Wave Four-Vector in a Moving Medium and the Lorentz Covariance of Minkowski's Photon and Electromagnetic Momentums 1

Total Page:16

File Type:pdf, Size:1020Kb

Wave Four-Vector in a Moving Medium and the Lorentz Covariance of Minkowski's Photon and Electromagnetic Momentums 1 Wave four-vector in a moving medium and the Lorentz covariance of Minkowski’s photon and electromagnetic momentums Changbiao Wang ShangGang Group, 70 Huntington Road, Apartment 11, New Haven, CT 06512, USA In this paper, by analysis of a plane wave in a moving dielectric medium, it is shown that the invariance of phase is a natural result under Lorentz transformations. From the covariant wave four-vector combined with Einstein’s light- quantum hypothesis, Minkowski’s photon momentum equation is naturally restored, and it is indicated that the formulation of Abraham’s photon momentum is not compatible with the covariance of relativity. Fizeau running water experiment is re-analyzed as a support to the Minkowski’s momentum. It is also shown that, (1) there may be a pseudo-power flow when a medium moves, (2) Minkowski’s electromagnetic momentum is Lorentz covariant, (3) the covariant Minkowski’s stress tensor may have a simplest form of symmetry, and (4) the moving medium behaves as a so-called “negative index medium” when it moves opposite to the wave vector at a faster-than-dielectric light speed. Key words: invariance of phase, wave four-vector, moving dielectric medium, light momentum in medium PACS numbers: 42.50.Wk, 03.50.De, 42.25.-p, 03.30.+p I. INTRODUCTION exhibit the Lorentz covariance of four-vector when the pseudo- Invariance of phase is a well-known fundamental concept in momentum disappears, which challenges the well-recognized the relativistic electromagnetic (EM) theory. However the viewpoint in the community [18]. invariance of phase for a plane wave in a uniform dielectric The momentum of light in a medium can be described by a medium has been questioned, because the frequency can be single photon’s momentum or by the EM momentum. The negative when the medium moves at a faster-than-dielectric covariance of photon momentum is shown based on the light speed in the direction opposite to the wave vector [1]. To invariance of phase and Einstein’s light-quantum hypothesis, solve the problem, a new wave four-vector based on an while the covariance of EM momentum is shown only based on additional assumption was proposed: a plane wave travels at a the covariance of EM fields. The covariance of Minkowski’s “wave velocity” that is not necessarily parallel to the wave light momentum embodies the consistence of Einstein’s vector direction [2,3]. relativity and light-quantum hypothesis. In this paper, by analysis of a plane wave in a moving dielectric medium, it is shown that the invariance of phase is a II. INVARIANCE OF PHASE natural result under Lorentz transformations, and it is a Suppose that the frame X ′Y ′Z′ moves with respect to the lab sufficient and necessary condition for the Lorentz covariance of frame XYZ at a constant velocity of βc , with all corresponding wave four-vector. When the negative frequency appears, the coordinate axes in the same directions and their origins moving medium behaves as a so-called “negative index overlapping at t = t′ = 0 , as shown in Fig. 1. The time-space medium”, resulting in the change of properties of wave Lorentz transformation is given by [19] propagation. Based on the symmetry of phase function with γ −1 respect to all inertial frames, a symmetric definition of phase x = x′ + (β ⋅ x′)β + γ βct′ , (1) velocity and an invariant form of equi-phase plane equation of β 2 motion are given. The momentum of light in