Vertical Niche Partitioning of Archaea and Bacteria Linked to Shifts in Dissolved Organic Matter Quality and Hydrography in North Atlantic Waters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Dicarboxylate/4-Hydroxybutyrate Autotrophic Carbon Assimilation Cycle in the Hyperthermophilic Archaeum Ignicoccus Hospitalis
A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis Harald Huber*†, Martin Gallenberger*, Ulrike Jahn*, Eva Eylert‡, Ivan A. Berg§, Daniel Kockelkorn§, Wolfgang Eisenreich‡, and Georg Fuchs§ *Lehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany; ‡Lehrstuhl fu¨r Biochemie, Department Chemie, Technische Universita¨t Mu¨ nchen, Lichtenbergstrasse 4, D-85748 Garching, Germany; and §Lehrstuhl fu¨r Mikrobiologie, Universita¨t Freiburg, Scha¨nzlestrasse 1, D-79104 Freiburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 1, 2008 (received for review February 1, 2008) Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic starting from acetyl-CoA (4). On the basis of these data, pyruvate Archaeum that serves as a host for the symbiotic/parasitic Archaeum synthase and phosphoenolpyruvate (PEP) carboxylase were pos- Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO2 tulated as CO2 fixing enzymes, with PEP carboxylase serving as the fixation pathway that starts from acetyl-CoA (CoA), which is reduc- only enzyme used for oxaloacetate synthesis. In addition, the tively carboxylated to pyruvate. Pyruvate is converted to phosphoe- operation of an incomplete ‘‘horseshoe-type’’ citric acid cycle, in nol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate which 2-oxoglutarate oxidation does not take place, was demon- formation branch off. Here, we present the complete metabolic cycle strated. Enzyme and labeling data indicated a conventional glu- by which the primary CO2 acceptor molecule acetyl-CoA is regener- coneogenesis, but with some enzymes unrelated to those of the ated. Oxaloacetate is reduced to succinyl-CoA by an incomplete classical pathway. -
Microbial Community and Geochemical Analyses of Trans-Trench Sediments for Understanding the Roles of Hadal Environments
The ISME Journal (2020) 14:740–756 https://doi.org/10.1038/s41396-019-0564-z ARTICLE Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments 1 2 3,4,9 2 2,10 2 Satoshi Hiraoka ● Miho Hirai ● Yohei Matsui ● Akiko Makabe ● Hiroaki Minegishi ● Miwako Tsuda ● 3 5 5,6 7 8 2 Juliarni ● Eugenio Rastelli ● Roberto Danovaro ● Cinzia Corinaldesi ● Tomo Kitahashi ● Eiji Tasumi ● 2 2 2 1 Manabu Nishizawa ● Ken Takai ● Hidetaka Nomaki ● Takuro Nunoura Received: 9 August 2019 / Revised: 20 November 2019 / Accepted: 28 November 2019 / Published online: 11 December 2019 © The Author(s) 2019. This article is published with open access Abstract Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and fi 1234567890();,: 1234567890();,: Mariana Trenches. Tag-sequencing analyses showed speci c distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean. -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Abundance and Microbial Diversity from Surface to Deep Water Layers Over the Rio 2 Grande Rise, South Atlantic 3 4 Juliana Correa Neiva Ferreira*, Natascha M
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441028; this version posted April 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abundance and Microbial Diversity from Surface to Deep Water Layers Over the Rio 2 Grande Rise, South Atlantic 3 4 Juliana Correa Neiva Ferreira*, Natascha M. Bergo*, Pedro M. Tura, Mateus Gustavo Chuqui, 5 Frederico P. Brandini, Luigi Jovane, Vivian H. Pellizari 6 7 Affiliations 8 Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil 9 10 Corresponding author 11 Correspondence to Dra Natascha Menezes Bergo, [email protected] 12 *These authors contributed equally to this work 13 14 ORCID number 15 0000-0002-5367-0257 - Juliana Correa Neiva Ferreira 16 0000-0002-8236-9412 - Natascha Menezes Bergo 17 0000-0003-2880-7028 - Pedro M. Tura 18 0000-0002-4167-0030 - Mateus Gustavo Chuqui 19 0000-0002-3177-4274 - Frederico Pereira Brandini 20 0000-0003-4348-4714 - Luigi Jovane 21 0000-0003-2757-6352 - Vivian Helena Pellizari 22 23 Highlights 24 • Rio Grande Rise pelagic microbiome 25 • Picoplankton carbon biomass partitioning through pelagic zones 26 • Unique SAR11 Clade I oligotype in the shallowest Tropical Water 27 • Higher number of shared oligotypes between deepest water masses 28 • Nitrogen, carbon and sulfur may be important contributors for the pelagic microbiome 29 30 Abstract 31 Marine microbes control the flux of matter and energy essential for life in the oceans. -
