U.K.) AFRICA (Fr. Poly.) Isla San Ambrosio Island Easter Island (CHILE) and Tristan da Cunha (AUSTL.) (CHILE) (U.K.) Durban SOU T H SOUTH 30 CHILE AFRICA KERMADEC Lord Howe Valparaiso ATL ANTIC Island ISLANDS Sydney Cape Town (AUSTL.) (N.Z.) SOU T H P A C I F I C ARCHIPIÉLAGO Great Australian JUAN FERNÁNDEZ Buenos Aires O C E A N Île Amsterdam Bight Auckland (CHILE) Cape of (Fr. S. and Ant. Lands) Melbourne O C E A N ARGENTINA Good Hope TRISTAN DA CUNHA Île Saint-Paul Tasman Sea French Southern and Antarctic Lands (Fr. S. and Ant. Lands) Line Date International (FRANCE) Tasmania NEW Gough Island CHATHAM ZEALAND ISLANDS (N.Z.) ÎLES CROZET (Fr. S. and Ant. Lands) BOUNTY ÎLES KERGUELEN ISLANDS (N.Z.) PRINCE EDWARD (Fr. S. and Ant. Lands) SNARES ISLANDS ISLANDS (N.Z.) Falkland Islands (SOUTH AFRICA) ANTIPODES (Islas Malvinas) ISLANDS (administered by U.K., Heard Island and (N.Z.) claimed by ARGENTINA) AUCKLAND McDonald Islands ISLANDS (AUSTL.) (N.Z.) Campbell Bouvet Island Island (NORWAY) (N.Z.) Macquarie Island South Georgia and (AUSTL.) Scotia Sea South Sandwich Islands (administered by U.K., Drake claimed by ARGENTINA) Passage 60 60 SOUTH ORKNEY ISLANDS S O U T H E R N O C E A N S O U T H E R N O C E A N S O U T H E R N O C E A N Antarctic Circle (66°33') Antarctic Circle (66°33') Suez Amery Ice Canal Major chokepoint Shelf Bellingshausen Sea Major port Amundsen Sea Weddell Sea Shipping lane Ross Sea A n t a r c t i c a (line weight indicates significance of route, not volume of traffic) Ronne Ice Shelf Twenty-one of 28 Antarctic consultative countries have made no 200-nm EEZ (exclusive economic zone) limit claims to Antarctic territory (although Russia and the United States Ross Ice Shelf have reserved the right to do so) and they do not recognize the claims of the other countries. 60 90 120 150 180 150 120 90 60 30 0 August 2013 Boundary representation is not necessarily authoritative. 803667AI (G03545) 9-13.
Recommended publications
  • Status of Pacific Island Coral Reef Fisheries by Tim Adams1, Paul Dalzell1 and Richard Farman2
    Status of Pacific Island coral reef fisheries by Tim Adams1, Paul Dalzell1 and Richard Farman2 1. SPC Coastal Fisheries Programme 2. Service de la mer, Province Sud, Nouméa, New Caledonia (paper presented at 8th International Coral Reef Symposium, Panama, 1996) Abstract It is difficult to determine the status of fisheries on Pacific Islands coral reefs. The region is economically undeveloped, sparsely populated and its coral reefs are scattered over a vast area. Resultant constraints on monitoring and investigation mean that quantitative information is rare. The few available quantitative indicators are summarised here alongside opinions based on extensive practical experience. Most anecdotal reports about exploitation of Pacific Island marine life that reach the global press concern adverse aspects of fisheries and this, in context with the definite crises being experienced in other global fisheries, particularly southeast Asian reef-fisheries, has led to a general feeling of pessimism about the broad impact of fishing on Pacific Island reefs. However, the available evidence suggests that Pacific Island reef fisheries as a whole do not exert an excessive pressure on reefs and that (high) local protein nutritional demands can be sustained at least for the immediate future. However, it is urgent that this apparent overall sustainability be consolidated through state-recognised management arrangements; it is necessary that some specific overfishing problems be addressed; and it is particularly important that the adverse influence of terrestrial activities and run-off on the carrying capacity of coral reefs fisheries be mitigated. Introduction Fisheries on Pacific Island coral reefs, despite the increasing pace of outside influence, are still overwhelmingly subsistence fisheries.