a medium is a fundamental ct = γ (ct′ + β ⋅ x′) . (2) question [4-18]. Maxwell equations support various forms of 2 −1/ 2 momentum conservation equations [13,15,16]. In a sense, the where c is the universal light speed, and γ = (1− β ) is the construction of EM momentum density vector is artificial, time dilation factor. The EM fields E and B, and D and H respectively constitute a covariant second-rank anti-symmetric which is a kind of indeterminacy. However it is the αβ αβ indeterminacy that results in the question of light momentum. tensor F (E,B) and G (D,H) , of which the Lorentz For example, in the recent publication [4], powerful arguments transformations can be written in intuitive 3D-vector forms, are provided to support both Minkowski’s and Abraham’s given by [19-20] formulations of light momentum: one is canonical, and the other is kinetic, and they are both correct. ⎛E′⎞ ⎛E⎞ ⎛ Bc ⎞ γ −1 ⎛E⎞ ⎜ ⎟ = γ ⎜ ⎟ + γβ × ⎜ ⎟ − β ⋅ ⎜ ⎟β , (3) The above indeterminacy should be excluded by imposing ⎜D′⎟ ⎜D⎟ ⎜H c⎟ β 2 ⎜D⎟ physical conditions, just like the EM field solutions are required ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ to satisfy boundary conditions. Such a physical condition is the ⎛ B′ ⎞ ⎛ B ⎞ ⎛E c⎞ γ −1 ⎛ B ⎞ Lorentz covariance. As we know, the phase function for a plane ⎜ ⎟ = γ ⎜ ⎟ − γβ × ⎜ ⎟ − β ⋅ ⎜ ⎟β , (4) ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 2 ⎜ ⎟ wave characterizes the propagation of energy and momentum of ⎝H′⎠ ⎝H⎠ ⎝ Dc ⎠ β ⎝H⎠ light. Since the phase function is symmetric with respect to all inertial frames, the covariance of light momentum must hold. with E′ ⋅ B′ , E′2 − (B′c) 2 , D′ ⋅ H′ , and (D′c) 2 − H′2 as Lorentz In this paper, it is also shown that, Minkowski’s light scalars [21]. momentum is Lorentz covariant, while Abraham’s is not. Suppose that the fields in XYZ frame have a propagation Fizeau running water experiment is re-analyzed as a support to factor, namely (E,B) or (D,H) ~ exp[iΨ(x,t)] . From Eqs. (3) the Minkowski’s momentum. A simple example is given to and (4), the phase function Ψ(x,t) must be included in (E′,B′) show: (1) neither Abraham’s nor Minkowski’s EM momentum or (D′, H′) , and Ψ′(x′,t′) = Ψ(x,t) , with (x,t) in Ψ(x,t) can correctly describe the real EM momentum when a pseudo- replaced by (x′,t′) in terms of Eqs. (1) and (2). Thus the momentum exists, and (2) the “attached-to-source field” does invariance is natural. Of course, the invariance of phase does 1 not necessarily mean that the phase functions must have the case is the group velocity that is exactly equal to the projection same form. For a plane wave in free space, which is velocity of the phase velocity of a uniform plane wave in the unidentifiable, the phase functions must have the same form wave-guided direction [24]. Just because of the complexity [22]; however, for a radiation electric dipole [20,21,23,24] as a caused by the wave interference and superposition, especially in moving point light source in free space, the forms of the phase a strongly dispersive medium [19], the judgment of energy functions must be different because the moving point source has velocity is often controversial [26-29]. a preferred frame [25]. In conclusion, the invariance of phase is a natural result under V. STANDARD LORENTZ COVARIANT WAVE FOUR- Lorentz transformations. VECTOR IN A MOVING DIELECTRIC MEDIUM Suppose that the uniform dielectric medium with a refractive Y' index of nd′ > 0 is at rest in X ′Y ′Z′ fame. From the invariance of phase, we have Ψ′(x′,t′) = ω′t′ − nd′k′ ⋅ x′ = ωt − nd k ⋅ x . (5) Y where k′ = ω′ c and k = ω c . Z' X' It is seen from Eq. (5) that the phase function is symmetric ct with respect to