Novel Insights Into the Thaumarchaeota in the Deepest Oceans: Their Metabolism and Potential Adaptation Mechanisms
Zhong et al. Microbiome (2020) 8:78 https://doi.org/10.1186/s40168-020-00849-2 RESEARCH Open Access Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms Haohui Zhong1,2, Laura Lehtovirta-Morley3, Jiwen Liu1,2, Yanfen Zheng1, Heyu Lin1, Delei Song1, Jonathan D. Todd3, Jiwei Tian4 and Xiao-Hua Zhang1,2,5* Abstract Background: Marine Group I (MGI) Thaumarchaeota, which play key roles in the global biogeochemical cycling of nitrogen and carbon (ammonia oxidizers), thrive in the aphotic deep sea with massive populations. Recent studies have revealed that MGI Thaumarchaeota were present in the deepest part of oceans—the hadal zone (depth > 6000 m, consisting almost entirely of trenches), with the predominant phylotype being distinct from that in the “shallower” deep sea. However, little is known about the metabolism and distribution of these ammonia oxidizers in the hadal water. Results: In this study, metagenomic data were obtained from 0–10,500 m deep seawater samples from the Mariana Trench. The distribution patterns of Thaumarchaeota derived from metagenomics and 16S rRNA gene sequencing were in line with that reported in previous studies: abundance of Thaumarchaeota peaked in bathypelagic zone (depth 1000–4000 m) and the predominant clade shifted in the hadal zone. Several metagenome-assembled thaumarchaeotal genomes were recovered, including a near-complete one representing the dominant hadal phylotype of MGI. Using comparative genomics, we predict that unexpected genes involved in bioenergetics, including two distinct ATP synthase genes (predicted to be coupled with H+ and Na+ respectively), and genes horizontally transferred from other extremophiles, such as those encoding putative di-myo-inositol-phosphate (DIP) synthases, might significantly contribute to the success of this hadal clade under the extreme condition. -
Archaeal Communities Along the Water Columns of the South China Sea
1 Characterization of particle-associated and free-living bacterial and 2 archaeal communities along the water columns of the South China Sea 3 4 Jiangtao Lia, Lingyuan Gua, Shijie Baib, Jie Wang c, Lei Sua, Bingbing Weia, Li Zhangd and Jiasong Fange,f,g * 5 6 aState Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; 7 b Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; 8 cCollege of Marine Science, Shanghai Ocean University, Shanghai 201306, China; 9 dSchool of Earth Sciences, China University of Geosciences, Wuhan, China; 10 eThe Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, 11 Shanghai 201306, China; 12 fLaboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and 13 Technology, Qingdao 266237, China; 14 gDepartment of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA. 15 16 *Corresponding author: [email protected] 1 17 Abstract 18 There is a growing recognition of the role of particle-attached (PA) and free-living (FL) microorganisms in 19 marine carbon cycle. However, current understanding of PA and FL microbial communities is largely on 20 those in the upper photic zone, and relatively fewer studies have focused on microbial communities of the 21 deep ocean. Moreover, archaeal populations receive even less attention. In this study, we determined 22 bacterial and archaeal community structures of both the PA and FL assemblages at different depths, from the 23 surface to the bathypelagic zone along two water column profiles in the South China Sea. Our results suggest 24 that environmental parameters including depth, seawater age, salinity, POC, DOC, DO and silicate play a 25 role in structuring these microbial communities. -
