Instantaneous Local Wave Vector Estimation from Multi-Spacecraft Measurements Using Few Spatial Points T

Total Page:16

File Type:pdf, Size:1020Kb

Instantaneous Local Wave Vector Estimation from Multi-Spacecraft Measurements Using Few Spatial Points T Instantaneous local wave vector estimation from multi-spacecraft measurements using few spatial points T. D. Carozzi, A. M. Buckley, M. P. Gough To cite this version: T. D. Carozzi, A. M. Buckley, M. P. Gough. Instantaneous local wave vector estimation from multi- spacecraft measurements using few spatial points. Annales Geophysicae, European Geosciences Union, 2004, 22 (7), pp.2633-2641. hal-00317540 HAL Id: hal-00317540 https://hal.archives-ouvertes.fr/hal-00317540 Submitted on 14 Jul 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annales Geophysicae (2004) 22: 2633–2641 SRef-ID: 1432-0576/ag/2004-22-2633 Annales © European Geosciences Union 2004 Geophysicae Instantaneous local wave vector estimation from multi-spacecraft measurements using few spatial points T. D. Carozzi, A. M. Buckley, and M. P. Gough Space Science Centre, University of Sussex, Brighton, England Received: 30 September 2003 – Revised: 14 March 2004 – Accepted: 14 April 2004 – Published: 14 July 2004 Part of Special Issue “Spatio-temporal analysis and multipoint measurements in space” Abstract. We introduce a technique to determine instan- damental assumptions, namely stationarity and homogene- taneous local properties of waves based on discrete-time ity. Unfortunately, in space physics most phenomenon are sampled, real-valued measurements from 4 or more spatial both nonstationary and inhomogeneous. Despite some re- points. The technique is a generalisation to the spatial do- cent techniques based on wavelets (Balikhin et al., 2003) few main of the notion of instantaneous frequency used in sig- multipoint techniques are available in these cases. In what nal processing. The quantities derived by our technique are follows we will present a novel analysis method which is closely related to those used in geometrical optics, namely applicable to non-stationary and inhomogeneous wave phe- the local wave vector and instantaneous phase velocity. Thus, nomena. This is accomplished by basing the analysis on the this experimental technique complements ray-tracing. We instantaneous and local properties of the observed field. The provide example applications of the technique to electric method is based on the concepts of instantaneous frequency field and potential data from the EFW instrument on Cluster. (Cohen, 1995) and local wave number (Beall et al., 1982) Cluster is the first space mission for which direct determina- and is implemented via the Hilbert transform. We present tion of the full 3-dimensional local wave vector is possible, the method from the perspective of multipoint measurements as described here. in space physics but the treatment can easily be generalised to other subjects areas. Key words. Electromagnetics (wave propagation) – Space plasma physics (experimental and mathematical techniques) – General or miscellaneous (techniques applicable in three or 2 Continuum theory of the instantaneous frequency more fields) and local wave vector The method presented in this paper is a multivariate, multi- 1 Introduction dimensional generalisation of the instantaneous frequency (IF), (see Cohen, 1995; Boashash, 1992), extended to include There are many general multipoint spatio-temporal algo- the three-dimensional spatial domain. In the construction rithms in use in experimental space physics for the study of of a spatial domain analogue of the IF, we rely heavily on waves and structures. A survey of some of these techniques the concept of the local wave vector from geometrical optics is given in the analysis methods book (Paschmann and Daly, (Whitham, 1974). We first present the necessary background 1998). There are time domain-based methods, like the dis- and concepts in terms of a continuum field before dealing in continuity analyser which measures structures using timing the next section with the discrete nature of actual multipoint differences between measurement points. Then there are fre- measurements. quency domain-based methods such as two point interferom- Consider a physical quantity defined on a time-space con- etry proposed in Kintner et al. (1984). There are techniques tinuum, (t, x), which exhibits wave-like phenomena, fluctu- which take advantage of the vectorial or polarimetric aspects ations, or structures. Although physically direct measure- of waves (Storey and Lefeuvre, 1974), such as the k-filtering ments of the quantity are normally real valued, it is fruitful (Pinc¸on and Motschmann, 1998) or wave telescope tech- to consider the measurement of the physical quantity sr as nique (Glassmeier et al., 2001). Basically all the techniques the real part of a complex field z. Explicitly, we model the to date for measuring wave properties are based on two fun- physical field as the sum of the measured real part sr and an imaginary part si, such that Correspondence to: T. D. Carozzi ([email protected]) z(t, x) = sr (t, x) + isi(t, x). (1) 2634 T. D. Carozzi et al.: Instantaneous local wave vector estimation x the geometrical optics approximation, one can show (Born phase field and Wolf, 1999) that it is given by κ (projected) inst. loc. 2 2 x wave 4−vector |n(t, x)| = |∇φ(t, x)| . (4) Ray path This equation is known as the eikonal equation and it im- isophase plies that the dynamics of wave propagation is determined contours = w through the dynamics of the