all inertial frames, independent of which frame β the medium is fixed in. From this we can conclude: (a) µ K = (nd k,ω c) must be Lorentz covariant, (b) the definitions Z X of equi-phase plane and phase velocity should be independent of the choice of inertial frames. Fig. 1. Two inertial frames of relative motion. X ′Y ′Z′ moves with By setting the time-space four-vector X µ = (x,ct) and the respect to XYZ at βc , while XYZ moves with respect to X ′Y ′Z′ at µ wave four-vector K = (nd k,ω c) , Eq. (5) can be written in a β′c (not shown), with β′ = −β . µ ν covariant form, given by (ωt − nd k ⋅ x) = g µν K X with the metric tensor g = g µν = diag(−1,−1,−1,+1) [30]. III. THE PROPAGATION DIRECTION µν From Eqs. (1) and (2) with nd′k′ → x' and ω′ c → ct′ , we OF A PLANE WAVE µ obtain K = (nd k,ω c) . With nˆ′ = k′ k′ , we have In this section, a symmetric definition of phase velocity for a plane wave is given. The phase function, no matter in free ω = γ (ω′ + nd′ ω′ nˆ ′ ⋅ β) , (Doppler formula) (6) space or in a uniform dielectric medium, is given by γ −1 ⎛ ω′ ⎞ Ψ = ωt − n k ⋅ x , where ω is the angular frequency, n k is the n k = (n′k′) + (n′k′)⋅ββ + γβ⎜ ⎟ . (7) d d d d β 2 d c wave vector, and nd > 0 is the refractive index of medium. ⎝ ⎠ Setting nˆ = k k or k = nˆ k , we have Ψ = ωt − n k nˆ ⋅ x . d From Eq. (6) and the Lorentz scalar equation Geometrically, Ψ = ωt − nd k nˆ ⋅ x = constant is a plane, observed at the same time, known as equi-phase plane or 2 2 ⎛ ω′ ⎞ 2 ⎛ ω ⎞ 2 wavefront, with nˆ the unit normal or wave vector. Changing ⎜ ⎟ − (nd′k′) = ⎜ ⎟ − (nd k) (8) the sign of ω will not change the direction of nˆ , since nˆ is ⎝ c ⎠ ⎝ c ⎠ supposed to be known for a given EM problem. All the equi- phase planes are parallel. we obtain the refractive index in the lab frame, given by Let us use β c to denote the plane’s moving velocity.
Recommended publications
  • Minkowski Space-Time: a Glorious Non-Entity
    DRAFT: written for Petkov (ed.), The Ontology of Spacetime (in preparation) Minkowski space-time: a glorious non-entity Harvey R Brown∗ and Oliver Pooley† 16 March, 2004 Abstract It is argued that Minkowski space-time cannot serve as the deep struc- ture within a “constructive” version of the special theory of relativity, contrary to widespread opinion in the philosophical community. This paper is dedicated to the memory of Jeeva Anandan. Contents 1 Einsteinandthespace-timeexplanationofinertia 1 2 Thenatureofabsolutespace-time 3 3 The principle vs. constructive theory distinction 4 4 The explanation of length contraction 8 5 Minkowskispace-time: thecartorthehorse? 12 1 Einstein and the space-time explanation of inertia It was a source of satisfaction for Einstein that in developing the general theory of relativity (GR) he was able to eradicate what he saw as an embarrassing defect of his earlier special theory (SR): violation of the action-reaction principle. Leibniz held that a defining attribute of substances was their both acting and being acted upon. It would appear that Einstein shared this view. He wrote in 1924 that each physical object “influences and in general is influenced in turn by others.”1 It is “contrary to the mode of scientific thinking”, he wrote earlier in 1922, “to conceive of a thing. which acts itself, but which cannot be acted upon.”2 But according to Einstein the space-time continuum, in both arXiv:physics/0403088v1 [physics.hist-ph] 17 Mar 2004 Newtonian mechanics and special relativity, is such a thing. In these theories ∗Faculty of Philosophy, University of Oxford, 10 Merton Street, Oxford OX1 4JJ, U.K.; [email protected] †Oriel College, Oxford OX1 4EW, U.K.; [email protected] 1Einstein (1924, 15).
