Acute Lymphoblastic Leukemia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Updates in Mastocytosis
Updates in Mastocytosis Tryptase PD-L1 Tracy I. George, M.D. Professor of Pathology 1 Disclosure: Tracy George, M.D. Research Support / Grants None Stock/Equity (any amount) None Consulting Blueprint Medicines Novartis Employment ARUP Laboratories Speakers Bureau / Honoraria None Other None Outline • Classification • Advanced mastocytosis • A case report • Clinical trials • Other potential therapies Outline • Classification • Advanced mastocytosis • A case report • Clinical trials • Other potential therapies Mastocytosis symposium and consensus meeting on classification and diagnostic criteria for mastocytosis Boston, October 25-28, 2012 2008 WHO Classification Scheme for Myeloid Neoplasms Acute Myeloid Leukemia Chronic Myelomonocytic Leukemia Atypical Chronic Myeloid Leukemia Juvenile Myelomonocytic Leukemia Myelodysplastic Syndromes MDS/MPN, unclassifiable Chronic Myelogenous Leukemia MDS/MPN Polycythemia Vera Essential Thrombocythemia Primary Myelofibrosis Myeloproliferative Neoplasms Chronic Neutrophilic Leukemia Chronic Eosinophilic Leukemia, NOS Hypereosinophilic Syndrome Mast Cell Disease MPNs, unclassifiable Myeloid or lymphoid neoplasms Myeloid neoplasms associated with PDGFRA rearrangement associated with eosinophilia and Myeloid neoplasms associated with PDGFRB abnormalities of PDGFRA, rearrangement PDGFRB, or FGFR1 Myeloid neoplasms associated with FGFR1 rearrangement (EMS) 2017 WHO Classification Scheme for Myeloid Neoplasms Chronic Myelomonocytic Leukemia Acute Myeloid Leukemia Atypical Chronic Myeloid Leukemia Juvenile Myelomonocytic -
Geriatric Depression Diagnosis and Treatment
Geriatric Depression Diagnosis and Treatment David Mansoor, MD Assistant Professor of Psychiatry OHSU/PVAMC March 2020 Disclosures • None Objectives • Introduction / Epidemiology • Assessment • Differential Diagnosis & Other Considerations – Late onset depression – Vascular depression – Depression in Alzheimer’s • Treatment Introduction & Epidemiology Introduction • Not a normal part of aging • Prevalence is lower than in community dwelling elderly than in younger adult population 12-month prevalence of MDE among US Adults (2012) • 80% are treated in primary care clinics Introduction • Community dwelling elderly populations – prevalence about 2-4% • More common in medical settings – 9% of chronically ill – 20-40% of hospitalized elders – 30-50% of nursing home residents – Highest in geriatric psych units (>60% of admissions) • Most common psychiatric disorder in the elderly Blazer et al. The Gerontologist. 1987 Introduction • Personal suffering and poor quality of life – Decreased physical, cognitive, and social function • Amplifies disabilities – Poorer recovery from hip fracture1 – Develops in up to 30% of stroke survivors – Cognition, physical strength, gait, balance, ADLs – Less likely to comply with cardiac rehab and have prolonged recovery times2 – Risk factor for developing DM, associated with worse outcomes3 1. BMC Geriatrics June 2013 2. J Cardiopulm Rehabil Prev. 2009 Nov-Dec;29(6):358-64 3. Am J Med. 2008 Nov; 121(11 Suppl 2): S8–15. Introduction • Increased mortality from medical illness – Risk factor for CHD (Arch Intern -
Follicular Lymphoma
Follicular Lymphoma What is follicular lymphoma? Let us explain it to you. www.anticancerfund.org www.esmo.org ESMO/ACF Patient Guide Series based on the ESMO Clinical Practice Guidelines FOLLICULAR LYMPHOMA: A GUIDE FOR PATIENTS PATIENT INFORMATION BASED ON ESMO CLINICAL PRACTICE GUIDELINES This guide for patients has been prepared by the Anticancer Fund as a service to patients, to help patients and their relatives better understand the nature of follicular lymphoma and appreciate the best treatment choices available according to the subtype of follicular lymphoma. We recommend that patients ask their doctors about what tests or types of treatments are needed for their type and stage of disease. The medical information described in this document is based on the clinical practice guidelines of the European Society for Medical Oncology (ESMO) for the management of newly diagnosed and relapsed follicular lymphoma. This guide for patients has been produced in collaboration with ESMO and is disseminated with the permission of ESMO. It has been written by a