bioRxiv preprint doi: https://doi.org/10.1101/464404; this version posted November 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Novel autoregulatory cases of alternative splicing coupled with nonsense-mediated mRNA decay Dmitri Pervouchine 1,2,*, Yaroslav Popov 2, Andy Berry 3, Beatrice Borsari 4, Adam Frankish 3, Roderic Guig´o 4 1 Skolkovo Institute of Science and Technology, 3 Nobel st, Moscow 143026, Russia; 2 Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, 119234 Moscow, Russia; 3 The European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SA Hinxton, Cambridge, United Kingdom; 4 Center for Genomic Regulation and UPF, Dr. Aiguader 88, Barcelona 08003, Spain * The correspondence should be addressed to
[email protected] Abstract Nonsense-mediated decay (NMD) is a eukaryotic mRNA surveillance system that selectively degrades 1 transcripts with premature termination codons (PTC). Many RNA-binding proteins (RBP) regulate their 2 expression levels by a negative feedback loop, in which RBP binds its own pre-mRNA and causes alternative 3 splicing to introduce a PTC. We present a bioinformatic framework to identify novel such autoregulatory 4 feedback loops by combining eCLIP assays for a large panel of RBPs with the data on shRNA inactivation 5 of NMD pathway, and shRNA-depletion of RBPs followed by RNA-seq. We show that RBPs frequently bind 6 their own pre-mRNAs and respond prominently to NMD pathway disruption. Poison and essential exons, 7 i.e., exons that trigger NMD when included in the mRNA or skipped, respectively, respond oppositely to the 8 inactivation of NMD pathway and to the depletion of their host genes, which allows identification of novel 9 autoregulatory mechanisms for a number of human RBPs.