    [Show full text]
  • Relativistic Dynamics
    Chapter 4 Relativistic dynamics We have seen in the previous lectures that our relativity postulates suggest that the most efficient (lazy but smart) approach to relativistic physics is in terms of 4-vectors, and that velocities never exceed c in magnitude. In this chapter we will see how this 4-vector approach works for dynamics, i.e., for the interplay between motion and forces. A particle subject to forces will undergo non-inertial motion. According to Newton, there is a simple (3-vector) relation between force and acceleration, f~ = m~a; (4.0.1) where acceleration is the second time derivative of position, d~v d2~x ~a = = : (4.0.2) dt dt2 There is just one problem with these relations | they are wrong! Newtonian dynamics is a good approximation when velocities are very small compared to c, but outside of this regime the relation (4.0.1) is simply incorrect. In particular, these relations are inconsistent with our relativity postu- lates. To see this, it is sufficient to note that Newton's equations (4.0.1) and (4.0.2) predict that a particle subject to a constant force (and initially at rest) will acquire a velocity which can become arbitrarily large, Z t ~ d~v 0 f ~v(t) = 0 dt = t ! 1 as t ! 1 . (4.0.3) 0 dt m This flatly contradicts the prediction of special relativity (and causality) that no signal can propagate faster than c. Our task is to understand how to formulate the dynamics of non-inertial particles in a manner which is consistent with our relativity postulates (and then verify that it matches observation, including in the non-relativistic regime).
    [Show full text]
  • The Dirac-Schwinger Covariance Condition in Classical Field Theory
    Pram~na, Vol. 9, No. 2, August 1977, pp. 103-109, t~) printed in India. The Dirac-Schwinger covariance condition in classical field theory K BABU JOSEPH and M SABIR Department of Physics, Cochin University, Cochin 682 022 MS received 29 January 1977; revised 9 April 1977 Abstract. A straightforward derivation of the Dirac-Schwinger covariance condition is given within the framework of classical field theory. The crucial role of the energy continuity equation in the derivation is pointed out. The origin of higher order deri- vatives of delta function is traced to the presence of higher order derivatives of canoni- cal coordinates and momenta in the energy density functional. Keywords. Lorentz covariance; Poincar6 group; field theory; generalized mechanics. 1. Introduction It has been stated by Dirac (1962) and by Schwinger (1962, 1963a, b, c, 1964) that a sufficient condition for the relativistic covariance of a quantum field theory is the energy density commutator condition [T°°(x), r°°(x')] = (r°k(x) + r°k(x ') c3k3 (x--x') + (bk(x) + bk(x ') c9k8 (x--x') -+- (cktm(x) cktm(x ') OkOtO,3 (X--X') q- ... (1) where bk=O z fl~k and fl~--fl~k = 0mY,,kt and the energy density is that obtained by the Belinfante prescription (Belinfante 1939). For a class of theories that Schwinger calls ' local' the Dirac-Schwinger (DS) condition is satisfied in the simplest form with bk=e~,~r,, = ... = 0. Spin s (s<~l) theories belong to this class. For canonical theories in which simple canonical commutation relations hold Brown (1967) has given two new proofs of the DS condition.
    [Show full text]
  • Appendix D: the Wave Vector
    General Appendix D-1 2/13/2016 Appendix D: The Wave Vector In this appendix we briefly address the concept of the wave vector and its relationship to traveling waves in 2- and 3-dimensional space, but first let us start with a review of 1- dimensional traveling waves. 1-dimensional traveling wave review A real-valued, scalar, uniform, harmonic wave with angular frequency and wavelength λ traveling through a lossless, 1-dimensional medium may be represented by the real part of 1 ω the complex function ψ (xt , ): ψψ(x , t )= (0,0) exp(ikx− i ω t ) (D-1) where the complex phasor ψ (0,0) determines the wave’s overall amplitude as well as its phase φ0 at the origin (xt , )= (0,0). The harmonic function’s wave number k is determined by the wavelength λ: k = ± 2πλ (D-2) The sign of k determines the wave’s direction of propagation: k > 0 for a wave traveling to the right (increasing x). The wave’s instantaneous phase φ(,)xt at any position and time is φφ(,)x t=+−0 ( kx ω t ) (D-3) The wave number k is thus the spatial analog of angular frequency : with units of radians/distance, it equals the rate of change of the wave’s phase with position (with time t ω held constant), i.e. ∂∂φφ k =; ω = − (D-4) ∂∂xt (note the minus sign in the differential expression for ). If a point, originally at (x= xt0 , = 0), moves with the wave at velocity vkφ = ω , then the wave’s phase at that point ω will remain constant: φ(x0+ vtφφ ,) t =++ φ0 kx ( 0 vt ) −=+ ωφ t00 kx The velocity vφ is called the wave’s phase velocity.