    [Show full text]
  • Modeling Regional Coastal Evolution in the Bight Of
    MODELING REGIONAL COASTAL EVOLUTION IN THE BIGHT OF BENIN, GULF OF GUINEA, WEST AFRICA Ondoa Gregoire Abessolo, Magnus Larson, Rafael Almar, Bruno Castelle, Edward Anthony, Johan Reyns To cite this version: Ondoa Gregoire Abessolo, Magnus Larson, Rafael Almar, Bruno Castelle, Edward Anthony, et al.. MODELING REGIONAL COASTAL EVOLUTION IN THE BIGHT OF BENIN, GULF OF GUINEA, WEST AFRICA. Coastal Sediments’19, May 2019, Tampa, United States. 10.1142/9789811204487_0178. hal-02394959 HAL Id: hal-02394959 https://hal.archives-ouvertes.fr/hal-02394959 Submitted on 11 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MODELING REGIONAL COASTAL EVOLUTION IN THE BIGHT OF BENIN, GULF OF GUINEA, WEST AFRICA ONDOA GREGOIRE ABESSOLO1,2, MAGNUS LARSON3, RAFAEL ALMAR1, BRUNO CASTELLE4, EDWARD J. ANTHONY5, J. REYNS6,7 1. LEGOS, OMP, UMR 5566 (CNRS/CNES/IRD/Université de Toulouse), 14 Avenue Edouard Belin, 31400, Toulouse, France. [email protected], [email protected]. 2. Ecosystems and Fisheries Resources Laboratory, University of Douala, BP 2701, Douala, Cameroun. 3. Department of Water Resources Engineering, Lund University, Box 118, S-221 00, Lund, Sweden. [email protected]. 4. EPOC, OASU, UMR 5805 (CNRS - Université de Bordeaux), Allée Geoffroy Saint- Hilaire – CS 50023 – 33615, Pessac Cedex, France.
    [Show full text]
  • Island Wakes in the Southern California Bight R
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, C11012, doi:10.1029/2004JC002675, 2005 Island wakes in the Southern California Bight R. M. A. Caldeira,1,2 P. Marchesiello,3 N. P. Nezlin,4 P. M. DiGiacomo,5 and J. C. McWilliams3 Received 19 August 2004; revised 21 February 2005; accepted 14 June 2005; published 18 November 2005. [1] Wind- and current-induced island wakes were investigated using a multiplatform approach of in situ, remote sensing, and numerical model simulations for the Southern California Bight (SCB). Island wind wakes are a result of sheltering from the wind, with weak wind mixing, strong heat storage, and consequent high sea surface temperature (SST). Wind wakes around Santa Catalina Island are most persistent during spring and summer months. Current wakes, caused by the disruption of the poleward traveling California Countercurrent, induce eddies to form off the north end of Catalina Island, and these move poleward every 9–12 days. Current wake eddies induce strong mixing, with low SST and high-density sea surface signatures, whereas wind wakes induce high sea surface temperature signatures associated with the formation of a well-defined shallow thermocline. Current wake eddies vary from 1 to 30 km in diameter. From numerical solutions we predicted the frequency of occurrence of current-induced wakes off Santa Catalina Island. Wind wakes were also observed off all the other islands of the SCB as seen from the analysis of synthetic aperture radar data. Time series analysis of the island mass effect phenomenon has shown a concurrence of low SST and high sea surface chlorophyll for Santa Catalina, San Nicholas, and San Clemente islands that might be related to the seasonality of the California Current and California Countercurrent.
    [Show full text]
  • Raised Marine Features, Radiocarbon Dates, and Sea Level Changes, Eastern Melville Peninsula, Arctic Canada’ L.A
    ARCTIC VOL. 44, NO. 1 (MARCH 1991) R 63-73 Raised Marine Features, Radiocarbon Dates, and Sea Level Changes, Eastern Melville Peninsula, Arctic Canada’ L.A. DREDGE2 (Received 5 April 1990; accepted in revised form 9 October 1990) ABSTRACT. Radiocarbon dates from eastern Melville Peninsula indicatethat deglaciation of western Foxe Basin occurredabout 6900 years ago, although lateice persisted in an area northwest of Hall Lake and on the central plateau. Relative sea level was as high as 144 m above present at that time. ’ho new well-controlled sea level curves depict emergence as an exponential decay function. Marine limit elevations and nested curves indicate a major ice-loading centre in south-central Foxe Basin. Thesedata and archaeological dates suggest a secondary recent rebound centre in the northern part of the basin. Flights of raised beaches, prevalentin the area, are composed of angular limestone fragments and suggest that frost-riving occurs in shallow foreshore environments. The prominentwash line near the marine limit suggests that Foxe Basin had less sea ice cover prior to 6OOO years ago but that coastal processes have been similar to present since that time. Key words: Arctic, coasts, archaeology, radiocarbon dating, glacial history, emergence, sea level, geomorphology RESUMl?. Des datations au carbone radioactif dansla presqu’ile Melville orientale indiquent que la dbglaciation du Foxe bassin s’est produit vers 6900 ans, bien quela glace ait persist6 dans une zone situ& au nord-ouest du Lac etHall sur le plateau central.A cette bpoque, le niveau de la mer s’tlevait A 144 m au-dessus du niveau actuel.
    [Show full text]
  • Science for Solutions
    Science for Solutions NOAA COASTAL OCEAN PROGRAM Decision Analysis Series No. 15 Characterization of Hypoxia Topic 1 Report for the Integrated Assessment on Hypoxia in the Gulf of Mexico Nancy N. Rabalais, R. Eugene Turner, Dubravko Justic´, Quay Dortch, and William J. Wiseman, Jr. May 1999 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Coastal Ocean Program GULF OF MEXICO HYPOXIA ASSESSMENT This report is the first in a series of six reports developed as the scientific basis for an integrated assessment of the causes and consequences of hypoxia in the Gulf of Mexico, as requested by the White House Office of Science and Technology Policy and as required by Section 604a of P.L. 105-383. For more information on the assessment and the assessment process, please contact the National Centers for Coastal Ocean Science at (301) 713-3060. DECISION ANALYSIS SERIES The Decision Analysis Series has been established by NOAA's Coastal Ocean Program (COP) to present documents for coastal decision mak- ers which contain analytical treatments of major issues or topics. The is- sues, topics, and principal investigators have been selected through an extensive peer review process. To learn more about the COP or the De- cision Analysis Series, please write to: NOAA National Centers for Coastal Ocean Science Coastal Ocean Program 1315 East-West Highway, Room 9700 Silver Spring, Maryland 20910 phone: 301-713-3338 fax: 301-713-4044 web: http://www.cop.noaa.gov e-mail: [email protected] Cover image: Extent of bottom water with dissolved oxygen less than 2 mg/l for July 1996 (based on data of Rabalais, Turner, and Wiseman).