phase. Surfaces with constant phase, φ(x) = const, are called wave fronts, whereas char- space wavefronts acteristics, or ray paths, are the curves which are everywhere 2 S/C worldlines orthogonal to the wave fronts. Thus, in geometrical optics, the rays follow the wave front normals ∇φ. In particular, the quantity time t κ(t, x) := −∇φ, (5) Fig. 1. Illustration of a 2-dimensional projection (time and one spa- is known as the local wave vector. These concepts are illus- tial component) of the instantaneous local wave 4-vector under the trated in Fig. 1. assumptions of geometrical optics and isotropy. From the phase The definition of the instantaneous local wave vector κ field of a physical quantity one can define wavefronts in this illustra- is the spatial compliment of the instantaneous local angular tion as isophase contour lines (solid curves) and a ray path (dashed frequency, w, defined as the temporal gradient of the wave curve) that are everywhere orthogonal to the wavefronts. The in- phase or stantaneous local wave vector κ is the spatial gradient of the phase field and, in the geometrical optics approximation, κ is tangent to ∂φ w(t, x) := . (6) the ray path. The problem addressed in this paper is how to estimate ∂t κ from real valued discrete measurements taken along world lines (dotted curves). The name for w is motivated from the fact that it is a gen- eralisation of frequency defined at instant t and local spatial point x. It can be shown that the temporal average of the in- Surprisingly, although we have not directly measured the stantaneous frequency is equal to the spectral average of the imaginary part, one can determine it from the real part as frequency spectrum, that is, under appropriate normalisation, long as the field is analytically well behaved. An example of Z Z this is the Kramers-Kronig relation, which in fact originally hwi = w(t)|z(t)|2 dt = ω|Z(ω)|2 dω = hωi, (7) related the imaginary part of the dispersion index to the real part by assuming causality. Mathematically, the imaginary where Z(ω) is the Fourier transform of z(t) (see Cohen, part is related to the real part through the Hilbert transform 1995). (HT), that is the HT of a real function is its imaginary part In the above we are assuming that there is only one wave. and the inverse HT of the imaginary part of a function gives By this we mean that the amplitude and phase of the signal its real part. Thus, by using the HT we can construct the in Eq. (1) corresponds to a unique wave as opposed to a su- analytic field, such as z, from a real function sr . perposition of independent waves such as Once we are in possession of an analytical field it is iφ1 iφ2 straightforward to define the amplitude A z = A1e + A2e + ... q The former case is known as a single component wave. In the A = |z| = s2 + s2 (2) r i current paper we will only consider single component waves, and the phase φ although we developed an extension of our analysis to treat multiple component waves. φ = arg z = arctan sr /si (3) To interpret w and κ, assume that the phase is slowly vary- ing around some point in space-time (t0, x0) and perform a of the field so that we can write the field in the polar form multivariate Taylor expansion with the result iφ(t,x) z(t, x) = A(t, x)e . ∂φ φ(t, x) = φ(t0, x0) + (t − t0) + (x − x0)∇φ + ... Note that both φ and A are real valued fields on the space- ∂t time continuum. so that close to any arbitrary point (t0, x0) the field of the The propagation of a wave mode m is ultimately deter- physical quantity can be approximated by mined by the local refractive index nm(x) which depends on ≈ iφ0 − · the local properties of the medium and characteristics of the z(t, x) Ae exp (i(wt κ x)) mode. Unfortunately, one does not always have direct mea- with surements of nm(x), but under the simplifying approximation that the medium varies slowly over a wavelength, known as φ0 := φ(t0, x0) − wt0 + κ · x0, T.
Recommended publications
  • Relativistic Dynamics
    Chapter 4 Relativistic dynamics We have seen in the previous lectures that our relativity postulates suggest that the most efficient (lazy but smart) approach to relativistic physics is in terms of 4-vectors, and that velocities never exceed c in magnitude. In this chapter we will see how this 4-vector approach works for dynamics, i.e., for the interplay between motion and forces. A particle subject to forces will undergo non-inertial motion. According to Newton, there is a simple (3-vector) relation between force and acceleration, f~ = m~a; (4.0.1) where acceleration is the second time derivative of position, d~v d2~x ~a = = : (4.0.2) dt dt2 There is just one problem with these relations | they are wrong! Newtonian dynamics is a good approximation when velocities are very small compared to c, but outside of this regime the relation (4.0.1) is simply incorrect. In particular, these relations are inconsistent with our relativity postu- lates. To see this, it is sufficient to note that Newton's equations (4.0.1) and (4.0.2) predict that a particle subject to a constant force (and initially at rest) will acquire a velocity which can become arbitrarily large, Z t ~ d~v 0 f ~v(t) = 0 dt = t ! 1 as t ! 1 . (4.0.3) 0 dt m This flatly contradicts the prediction of special relativity (and causality) that no signal can propagate faster than c. Our task is to understand how to formulate the dynamics of non-inertial particles in a manner which is consistent with our relativity postulates (and then verify that it matches observation, including in the non-relativistic regime).