    [Show full text]
  • EMT UNIT 1 (Laws of Reflection and Refraction, Total Internal Reflection).Pdf
    Electromagnetic Theory II (EMT II); Online Unit 1. REFLECTION AND TRANSMISSION AT OBLIQUE INCIDENCE (Laws of Reflection and Refraction and Total Internal Reflection) (Introduction to Electrodynamics Chap 9) Instructor: Shah Haidar Khan University of Peshawar. Suppose an incident wave makes an angle θI with the normal to the xy-plane at z=0 (in medium 1) as shown in Figure 1. Suppose the wave splits into parts partially reflecting back in medium 1 and partially transmitting into medium 2 making angles θR and θT, respectively, with the normal. Figure 1. To understand the phenomenon at the boundary at z=0, we should apply the appropriate boundary conditions as discussed in the earlier lectures. Let us first write the equations of the waves in terms of electric and magnetic fields depending upon the wave vector κ and the frequency ω. MEDIUM 1: Where EI and BI is the instantaneous magnitudes of the electric and magnetic vector, respectively, of the incident wave. Other symbols have their usual meanings. For the reflected wave, Similarly, MEDIUM 2: Where ET and BT are the electric and magnetic instantaneous vectors of the transmitted part in medium 2. BOUNDARY CONDITIONS (at z=0) As the free charge on the surface is zero, the perpendicular component of the displacement vector is continuous across the surface. (DIꓕ + DRꓕ ) (In Medium 1) = DTꓕ (In Medium 2) Where Ds represent the perpendicular components of the displacement vector in both the media. Converting D to E, we get, ε1 EIꓕ + ε1 ERꓕ = ε2 ETꓕ ε1 ꓕ +ε1 ꓕ= ε2 ꓕ Since the equation is valid for all x and y at z=0, and the coefficients of the exponentials are constants, only the exponentials will determine any change that is occurring.
    [Show full text]
  • Instantaneous Local Wave Vector Estimation from Multi-Spacecraft Measurements Using Few Spatial Points T
    Instantaneous local wave vector estimation from multi-spacecraft measurements using few spatial points T. D. Carozzi, A. M. Buckley, M. P. Gough To cite this version: T. D. Carozzi, A. M. Buckley, M. P. Gough. Instantaneous local wave vector estimation from multi- spacecraft measurements using few spatial points. Annales Geophysicae, European Geosciences Union, 2004, 22 (7), pp.2633-2641. hal-00317540 HAL Id: hal-00317540 https://hal.archives-ouvertes.fr/hal-00317540 Submitted on 14 Jul 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annales Geophysicae (2004) 22: 2633–2641 SRef-ID: 1432-0576/ag/2004-22-2633 Annales © European Geosciences Union 2004 Geophysicae Instantaneous local wave vector estimation from multi-spacecraft measurements using few spatial points T. D. Carozzi, A. M. Buckley, and M. P. Gough Space Science Centre, University of Sussex, Brighton, England Received: 30 September 2003 – Revised: 14 March 2004 – Accepted: 14 April 2004 – Published: 14 July 2004 Part of Special Issue “Spatio-temporal analysis and multipoint measurements in space” Abstract. We introduce a technique to determine instan- damental assumptions, namely stationarity and homogene- taneous local properties of waves based on discrete-time ity.