medical doctor and reviewed by two oncologists from ESMO including the lead author of the clinical practice guidelines for professionals, as well as two oncology nurses from the European Oncology Nursing Society (EONS). It has also been reviewed by patient representatives from ESMO’s Cancer Patient Working Group. More information about the Anticancer Fund: www.anticancerfund.org More information about the European Society for Medical Oncology: www.esmo.org For words marked with an asterisk, a definition is provided at the end of the document. Follicular Lymphoma: a guide for patients - Information based on ESMO Clinical Practice Guidelines – v.2014.1 Page 1 This document is provided by the Anticancer Fund with the permission of ESMO. -
Late Effects Among Long-Term Survivors of Childhood Acute Leukemia in the Netherlands: a Dutch Childhood Leukemia Study Group Report
0031-3998/95/3805-0802$03.00/0 PEDIATRIC RESEARCH Vol. 38, No.5, 1995 Copyright © 1995 International Pediatric Research Foundation, Inc. Printed in U.S.A. Late Effects among Long-Term Survivors of Childhood Acute Leukemia in The Netherlands: A Dutch Childhood Leukemia Study Group Report A. VAN DER DOES-VAN DEN BERG, G. A. M. DE VAAN, J. F. VAN WEERDEN, K. HAHLEN, M. VAN WEEL-SIPMAN, AND A. J. P. VEERMAN Dutch Childhood Leukemia Study Group,' The Hague, The Netherlands A.8STRAC ' Late events and side effects are reported in 392 children cured urogenital, or gastrointestinal tract diseases or an increased vul of leukemia. They originated from 1193 consecutively newly nerability of the musculoskeletal system was found. However, diagnosed children between 1972 and 1982, in first continuous prolonged follow-up is necessary to study the full-scale late complete remission for at least 6 y after diagnosis, and were effects of cytostatic treatment and radiotherapy administered treated according to Dutch Childhood Leukemia Study Group during childhood. (Pediatr Res 38: 802-807, 1995) protocols (70%) or institutional protocols (30%), all including cranial irradiation for CNS prophylaxis. Data on late events (relapses, death in complete remission, and second malignancies) Abbreviations were collected prospectively after treatment; late side effects ALL, acute lymphocytic leukemia were retrospectively collected by a questionnaire, completed by ANLL, acute nonlymphocytic leukemia the responsible pediatrician. The event-free survival of the 6-y CCR, continuous first complete remission survivors at 15 y after diagnosis was 92% (±2%). Eight late DCLSG, Dutch Childhood Leukemia Study Group relapses and nine second malignancies were diagnosed, two EFS, event free survival children died in first complete remission of late toxicity of HR, high risk treatment, and one child died in a car accident. -
Section 8: Hematology CHAPTER 47: ANEMIA
Section 8: Hematology CHAPTER 47: ANEMIA Q.1. A 56-year-old man presents with symptoms of severe dyspnea on exertion and fatigue. His laboratory values are as follows: Hemoglobin 6.0 g/dL (normal: 12–15 g/dL) Hematocrit 18% (normal: 36%–46%) RBC count 2 million/L (normal: 4–5.2 million/L) Reticulocyte count 3% (normal: 0.5%–1.5%) Which of the following caused this man’s anemia? A. Decreased red cell production B. Increased red cell destruction C. Acute blood loss (hemorrhage) D. There is insufficient information to make a determination Answer: A. This man presents with anemia and an elevated reticulocyte count which seems to suggest a hemolytic process. His reticulocyte count, however, has not been corrected for the degree of anemia he displays. This can be done by calculating his corrected reticulocyte count ([3% × (18%/45%)] = 1.2%), which is less than 2 and thus suggestive of a hypoproliferative process (decreased red cell production). Q.2. A 25-year-old man with pancytopenia undergoes bone marrow aspiration and biopsy, which reveals profound hypocellularity and virtual absence of hematopoietic cells. Cytogenetic analysis of the bone marrow does not reveal any abnormalities. Despite red blood cell and platelet transfusions, his pancytopenia worsens. Histocompatibility testing of his only sister fails to reveal a match. What would be the most appropriate course of therapy? A. Antithymocyte globulin, cyclosporine, and prednisone B. Prednisone alone C. Supportive therapy with chronic blood and platelet transfusions only D. Methotrexate and prednisone E. Bone marrow transplant Answer: A. Although supportive care with transfusions is necessary for treating this patient with aplastic anemia, most cases are not self-limited. -