Downloaded from Mage and Compared
bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta Florian U. Moeller1, Nicole S. Webster2,3, Craig W. Herbold1, Faris Behnam1, Daryl Domman1, 5 Mads Albertsen4, Maria Mooshammer1, Stephanie Markert5,8, Dmitrij Turaev6, Dörte Becher7, Thomas Rattei6, Thomas Schweder5,8, Andreas Richter9, Margarete Watzka9, Per Halkjaer Nielsen4, and Michael Wagner1,* 1Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, 10 Austria. 2Australian Institute of Marine Science, Townsville, Queensland, Australia. 3 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of 15 Queensland, St Lucia, QLD, Australia 4Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark. 20 5Institute of Marine Biotechnology e.V., Greifswald, Germany 6Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Austria. 25 7Institute of Microbiology, Microbial Proteomics, University of Greifswald, Greifswald, Germany 8Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany 9Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, 30 University of Vienna, Austria. *Corresponding author: Michael Wagner, Department of Microbiology and Ecosystem Science, Althanstrasse 14, University of Vienna, 1090 Vienna, Austria. Email: wagner@microbial- ecology.net 1 bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Expansion of Thaumarchaeota Habitat Range Is Correlated with Horizontal Transfer of Atpase Operons
Lawrence Berkeley National Laboratory Recent Work Title Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. Permalink https://escholarship.org/uc/item/19h9369p Journal The ISME journal, 13(12) ISSN 1751-7362 Authors Wang, Baozhan Qin, Wei Ren, Yi et al. Publication Date 2019-12-01 DOI 10.1038/s41396-019-0493-x Peer reviewed eScholarship.org Powered by the California Digital Library University of California The ISME Journal (2019) 13:3067–3079 https://doi.org/10.1038/s41396-019-0493-x ARTICLE Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons 1,2 3 4 1 2 2 5,6 Baozhan Wang ● Wei Qin ● Yi Ren ● Xue Zhou ● Man-Young Jung ● Ping Han ● Emiley A. Eloe-Fadrosh ● 7 8 1 9 9 7 4 10 10 Meng Li ● Yue Zheng ● Lu Lu ● Xin Yan ● Junbin Ji ● Yang Liu ● Linmeng Liu ● Cheryl Heiner ● Richard Hall ● 11 2 12 5 13 Willm Martens-Habbena ● Craig W. Herbold ● Sung-keun Rhee ● Douglas H. Bartlett ● Li Huang ● 3 2,14 15 1 Anitra E. Ingalls ● Michael Wagner ● David A. Stahl ● Zhongjun Jia Received: 15 April 2019 / Revised: 1 July 2019 / Accepted: 29 July 2019 / Published online: 28 August 2019 © The Author(s) 2019. This article is published with open access Abstract Thaumarchaeota are responsible for a significant fraction of ammonia oxidation in the oceans and in soils that range from alkaline to acidic. However, the adaptive mechanisms underpinning their habitat expansion remain poorly understood. Here we show that expansion into acidic soils and the high pressures of the hadopelagic zone of the oceans is tightly linked to the acquisition of a variant of the energy-yielding ATPases via horizontal transfer. -
Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges
fmicb-11-622824 January 16, 2021 Time: 10:0 # 1 ORIGINAL RESEARCH published: 11 January 2021 doi: 10.3389/fmicb.2020.622824 Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges Markus Haber1,2, Ilia Burgsdorf1, Kim M. Handley3, Maxim Rubin-Blum4 and Laura Steindler1* 1 Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel, 2 Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Ceskéˇ Budejovice,ˇ Czechia, 3 School of Biological Sciences, The University of Auckland, Auckland, New Zealand, 4 Israel Oceanographic and Limnological Research Institute, Haifa, Israel Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free- living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications Edited by: systems, enrichments previously reported also from bacterial sponge symbionts. Most Andreas Teske, University of North Carolina at Chapel thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely Hill, United States alters their cell surface and allows them to evade digestion by the host. All but Reviewed by: one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid Lu Fan, Southern University of Science transporter system that was absent from the analyzed free-living thaumarchaeota and Technology, China suggesting a mixotrophic lifestyle for the sponge symbionts. -