    [Show full text]
  • Chapter 2 X-Ray Diffraction and Reciprocal Lattice
    Chapter 2 X-ray diffraction and reciprocal lattice I. Waves 1. A plane wave is described as Ψ(x,t) = A ei(k⋅x-ωt) A is the amplitude, k is the wave vector, and ω=2πf is the angular frequency. 2. The wave is traveling along the k direction with a velocity c given by ω=c|k|. Wavelength along the traveling direction is given by |k|=2π/λ. 3. When a wave interacts with the crystal, the plane wave will be scattered by the atoms in a crystal and each atom will act like a point source (Huygens’ principle). 4. This formulation can be applied to any waves, like electromagnetic waves and crystal vibration waves; this also includes particles like electrons, photons, and neutrons. A particular case is X-ray. For this reason, what we learn in X-ray diffraction can be applied in a similar manner to other cases. II. X-ray diffraction in real space – Bragg’s Law 1. A crystal structure has lattice and a basis. X-ray diffraction is a convolution of two: diffraction by the lattice points and diffraction by the basis. We will consider diffraction by the lattice points first. The basis serves as a modification to the fact that the lattice point is not a perfect point source (because of the basis). 2. If each lattice point acts like a coherent point source, each lattice plane will act like a mirror. θ θ θ d d sin θ (hkl) -1- 2. The diffraction is elastic. In other words, the X-rays have the same frequency (hence wavelength and |k|) before and after the reflection.
    [Show full text]
  • Basic Four-Momentum Kinematics As
    L4:1 Basic four-momentum kinematics Rindler: Ch5: sec. 25-30, 32 Last time we intruduced the contravariant 4-vector HUB, (II.6-)II.7, p142-146 +part of I.9-1.10, 154-162 vector The world is inconsistent! and the covariant 4-vector component as implicit sum over We also introduced the scalar product For a 4-vector square we have thus spacelike timelike lightlike Today we will introduce some useful 4-vectors, but rst we introduce the proper time, which is simply the time percieved in an intertial frame (i.e. time by a clock moving with observer) If the observer is at rest, then only the time component changes but all observers agree on ✁S, therefore we have for an observer at constant speed L4:2 For a general world line, corresponding to an accelerating observer, we have Using this it makes sense to de ne the 4-velocity As transforms as a contravariant 4-vector and as a scalar indeed transforms as a contravariant 4-vector, so the notation makes sense! We also introduce the 4-acceleration Let's calculate the 4-velocity: and the 4-velocity square Multiplying the 4-velocity with the mass we get the 4-momentum Note: In Rindler m is called m and Rindler's I will always mean with . which transforms as, i.e. is, a contravariant 4-vector. Remark: in some (old) literature the factor is referred to as the relativistic mass or relativistic inertial mass. L4:3 The spatial components of the 4-momentum is the relativistic 3-momentum or simply relativistic momentum and the 0-component turns out to give the energy: Remark: Taylor expanding for small v we get: rest energy nonrelativistic kinetic energy for v=0 nonrelativistic momentum For the 4-momentum square we have: As you may expect we have conservation of 4-momentum, i.e.
    [Show full text]
  • Phys 446: Solid State Physics / Optical Properties
    Phys 446: Solid State Physics / Optical Properties Fall 2015 Lecture 2 Andrei Sirenko, NJIT 1 Solid State Physics Lecture 2 (Ch. 2.1-2.3, 2.6-2.7) Last week: • Crystals, • Crystal Lattice, • Reciprocal Lattice Today: • Types of bonds in crystals Diffraction from crystals • Importance of the reciprocal lattice concept Lecture 2 Andrei Sirenko, NJIT 2 1 (3) The Hexagonal Closed-packed (HCP) structure Be, Sc, Te, Co, Zn, Y, Zr, Tc, Ru, Gd,Tb, Py, Ho, Er, Tm, Lu, Hf, Re, Os, Tl • The HCP structure is made up of stacking spheres in a ABABAB… configuration • The HCP structure has the primitive cell of the hexagonal lattice, with a basis of two identical atoms • Atom positions: 000, 2/3 1/3 ½ (remember, the unit axes are not all perpendicular) • The number of nearest-neighbours is 12 • The ideal ratio of c/a for Rotated this packing is (8/3)1/2 = 1.633 three times . Lecture 2 Andrei Sirenko, NJITConventional HCP unit 3 cell Crystal Lattice http://www.matter.org.uk/diffraction/geometry/reciprocal_lattice_exercises.htm Lecture 2 Andrei Sirenko, NJIT 4 2 Reciprocal Lattice Lecture 2 Andrei Sirenko, NJIT 5 Some examples of reciprocal lattices 1. Reciprocal lattice to simple cubic lattice 3 a1 = ax, a2 = ay, a3 = az V = a1·(a2a3) = a b1 = (2/a)x, b2 = (2/a)y, b3 = (2/a)z reciprocal lattice is also cubic with lattice constant 2/a 2. Reciprocal lattice to bcc lattice 1 1 a a x y z a2 ax y z 1 2 2 1 1 a ax y z V a a a a3 3 2 1 2 3 2 2 2 2 b y z b x z b x y 1 a 2 a 3 a Lecture 2 Andrei Sirenko, NJIT 6 3 2 got b y z 1 a 2 b x z 2 a 2 b x y 3 a but these are primitive vectors of fcc lattice So, the reciprocal lattice to bcc is fcc.