    [Show full text]
  • New York Bight
    NEW YORK BIGHT RESTORATION PLAN REPORT TO CONGRESS NEW YORK BIGHT RESTORATION PLAN FINAL REPORT MARCH 1993 A PRODUCT ,.·F THE NEW YORK-NEW JERSa:'. 1j;U>\RY PROGR/,.� MANAGEMENT cu;·:�·.:RENCE TABLE OF CONTENTS EXECUTIVE SUMMARY S-1 Use Impairments and Precipitating Pollutant Factors S-1 Floatable Debris S-2 Pathogen Contamination S-2 Toxic Contamination S-3 Nutrient and Organic Enrichment S-4 Habitat Loss and Degradation S-5 Program Administration S-5 INTRODUCTION 1 General 1 Congressional Mandate 1 Prior Reports and Activities 2 Preliminary Problem Assessment 3 RESTORATION PLAN MODULES 4 Floatable Debris 5 Introduction 5 Short-term Floatables Action Plan 5 Comprehensive Floatables Plan 6 Independent Activities and Public Education 7 MARPOL Annex V 7 Recycling and Waste Reduction 8 Program Constraints 8 Program Follow-Up 9 Pathogen Contamination 9 Introduction 9 Beach/Shellfish Bed Closure Action Plan 9 Ocean Dumping Ban Act 10 Combined Sewer Overflow (CSO) Abatement Program 10 Alternative Pathogenic Indicator Study 10 Program Constraints 11 Program Follow-Up 11 3. Toxic Contamination 11 Introduction 11 Problem Characterization 12 Total Maximum Daily Load/Wasteload Allocation (TMDL/WLA) 13 Antidegradation 14 TABLE OF CONTENTS (cont.) Toxic Contamination (cont.) Dredged Material Management 14 Ecosystem Indicators 16 Other Existing Programs and Authorities 16 Program Constraints and Follow-Up 17 Nutrient and Organic Enrichment 17 Introduction 17 Problem Characterization 17 Eutrophication Modeling 18 Ecosystem Indicators 18 Program Constraints and Follow-Up 19 5. Habitat Loss and Degradation 19 Introduction 19 Habitat Inventory 19 Regulatory Programs 20 Non-Regulatory Approach 20 Geographic Targeting 20 Program Constraints 20 Program Follow-Up 21 A Comprehensive Focus 21 Program Administration 22 LIST OF FIGURES Figure 1 - The New York Bight 2 Figure 2 - The New York-New Jersey Harbor 3 Figure 3 - Management Conference Membership and Structure 5 ATTACHMENTS 1.
    [Show full text]
  • Multibeam Bathymetry and CTD-Measurements in Two Fjord Systems in Southeast Greenland
    Discussions Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2017-29, 2017 Earth System Manuscript under review for journal Earth Syst. Sci. Data Science Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. Open Access Open Data Multibeam Bathymetry and CTD-Measurements in two fjord systems in Southeast Greenland Kristian Kjellerup Kjeldsen1,2, Wilhelm Weinrebe3, Jørgen Bendtsen4,5, Anders Anker Bjørk1,6, Kurt Henrik Kjær1 5 1Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, DK-1350, Denmark 2Department of Earth Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada 3GEOMAR, Helmholtz-Zentrum für Ozeanforschung, Kiel, 24148, Germany 4 Arctic Research Centre, Aarhus University, 8000 Aarhus, Denmark. 5 ClimateLab, Symbion Science Park, Fruebjergvej 3, 2100 Copenhagen O, Denmark. 10 6 Department of Earth System Science, University of California, Irvine,CA 92697, USA Correspondence to: Kristian K. Kjeldsen ([email protected]) Abstract. We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in Southeast Greenland, using SS Activ with a multibeam system temporally installed over the side of the ship. Our results provide a detailed bathymetric map of the fjord complex around Skjoldungen Island and the outer part of Timmiarmiut Fjord 15 and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected show different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1 - 2 °C warmer than in the two fjords around Skjoldungen Island, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords.