Non-Hodgkin's Lymphoma Questions and Answers
Non-Hodgkin's Lymphoma Questions and Answers What is Non-Hodgkin's Lymphoma? Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphocytes, a type of white blood cell. When lymphocytes become cancerous (malignant), they multiply and become tumors. Lymphocytes are normally found in the blood stream and lymph nodes. Lymph nodes are found throughout the body and are identified by their location. They are a part of the body’s immune system, which includes the lymphatic system, spleen and lymphocytes. Some lymph nodes can be found just by feeling them in the neck, groin or under the arms. Some cannot be felt, but they can be seen on X-rays. NHL is the fifth most common cancer in the United States. Men are at slightly higher risk than women. It is more common in adults than children. The average age at diagnosis is 45 to 55 years. The cause of NHL remains unknown. What Are the Types and Symptoms of Non-Hodgkin’s Lymphoma? There are more than 30 different types of NHL. The specific types of NHL are associated with different symptoms. Low-grade or indolent NHL is usually associated with painless swelling of lymph nodes (usually in the neck or over the collarbone), but patients are otherwise healthy. The swelling may go away for a while, but then return. If the low-grade NHL has spread outside of the lymph nodes, such as to the stomach, there may be discomfort in the affected area. Low-grade lymphomas grow slowly. Examples of low-grade NHLs include: Marginal zone lymphomas. -
The AML Guide Information for Patients and Caregivers Acute Myeloid Leukemia
The AML Guide Information for Patients and Caregivers Acute Myeloid Leukemia Emily, AML survivor Revised 2012 Inside Front Cover A Message from Louis J. DeGennaro, PhD President and CEO of The Leukemia & Lymphoma Society The Leukemia & Lymphoma Society (LLS) wants to bring you the most up-to-date blood cancer information. We know how important it is for you to understand your treatment and support options. With this knowledge, you can work with members of your healthcare team to move forward with the hope of remission and recovery. Our vision is that one day most people who have been diagnosed with acute myeloid leukemia (AML) will be cured or will be able to manage their disease and have a good quality of life. We hope that the information in this Guide will help you along your journey. LLS is the world’s largest voluntary health organization dedicated to funding blood cancer research, advocacy and patient services. Since the first funding in 1954, LLS has invested more than $814 million in research specifically targeting blood cancers. We will continue to invest in research for cures and in programs and services that improve the quality of life for people who have AML and their families. We wish you well. Louis J. DeGennaro, PhD President and Chief Executive Officer The Leukemia & Lymphoma Society Inside This Guide 2 Introduction 3 Here to Help 6 Part 1—Understanding AML About Marrow, Blood and Blood Cells About AML Diagnosis Types of AML 11 Part 2—Treatment Choosing a Specialist Ask Your Doctor Treatment Planning About AML Treatments Relapsed or Refractory AML Stem Cell Transplantation Acute Promyelocytic Leukemia (APL) Treatment Acute Monocytic Leukemia Treatment AML Treatment in Children AML Treatment in Older Patients 24 Part 3—About Clinical Trials 25 Part 4—Side Effects and Follow-Up Care Side Effects of AML Treatment Long-Term and Late Effects Follow-up Care Tracking Your AML Tests 30 Take Care of Yourself 31 Medical Terms This LLS Guide about AML is for information only. -
MINI-REVIEW Large Cell Lymphoma Complicating Persistent Polyclonal B