    [Show full text]
  • Interpreting Supersymmetry
    Interpreting Supersymmetry David John Baker Department of Philosophy, University of Michigan [email protected] October 7, 2018 Abstract Supersymmetry in quantum physics is a mathematically simple phenomenon that raises deep foundational questions. To motivate these questions, I present a toy model, the supersymmetric harmonic oscillator, and its superspace representation, which adds extra anticommuting dimensions to spacetime. I then explain and comment on three foundational questions about this superspace formalism: whether superspace is a sub- stance, whether it should count as spatiotemporal, and whether it is a necessary pos- tulate if one wants to use the theory to unify bosons and fermions. 1 Introduction Supersymmetry{the hypothesis that the laws of physics exhibit a symmetry that transforms bosons into fermions and vice versa{is a long-standing staple of many popular (but uncon- firmed) theories in particle physics. This includes several attempts to extend the standard model as well as many research programs in quantum gravity, such as the failed supergravity program and the still-ascendant string theory program. Its popularity aside, supersymmetry (SUSY for short) is also a foundationally interesting hypothesis on face. The fundamental equivalence it posits between bosons and fermions is prima facie puzzling, given the very different physical behavior of these two types of particle. And supersymmetry is most naturally represented in a formalism (called superspace) that modifies ordinary spacetime by adding Grassmann-valued anticommuting coordinates. It 1 isn't obvious how literally we should interpret these extra \spatial" dimensions.1 So super- symmetry presents us with at least two highly novel interpretive puzzles. Only two philosophers of science have taken up these questions thus far.
    [Show full text]
  • The Concept of the Photon—Revisited
    The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser.
    [Show full text]
  • Chapter 1 Waves in Two and Three Dimensions
    Chapter 1 Waves in Two and Three Dimensions In this chapter we extend the ideas of the previous chapter to the case of waves in more than one dimension. The extension of the sine wave to higher dimensions is the plane wave. Wave packets in two and three dimensions arise when plane waves moving in different directions are superimposed. Diffraction results from the disruption of a wave which is impingent upon an object. Those parts of the wave front hitting the object are scattered, modified, or destroyed. The resulting diffraction pattern comes from the subsequent interference of the various pieces of the modified wave. A knowl- edge of diffraction is necessary to understand the behavior and limitations of optical instruments such as telescopes. Diffraction and interference in two and three dimensions can be manipu- lated to produce useful devices such as the diffraction grating. 1.1 Math Tutorial — Vectors Before we can proceed further we need to explore the idea of a vector. A vector is a quantity which expresses both magnitude and direction. Graph- ically we represent a vector as an arrow. In typeset notation a vector is represented by a boldface character, while in handwriting an arrow is drawn over the character representing the vector. Figure 1.1 shows some examples of displacement vectors, i. e., vectors which represent the displacement of one object from another, and introduces 1 CHAPTER 1. WAVES IN TWO AND THREE DIMENSIONS 2 y Paul B y B C C y George A A y Mary x A x B x C x Figure 1.1: Displacement vectors in a plane.
    [Show full text]