    [Show full text]
  • Bounded by Heritage and the Tamar: Cornwall As 'Almost an Island'
    Island Studies Journal, 15(1), 2020, 223-236 Bounded by heritage and the Tamar: Cornwall as ‘almost an island’ Philip Hayward University of Technology Sydney, Australia [email protected] (corresponding author) Christian Fleury University of Caen Normandy, France [email protected] Abstract: This article considers the manner in which the English county of Cornwall has been imagined and represented as an island in various contemporary contexts, drawing on the particular geographical insularity of the peninsular county and distinct aspects of its cultural heritage. It outlines the manner in which this rhetorical islandness has been deployed for tourism promotion and political purposes, discusses the value of such imagination for agencies promoting Cornwall as a distinct entity and deploys these discussions to a consideration of ‘almost- islandness’ within the framework of an expanded Island Studies field. Keywords: almost islands, Cornwall, Devon, islands, Lizard Peninsula, Tamar https://doi.org/10.24043/isj.98 • Received May 2019, accepted July 2019 © 2020—Institute of Island Studies, University of Prince Edward Island, Canada. Introduction Over the last decade Island Studies has both consolidated and diversified. Island Studies Journal, in particular, has increasingly focussed on islands as complex socio-cultural-economic entities within a global landscape increasingly affected by factors such as tourism, migration, demographic change and the all-encompassing impact of the Anthropocene. Islands, in this context, are increasingly perceived and analysed as nexuses (rather than as isolates). Other work in the field has broadened the focus from archetypal islands—i.e., parcels of land entirely surrounded by water—to a broad range of locales and phenomena that have island-like attributes.
    [Show full text]
  • Island Wakes in the Southern California Bight R.M
    Island wakes in the Southern California Bight R.M. Caldeira, P. Marchesiello, N. Nezlin, P. Digiacomo, J. C. Mcwilliams To cite this version: R.M. Caldeira, P. Marchesiello, N. Nezlin, P. Digiacomo, J. C. Mcwilliams. Island wakes in the Southern California Bight. Journal of Geophysical Research. Oceans, Wiley-Blackwell, 2005, 110, pp.C11012. 10.1029/2004JC002675.. hal-00280338 HAL Id: hal-00280338 https://hal.archives-ouvertes.fr/hal-00280338 Submitted on 19 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, C11012, doi:10.1029/2004JC002675, 2005 Island wakes in the Southern California Bight R. M. A. Caldeira,1,2 P. Marchesiello,3 N. P. Nezlin,4 P. M. DiGiacomo,5 and J. C. McWilliams3 Received 19 August 2004; revised 21 February 2005; accepted 14 June 2005; published 18 November 2005. [1] Wind- and current-induced island wakes were investigated using a multiplatform approach of in situ, remote sensing, and numerical model simulations for the Southern California Bight (SCB). Island wind wakes are a result of sheltering from the wind, with weak wind mixing, strong heat storage, and consequent high sea surface temperature (SST).
    [Show full text]
  • FISHERMAN BAY PRESERVE: the TOMBOLO Lopez Island
    San Juan County Land Bank FISHERMAN BAY PRESERVE: THE TOMBOLO Lopez Island Directions 0 feet 200 400 600 800 1000 From the Lopez ferry landing: Take Ferry Road heading south. At 2.2 miles, the road name changes to Fisherman Bay NORTH Road. Continue past Lopez Village and along Fisherman Bay, turning right onto Bayshore The Tombolo Preserve Road at 6.1 miles. Pass Otis Perkins at 6.8 miles. The parking pullout is located on the right at 7.3 miles from start. From Lopez Village: From the water tower at Village Park, go east on Lopez Road for .25 miles. Turn right onto Fisherman Bay Road and continue along Fisherman Bay. At 2.0 miles, turn right onto Bayshore Road. Pass Otis Perkins County Park at 2.7 miles. The parking pullout is located on the right at 3.2 miles from start. Otis Perkins Land Bank Preserve County Park Trails San Juan County Parks Road shore Bay Parking A tombolo is a long, narrow bar of sediment connecting an island to a When you visit: larger island or mainland. Just seven acres in size, the Land Bank’s • Stay on designated trails. • Daytime and pedestrian use only. Tombolo Preserve protects more than half a mile of shoreline. Its outer, • Leash your dog. western beach of sand and cobble is a local favorite for walking and • Take nothing. wildlife watching, while its inner, eastern side protects mudflats and tidal • Leave nothing. ponds. There is a parking pullout at the northern end of the preserve, with space for three cars.