A Single Thaumarchaeon Drives Nitrification in Deep Oligotrophic
Environmental Microbiology (2020) 22(1), 212–228 doi:10.1111/1462-2920.14840 A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance Janina Herber,1 Franziska Klotz,1 typically two orders of magnitude less abundant and Benjamin Frommeyer,1 Severin Weis,2 Dietmar Straile,3 completely ammonia-oxidizing (comammox) bacteria Allison Kolar,4 Johannes Sikorski,5 Markus Egert,2 were not detected. Both, 16S rRNA gene and amoA Michael Dannenmann4 and Michael Pester 1,5,6* (encoding ammonia monooxygenase subunit B) ana- 1Department of Biology, University of Konstanz, lyses identified only one major species-level opera- Universitätsstrasse 10, Constance 78457, Germany. tional taxonomic unit (OTU) of Thaumarchaeota (99% 2Faculty of Medical and Life Sciences, Institute of of all ammonia oxidizers in the hypolimnion), which Precision Medicine, Furtwangen University, Jakob- was affiliated to Nitrosopumilus spp. The relative abun- Kienzle-Str. 17, Villingen-Schwenningen 78054, dance distribution of the single Thaumarchaeon Germany. strongly correlated to an equally abundant Chloroflexi 3Limnological Institute, University of Konstanz, clade CL500-11 OTU and a Nitrospira OTU that was one Mainaustraße 252, Constance 78464, Germany. order of magnitude less abundant. The latter domi- 4Karlsruhe Institute of Technology, Institute for nated among recognized nitrite oxidizers. This fi Meteorology and Climate Research, Atmospheric extremely low diversity of nitri ers shows how vulnera- fi Environmental Research (IMK-IFU), Kreuzeckbahnstr. ble the ecosystem process of nitri cation may be in ’ 19, 82467 Garmisch-Partenkirchen, Germany. Lake Constance as Central Europe s third largest lake. 5Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Introduction Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Microbially driven ammonia oxidation to nitrite is the rate Germany. -
Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs. -
Genome-Resolved Metagenomics Analysis Provides Insights Into the Ecological Role of Thaumarchaeota in the Amazon River and Its Plume Otávio H
Pinto et al. BMC Microbiology (2020) 20:13 https://doi.org/10.1186/s12866-020-1698-x RESEARCH ARTICLE Open Access Genome-resolved metagenomics analysis provides insights into the ecological role of Thaumarchaeota in the Amazon River and its plume Otávio H. B. Pinto1, Thais F. Silva1, Carla S. Vizzotto1,2, Renata H. Santana3, Fabyano A. C. Lopes4, Bruno S. Silva5, Fabiano L. Thompson5 and Ricardo H. Kruger1* Abstract Background: Thaumarchaeota are abundant in the Amazon River, where they are the only ammonia-oxidizing archaea. Despite the importance of Thaumarchaeota, little is known about their physiology, mainly because few isolates are available for study. Therefore, information about Thaumarchaeota was obtained primarily from genomic studies. The aim of this study was to investigate the ecological roles of Thaumarchaeota in the Amazon River and the Amazon River plume. Results: The archaeal community of the shallow in Amazon River and its plume is dominated by Thaumarchaeota lineages from group 1.1a, which are mainly affiliated to Candidatus Nitrosotenuis uzonensis, members of order Nitrosopumilales, Candidatus Nitrosoarchaeum, and Candidatus Nitrosopelagicus sp. While Thaumarchaeota sequences have decreased their relative abundance in the plume, Candidatus Nitrosopelagicus has increased. One genome was recovered from metagenomic data of the Amazon River (ThauR71 [1.05 Mpb]), and two from metagenomic data of the Amazon River plume (ThauP25 [0.94 Mpb] and ThauP41 [1.26 Mpb]). Phylogenetic analysis placed all three Amazon genome bins in Thaumarchaeota Group 1.1a. The annotation revealed that most genes are assigned to the COG subcategory coenzyme transport and metabolism. All three genomes contain genes involved in the hydroxypropionate/hydroxybutyrate cycle, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation.