Satellite Mod 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Perturbations and Station-Keeping Requirements in Highly-Inclined Geosynchronous Orbits
ANALYSIS OF PERTURBATIONS AND STATION-KEEPING REQUIREMENTS IN HIGHLY-INCLINED GEOSYNCHRONOUS ORBITS Elena Fantino(1), Roberto Flores(2), Alessio Di Salvo(3), and Marilena Di Carlo(4) (1)Space Studies Institute of Catalonia (IEEC), Polytechnic University of Catalonia (UPC), E.T.S.E.I.A.T., Colom 11, 08222 Terrassa (Spain), [email protected] (2)International Center for Numerical Methods in Engineering (CIMNE), Polytechnic University of Catalonia (UPC), Building C1, Campus Norte, UPC, Gran Capitan,´ s/n, 08034 Barcelona (Spain) (3)NEXT Ingegneria dei Sistemi S.p.A., Space Innovation System Unit, Via A. Noale 345/b, 00155 Roma (Italy), [email protected] (4)Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom), [email protected] Abstract: There is a demand for communications services at high latitudes that is not well served by conventional geostationary satellites. Alternatives using low-altitude orbits require too large constellations. Other options are the Molniya and Tundra families (critically-inclined, eccentric orbits with the apogee at high latitudes). In this work we have considered derivatives of the Tundra type with different inclinations and eccentricities. By means of a high-precision model of the terrestrial gravity field and the most relevant environmental perturbations, we have studied the evolution of these orbits during a period of two years. The effects of the different perturbations on the constellation ground track (which is more important for coverage than the orbital elements themselves) have been identified. We show that, in order to maintain the ground track unchanged, the most important parameters are the orbital period and the argument of the perigee. -
Astrodynamics
Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities -
Positioning: Drift Orbit and Station Acquisition
Orbits Supplement GEOSTATIONARY ORBIT PERTURBATIONS INFLUENCE OF ASPHERICITY OF THE EARTH: The gravitational potential of the Earth is no longer µ/r, but varies with longitude. A tangential acceleration is created, depending on the longitudinal location of the satellite, with four points of stable equilibrium: two stable equilibrium points (L 75° E, 105° W) two unstable equilibrium points ( 15° W, 162° E) This tangential acceleration causes a drift of the satellite longitude. Longitudinal drift d'/dt in terms of the longitude about a point of stable equilibrium expresses as: (d/dt)2 - k cos 2 = constant Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF EARTH ASPHERICITY VARIATION IN THE LONGITUDINAL ACCELERATION OF A GEOSTATIONARY SATELLITE: Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN & MOON ATTRACTION Gravitational attraction by the sun and moon causes the satellite orbital inclination to change with time. The evolution of the inclination vector is mainly a combination of variations: period 13.66 days with 0.0035° amplitude period 182.65 days with 0.023° amplitude long term drift The long term drift is given by: -4 dix/dt = H = (-3.6 sin M) 10 ° /day -4 diy/dt = K = (23.4 +.2.7 cos M) 10 °/day where M is the moon ascending node longitude: M = 12.111 -0.052954 T (T: days from 1/1/1950) 2 2 2 2 cos d = H / (H + K ); i/t = (H + K ) Depending on time within the 18 year period of M d varies from 81.1° to 98.9° i/t varies from 0.75°/year to 0.95°/year Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN RADIATION PRESSURE Due to sun radiation pressure, eccentricity arises: EFFECT OF NON-ZERO ECCENTRICITY L = difference between longitude of geostationary satellite and geosynchronous satellite (24 hour period orbit with e0) With non-zero eccentricity the satellite track undergoes a periodic motion about the subsatellite point at perigee. -
GPS Applications in Space
Space Situational Awareness 2015: GPS Applications in Space James J. Miller, Deputy Director Policy & Strategic Communications Division May 13, 2015 GPS Extends the Reach of NASA Networks to Enable New Space Ops, Science, and Exploration Apps GPS Relative Navigation is used for Rendezvous to ISS GPS PNT Services Enable: • Attitude Determination: Use of GPS enables some missions to meet their attitude determination requirements, such as ISS • Real-time On-Board Navigation: Enables new methods of spaceflight ops such as rendezvous & docking, station- keeping, precision formation flying, and GEO satellite servicing • Earth Sciences: GPS used as a remote sensing tool supports atmospheric and ionospheric sciences, geodesy, and geodynamics -- from monitoring sea levels and ice melt to measuring the gravity field ESA ATV 1st mission JAXA’s HTV 1st mission Commercial Cargo Resupply to ISS in 2008 to ISS in 2009 (Space-X & Cygnus), 2012+ 2 Growing GPS Uses in Space: Space Operations & Science • NASA strategic navigation requirements for science and 20-Year Worldwide Space Mission space ops continue to grow, especially as higher Projections by Orbit Type* precisions are needed for more complex operations in all space domains 1% 5% Low Earth Orbit • Nearly 60%* of projected worldwide space missions 27% Medium Earth Orbit over the next 20 years will operate in LEO 59% GeoSynchronous Orbit – That is, inside the Terrestrial Service Volume (TSV) 8% Highly Elliptical Orbit Cislunar / Interplanetary • An additional 35%* of these space missions that will operate at higher altitudes will remain at or below GEO – That is, inside the GPS/GNSS Space Service Volume (SSV) Highly Elliptical Orbits**: • In summary, approximately 95% of projected Example: NASA MMS 4- worldwide space missions over the next 20 years will satellite constellation. -
Small Satellites in Inclined Orbits to Increase Observation Capability Feasibility Analysis
International Journal of Pure and Applied Mathematics Volume 118 No. 17 2018, 273-287 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu Small Satellites in Inclined Orbits to Increase Observation Capability Feasibility Analysis DVA Raghava Murthy1, V Kesava Raju2, T.Ramanjappa3, Ritu Karidhal4, Vijayasree Mallikarjuna Kande5, G Ravi chandra Babu6 and A Arunachalam7 1 7 Earth Observations System, ISRO Headquarters, Bengaluru, Karnataka India [email protected] 2 4 5 6ISRO Satellite Centre, Bengaluru, Karnataka, India 3SK University, Ananthapur, Andhra Pradesh, India January 6, 2018 Abstract Over the period of past four decades, Remote Sensing data products and services have been effectively utilized to showcase varieties of applications in many areas of re- sources inventory and monitoring. There are several satel- lite systems in operation today and they operate from Po- lar Orbit and Geosynchronous Orbit, collect the imagery and non-imagery data and provide them to user community for various applications in the areas of natural resources management, urban planning and infrastructure develop- ment, weather forecasting and disaster management sup- port. Quality of information derived from Remote Sensing imagery are strongly influenced by spatial, spectral, radio- metric & temporal resolutions as well as by angular & po- larimetric signatures. As per the conventional approach of 1 273 International Journal of Pure and Applied Mathematics Special Issue having Remote Sensing satellites in near Polar Sun syn- chronous orbit, the temporal resolution, i.e. the frequency with which an area can be frequently observed, is basically defined by the swath of the sensor and distance between the paths. -
NASA Process for Limiting Orbital Debris
NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions ......................................................................................................................... -
Open Rosen Thesis.Pdf
THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF AEROSPACE ENGINEERING END OF LIFE DISPOSAL OF SATELLITES IN HIGHLY ELLIPTICAL ORBITS MITCHELL ROSEN SPRING 2019 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Aerospace Engineering with honors in Aerospace Engineering Reviewed and approved* by the following: Dr. David Spencer Professor of Aerospace Engineering Thesis Supervisor Dr. Mark Maughmer Professor of Aerospace Engineering Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT Highly elliptical orbits allow for coverage of large parts of the Earth through a single satellite, simplifying communications in the globe’s northern reaches. These orbits are able to avoid drastic changes to the argument of periapse by using a critical inclination (63.4°) that cancels out the first level of the geopotential forces. However, this allows the next level of geopotential forces to take over, quickly de-orbiting satellites. Thus, a balance between the rate of change of the argument of periapse and the lifetime of the orbit is necessitated. This thesis sets out to find that balance. It is determined that an orbit with an inclination of 62.5° strikes that balance best. While this orbit is optimal off of the critical inclination, it is still near enough that to allow for potential use of inclination changes as a deorbiting method. Satellites are deorbited when the propellant remaining is enough to perform such a maneuver, and nothing more; therefore, the less change in velocity necessary for to deorbit, the better. Following the determination of an ideal highly elliptical orbit, the different methods of inclination change is tested against the usual method for deorbiting a satellite, an apoapse burn to lower the periapse, to find the most propellant- efficient method. -
GEO, MEO, and LEO How Orbital Altitude Impacts Network Performance in Satellite Data Services
GEO, MEO, AND LEO How orbital altitude impacts network performance in satellite data services COMMUNICATION OVER SATELLITE “An entire multi-orbit is now well accepted as a key enabler across the telecommunications industry. Satellite networks can supplement existing infrastructure by providing global reach satellite ecosystem is where terrestrial networks are unavailable or not feasible. opening up above us, But not all satellite networks are created equal. Providers offer different solutions driving new opportunities depending on the orbits available to them, and so understanding how the distance for high-performance from Earth affects performance is crucial for decision making when selecting a satellite service. The following pages give an overview of the three main orbit gigabit connectivity and classes, along with some of the principal trade-offs between them. broadband services.” Stewart Sanders Executive Vice President of Key terms Technology at SES GEO – Geostationary Earth Orbit. NGSO – Non-Geostationary Orbit. NGSO is divided into MEO and LEO. MEO – Medium Earth Orbit. LEO – Low Earth Orbit. HTS – High Throughput Satellites designed for communication. Latency – the delay in data transmission from one communication endpoint to another. Latency-critical applications include video conferencing, mobile data backhaul, and cloud-based business collaboration tools. SD-WAN – Software-Defined Wide Area Networking. Based on policies controlled by the user, SD-WAN optimises network performance by steering application traffic over the most suitable access technology and with the appropriate Quality of Service (QoS). Figure 1: Schematic of orbital altitudes and coverage areas GEOSTATIONARY EARTH ORBIT Altitude 36,000km GEO satellites match the rotation of the Earth as they travel, and so remain above the same point on the ground. -
Single Axis Tracking with the RC1500B the Apparent Motion Of
Single Axis Tracking with the RC1500B The apparent motion of an inclined orbit satellite appears as a narrow figure 8 pattern aligned perpendicular to the geo-stationary satellite arc. As the inclination of the satellite increases both the height and the width of the figure 8 pattern increase. The single axis tracker can follow the long dimension of the figure 8 but cannot compensate for the width of the figure 8 pattern. A paper (available on our web site - http://www.researchconcepts.com/Files/track_wp.pdf) describes the height and width of the figure 8 pattern as a function of the inclination of the satellite’s orbit. Note that the inclination of the satellite increases with time. The maximum rate of increase is approximately 0.9 degrees per year. As the inclination increases, the width of the figure 8 pattern will also increase. This has two implications for system performance. One, the maximum signal loss due to antenna misalignment will increase with time, and two, the antenna must have range a of motion sufficient to accommodate the greatest satellite inclination that will be encountered. Many people feel that single axis tracking is viable for antenna’s up to 3.8 meters at C band and 2.4 meters at Ku band. Implicit in this is the fact that the inclination of most commercial satellites is not allowed to exceed 5 degrees. This assumption should be verified before a system is fielded. A single axis tracking system must be in precise mechanical alignment to minimize loss due to the mount’s inability to compensate for the width of the figure eight pattern. -
Measurement Techniques and New Technologies for Satellite Monitoring
Report ITU-R SM.2424-0 (06/2018) Measurement techniques and new technologies for satellite monitoring SM Series Spectrum management ii Rep. ITU-R SM.2424-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1. -
Orbital Debris Mitigation Standard Practices (ODMSP) Were Established in 2001 to Address the Increase in Orbital Debris in the Near-Earth Space Environment
U.S. Government Orbital Debris Mitigation Standard Practices, November 2019 Update PREAMBLE The United States Government (USG) Orbital Debris Mitigation Standard Practices (ODMSP) were established in 2001 to address the increase in orbital debris in the near-Earth space environment. The goal of the ODMSP was to limit the generation of new, long-lived debris by the control of debris released during normal operations, minimizing debris generated by accidental explosions, the selection of safe flight profile and operational configuration to minimize accidental collisions, and postmission disposal of space structures. While the original ODMSP adequately protected the space environment at the time, the USG recognizes that it is in the interest of all nations to minimize new debris and mitigate effects of existing debris. This fact, along with increasing numbers of space missions, highlights the need to update the ODMSP and to establish standards that can inform development of international practices. This 2019 update includes improvements to the original objectives as well as clarification and additional standard practices for certain classes of space operations. The improvements consist of a quantitative limit on debris released during normal operations, a probability limit on accidental explosions, probability limits on accidental collisions with large and small debris, and a reliability threshold for successful postmission disposal. The new standard practices established in the update include the preferred disposal options for immediate removal of structures from the near-Earth space environment, a low-risk geosynchronous Earth orbit (GEO) transfer disposal option, a long-term reentry option, and improved move-away-and-stay-away storage options in medium Earth orbit (MEO) and above GEO. -
Classification of Geosynchronous Objects
esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by ESA’s Space Debris Office Reference GEN-DB-LOG-00211-OPS-GR Issue 20 Revision 0 Date of Issue 28 May 2018 Status Issued Document Type Technical Note Distribution ESA UNCLASSIFIED - Limited Distribution European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2018. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1523 objects for which orbital data are available (of which 0 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 519 are actively controlled, 795 are drifting above, below or through GEO, 189 are in a libration orbit and 19 are in a highly inclined orbit. For 1 object the status could not be determined. Furthermore, there are 59 uncontrolled objects without orbital data (of which 54 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1582. If you detect any error or if you have any comment or question please contact: Stijn Lemmens European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-902634 E-mail: [email protected] Page 1 / 187 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 28 May 2018 Issue 20 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) .