Leukemia (1998) 12, 1026–1030 1998 Stockton Press All rights reserved 0887-6924/98 $12.00 http://www.stockton-press.co.uk/leu MINI-REVIEW Large cell lymphoma complicating persistent polyclonal B cell lymphocytosis J Roy1, C Ryckman1, V Bernier2, R Whittom3 and R Delage1 1Division of Hematology, 2Department of Pathology, Saint Sacrement Hospital, 3Division of Hematology, CHUQ, Saint Franc¸ois d’Assise Hospital, Laval University, Quebec City, Canada Persistent polyclonal B cell lymphocytosis (PPBL) is a rare immunoglobulin (Ig) M with a polyclonal pattern on protein lymphoproliferative disorder of unclear natural history and its electropheresis. Flow cytometry cell analysis displays the pres- potential for B cell malignancy remains unknown. We describe the case of a 39-year-old female who presented with stage IV- ence of the CD19 antigen and surface IgM with a normal B large cell lymphoma 19 years after an initial diagnosis of kappa/lambda ratio. In contrast to CLL, CD5 is absent. There PPBL; her disease was rapidly fatal despite intensive chemo- is an association between HLA-DR 7 and PPBL in more than therapy and blood stem cell transplantation. Because we had two-thirds of the patients but the reason for such an associ- recently identified multiple bcl-2/lg gene rearrangements in ation remains unclear.3,6 There has been one report of PPBL blood mononuclear cells of patients with PPBL, we sought evi- occurring in identical female twins.7 No other obvious genetic dence of this oncogene in this particular patient: bcl-2/lg gene rearrangements were found in blood mononuclear cells but not predisposition or familial inheritance has yet been described in lymphoma cells. -
Cancer Treatment and Survivorship Facts & Figures 2019-2021
Cancer Treatment & Survivorship Facts & Figures 2019-2021 Estimated Numbers of Cancer Survivors by State as of January 1, 2019 WA 386,540 NH MT VT 84,080 ME ND 95,540 59,970 38,430 34,360 OR MN 213,620 300,980 MA ID 434,230 77,860 SD WI NY 42,810 313,370 1,105,550 WY MI 33,310 RI 570,760 67,900 IA PA NE CT 243,410 NV 185,720 771,120 108,500 OH 132,950 NJ 543,190 UT IL IN 581,350 115,840 651,810 296,940 DE 55,460 CA CO WV 225,470 1,888,480 KS 117,070 VA MO MD 275,420 151,950 408,060 300,200 KY 254,780 DC 18,750 NC TN 470,120 AZ OK 326,530 NM 207,260 AR 392,530 111,620 SC 143,320 280,890 GA AL MS 446,900 135,260 244,320 TX 1,140,170 LA 232,100 AK 36,550 FL 1,482,090 US 16,920,370 HI 84,960 States estimates do not sum to US total due to rounding. Source: Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute. Contents Introduction 1 Long-term Survivorship 24 Who Are Cancer Survivors? 1 Quality of Life 24 How Many People Have a History of Cancer? 2 Financial Hardship among Cancer Survivors 26 Cancer Treatment and Common Side Effects 4 Regaining and Improving Health through Healthy Behaviors 26 Cancer Survival and Access to Care 5 Concerns of Caregivers and Families 28 Selected Cancers 6 The Future of Cancer Survivorship in Breast (Female) 6 the United States 28 Cancers in Children and Adolescents 9 The American Cancer Society 30 Colon and Rectum 10 How the American Cancer Society Saves Lives 30 Leukemia and Lymphoma 12 Research 34 Lung and Bronchus 15 Advocacy 34 Melanoma of the Skin 16 Prostate 16 Sources of Statistics 36 Testis 17 References 37 Thyroid 19 Acknowledgments 45 Urinary Bladder 19 Uterine Corpus 21 Navigating the Cancer Experience: Treatment and Supportive Care 22 Making Decisions about Cancer Care 22 Cancer Rehabilitation 22 Psychosocial Care 23 Palliative Care 23 Transitioning to Long-term Survivorship 23 This publication attempts to summarize current scientific information about Global Headquarters: American Cancer Society Inc. -
Understanding Chronic Lymphocytic Leukemia/ Small Lymphocytic Lymphoma
Understanding Chronic Lymphocytic Leukemia/ Small Lymphocytic Lymphoma Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are forms of non-Hodgkin lymphoma (NHL) that arise from B lymphocytes. CLL and SLL are essentially the same disease, with the only difference being the location where the cancer primarily occurs. When most of the cancer cells are located in the bloodstream and the bone marrow, the disease is referred to as CLL, although the lymph nodes and spleen are often involved. When the cancer cells are located mostly in the lymph nodes and are less frequent in the blood, the disease is called SLL. Many patients with CLL/SLL do not have any obvious symptoms of the disease. Their doctors might detect the disease during routine blood tests and/or a physical examination. For others, the disease is detected when symptoms occur and the patient goes to the doctor because he or she is worried, uncomfortable, or does not feel well. CLL/SLL may cause different symptoms depending on the location of the tumor in the body, including fatigue (extreme tiredness), shortness of breath, anemia (low red blood cell count), bruising easily, night sweats, weight loss, frequent infections. Other symptoms can include a swollen abdomen and feeling full even after eating only a small amount. However, many patients with CLL/SLL will live for years without symptoms. TREATMENT OPTIONS • Chlorambucil (Leukeran) and obinutuzumab (Gazyva) • Venetoclax (Venclexta) and obinutuzumab (Gazyva) Treatment is based on the severity of associated symptoms Occasionally patients might also be treated with chemotherapy, as well as the rate of cancer growth. -