    [Show full text]
  • Special Aspects of Marine Naming
    The UNGEGN International Course on Toponymy, Manila, 2018 Special Aspects of Naming for Marine Toponymy Hyo Hyun Sung Professor, Ewha Womans University 1 CONTENTS 1. Marine Geographical Names 2. Principles, Policies, and Procedures 3. Special Issues for Sea Surface Generic Terms 2 01. Marine Geographical Names 3 1.1 Marine Geographical Names • Marine geographical names can be divided into sea surface feature names and undersea feature names. Marine Geographical Names Sea Surface Undersea Feature Feature Names Names 4 The UNGEGN International Course on Toponymy, Manila, 2018 1.1 Marine Geographical Names • Sea surface feature names can be further classified into feature types in the sea, waterway, rocks in low-tide elevation, and Indentation. Sea Surface Feature Names Rocks in low-tide Sea Waterway Indentation elevation Rock which Strait, Channel, Gulf, Bay, bight, Ocean, Sea covers and Passage Inlet/Creek uncovers 5 The UNGEGN International Course on Toponymy, Manila, 2018 1.1 Marine Geographical Names • In the case of undersea feature names, 43 generic terms were listed in B-6 (IHO, 2013) Archipelagic apron, Guyot(s), Fracture zone, Borderland, Continental rise, Continental shelf, Shelf-edge, Shelf Break, Shelf, Slope, Continental Margin, Mid-oceanic ridge, Shoal(s), Moat, Sill, Abyssal hill(s), Abyssal plain, Saddle, Apron, Median valley, Province, Reef(s), Bank(s), Tablemount(s), Caldera, Spur, Trough, Trench, Peak(s), Seamount(s), Seamount chain, Gap, Passage, Valley(s), Submarine valley(s), Sea valley(s), Promontory, Hill(s), Knoll(s), Terrace(s), Plateau, Basin, Cone, Fan, Seachannel(s), Ridge, Escarpment, Scarp, Levee, Hole, Canyon(s), Pinnacle(s), Rise, Deep(s) Except the GENERIC TERMS USED FOR HARMONIZATION WITH OTHER GAZETTEERS which are used for some features in the GEBCO Gazetteer and in other gazetteers.
    [Show full text]
  • Extent of Mississippi River Water in the Mississippi Bight and Louisiana Shelf Based on Water Isotopes Virginie Sanial, Alan Shiller, Dongjoo Joung, Peng Ho
    Extent of Mississippi River water in the Mississippi Bight and Louisiana Shelf based on water isotopes Virginie Sanial, Alan Shiller, Dongjoo Joung, Peng Ho To cite this version: Virginie Sanial, Alan Shiller, Dongjoo Joung, Peng Ho. Extent of Mississippi River water in the Mississippi Bight and Louisiana Shelf based on water isotopes. Estuarine, Coastal and Shelf Science, Elsevier, 2019, 226, pp.106196. 10.1016/j.ecss.2019.04.030. hal-02511271 HAL Id: hal-02511271 https://hal.archives-ouvertes.fr/hal-02511271 Submitted on 18 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. (VWXDULQH&RDVWDODQG6KHOI6FLHQFH Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Extent of Mississippi River water in the Mississippi Bight and Louisiana Shelf 7 based on water isotopes ∗ Virginie Saniala, , Alan M. Shillera,DongJooJoungb, Peng Hoa a University of Southern Mississippi, School of Ocean Science & Engineering, 1020 Balch Boulevard, Stennis Space Center, MS, 39529, USA b University of Rochester, Earth and Environmental Sciences, 227 Hutchison Hall, P.O. Box 270221, Rochester, NY, 14627, USA ARTICLE INFO ABSTRACT Keywords: The northern Gulf of Mexico is a complex and very productive coastal river-dominated system that receives Mississippi River freshwater from numerous rivers including the Mississippi River.
    [Show full text]