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines® ) Non-Hodgkin’S Lymphomas Version 2.2015
NCCN Guidelines Index NHL Table of Contents Discussion NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines® ) Non-Hodgkin’s Lymphomas Version 2.2015 NCCN.org Continue Version 2.2015, 03/03/15 © National Comprehensive Cancer Network, Inc. 2015, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN® . Peripheral T-Cell Lymphomas NCCN Guidelines Version 2.2015 NCCN Guidelines Index NHL Table of Contents Peripheral T-Cell Lymphomas Discussion DIAGNOSIS SUBTYPES ESSENTIAL: · Review of all slides with at least one paraffin block representative of the tumor should be done by a hematopathologist with expertise in the diagnosis of PTCL. Rebiopsy if consult material is nondiagnostic. · An FNA alone is not sufficient for the initial diagnosis of peripheral T-cell lymphoma. Subtypes included: · Adequate immunophenotyping to establish diagnosisa,b · Peripheral T-cell lymphoma (PTCL), NOS > IHC panel: CD20, CD3, CD10, BCL6, Ki-67, CD5, CD30, CD2, · Angioimmunoblastic T-cell lymphoma (AITL)d See Workup CD4, CD8, CD7, CD56, CD57 CD21, CD23, EBER-ISH, ALK · Anaplastic large cell lymphoma (ALCL), ALK positive (TCEL-2) or · ALCL, ALK negative > Cell surface marker analysis by flow cytometry: · Enteropathy-associated T-cell lymphoma (EATL) kappa/lambda, CD45, CD3, CD5, CD19, CD10, CD20, CD30, CD4, CD8, CD7, CD2; TCRαβ; TCRγ Subtypesnot included: · Primary cutaneous ALCL USEFUL UNDER CERTAIN CIRCUMSTANCES: · All other T-cell lymphomas · Molecular analysis to detect: antigen receptor gene rearrangements; t(2;5) and variants · Additional immunohistochemical studies to establish Extranodal NK/T-cell lymphoma, nasal type (See NKTL-1) lymphoma subtype:βγ F1, TCR-C M1, CD279/PD1, CXCL-13 · Cytogenetics to establish clonality · Assessment of HTLV-1c serology in at-risk populations. -
Death from Mast Cell Leukemia: a Young Patient with Longstanding Cutaneous Mastocytosis Evolving Into Fatal Mast Cell Leukemia
CASE REPORTS Pediatric Dermatology Vol. 29 No. 5 605–609, 2012 Death from Mast Cell Leukemia: A Young Patient with Longstanding Cutaneous Mastocytosis Evolving into Fatal Mast Cell Leukemia Rattanavalai Chantorn, M.D.,*, and Tor Shwayder, M.D. *Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Pediatric Dermatology, Henry Ford Hospital, Detroit, Michigan Abstract: Mastocytosis is a broad term used for a group of disorders characterized by accumulation of mast cells in the skin with or without extracutaneous involvement. The clinical spectrum of the disease varies from only cutaneous lesions to highly aggressive systemic involvement such as mast cell leukemia. Mastocytosis can present from birth to adult- hood. In children, mastocytosis is usually benign, and there is a good chance of spontaneous regression at puberty, unlike adult-onset disease, which is generally systemic and more severe. Moreover, individuals with systemic mastocytosis may be at risk of developing hematologic malignancies. We describe a girl who presented to us with a solitary mastocytoma at age 5 and later developed maculopapular cutaneous mastocytosis. At age 23, after an episode of anaphylactic shock, a bone marrow examination revealed mast cell leukemia. She ultimately died despite aggressive chemotherapy and bone marrow transplantation. Mastocytosis is characterized by the abnormal common forms of CM in childhood. The excoriation growth and infiltration of mast cells (MC) in various of lesions causes hives and perilesional erythema, tissues and is classified into two broad categories: which characterizes Darier’s sign (Fig. 3). SM is cutaneous mastocytosis (CM) and systemic mastocy- characterized by multifocal MC infiltrates with or tosis (SM) (1).