    [Show full text]
  • Appendix D: the Wave Vector
    General Appendix D-1 2/13/2016 Appendix D: The Wave Vector In this appendix we briefly address the concept of the wave vector and its relationship to traveling waves in 2- and 3-dimensional space, but first let us start with a review of 1- dimensional traveling waves. 1-dimensional traveling wave review A real-valued, scalar, uniform, harmonic wave with angular frequency and wavelength λ traveling through a lossless, 1-dimensional medium may be represented by the real part of 1 ω the complex function ψ (xt , ): ψψ(x , t )= (0,0) exp(ikx− i ω t ) (D-1) where the complex phasor ψ (0,0) determines the wave’s overall amplitude as well as its phase φ0 at the origin (xt , )= (0,0). The harmonic function’s wave number k is determined by the wavelength λ: k = ± 2πλ (D-2) The sign of k determines the wave’s direction of propagation: k > 0 for a wave traveling to the right (increasing x). The wave’s instantaneous phase φ(,)xt at any position and time is φφ(,)x t=+−0 ( kx ω t ) (D-3) The wave number k is thus the spatial analog of angular frequency : with units of radians/distance, it equals the rate of change of the wave’s phase with position (with time t ω held constant), i.e. ∂∂φφ k =; ω = − (D-4) ∂∂xt (note the minus sign in the differential expression for ). If a point, originally at (x= xt0 , = 0), moves with the wave at velocity vkφ = ω , then the wave’s phase at that point ω will remain constant: φ(x0+ vtφφ ,) t =++ φ0 kx ( 0 vt ) −=+ ωφ t00 kx The velocity vφ is called the wave’s phase velocity.
    [Show full text]
  • EMT UNIT 1 (Laws of Reflection and Refraction, Total Internal Reflection).Pdf
    Electromagnetic Theory II (EMT II); Online Unit 1. REFLECTION AND TRANSMISSION AT OBLIQUE INCIDENCE (Laws of Reflection and Refraction and Total Internal Reflection) (Introduction to Electrodynamics Chap 9) Instructor: Shah Haidar Khan University of Peshawar. Suppose an incident wave makes an angle θI with the normal to the xy-plane at z=0 (in medium 1) as shown in Figure 1. Suppose the wave splits into parts partially reflecting back in medium 1 and partially transmitting into medium 2 making angles θR and θT, respectively, with the normal. Figure 1. To understand the phenomenon at the boundary at z=0, we should apply the appropriate boundary conditions as discussed in the earlier lectures. Let us first write the equations of the waves in terms of electric and magnetic fields depending upon the wave vector κ and the frequency ω. MEDIUM 1: Where EI and BI is the instantaneous magnitudes of the electric and magnetic vector, respectively, of the incident wave. Other symbols have their usual meanings. For the reflected wave, Similarly, MEDIUM 2: Where ET and BT are the electric and magnetic instantaneous vectors of the transmitted part in medium 2. BOUNDARY CONDITIONS (at z=0) As the free charge on the surface is zero, the perpendicular component of the displacement vector is continuous across the surface. (DIꓕ + DRꓕ ) (In Medium 1) = DTꓕ (In Medium 2) Where Ds represent the perpendicular components of the displacement vector in both the media. Converting D to E, we get, ε1 EIꓕ + ε1 ERꓕ = ε2 ETꓕ ε1 ꓕ +ε1 ꓕ= ε2 ꓕ Since the equation is valid for all x and y at z=0, and the coefficients of the exponentials are constants, only the exponentials will determine any change that is occurring.
    [Show full text]
  • Chapter 2 X-Ray Diffraction and Reciprocal Lattice
    Chapter 2 X-ray diffraction and reciprocal lattice I. Waves 1. A plane wave is described as Ψ(x,t) = A ei(k⋅x-ωt) A is the amplitude, k is the wave vector, and ω=2πf is the angular frequency. 2. The wave is traveling along the k direction with a velocity c given by ω=c|k|. Wavelength along the traveling direction is given by |k|=2π/λ. 3. When a wave interacts with the crystal, the plane wave will be scattered by the atoms in a crystal and each atom will act like a point source (Huygens’ principle). 4. This formulation can be applied to any waves, like electromagnetic waves and crystal vibration waves; this also includes particles like electrons, photons, and neutrons. A particular case is X-ray. For this reason, what we learn in X-ray diffraction can be applied in a similar manner to other cases. II. X-ray diffraction in real space – Bragg’s Law 1. A crystal structure has lattice and a basis. X-ray diffraction is a convolution of two: diffraction by the lattice points and diffraction by the basis. We will consider diffraction by the lattice points first. The basis serves as a modification to the fact that the lattice point is not a perfect point source (because of the basis). 2. If each lattice point acts like a coherent point source, each lattice plane will act like a mirror. θ θ θ d d sin θ (hkl) -1- 2. The diffraction is elastic. In other words, the X-rays have the same frequency (hence wavelength and |k|) before and after the reflection.
    [Show full text]
  • Basic Four-Momentum Kinematics As
    L4:1 Basic four-momentum kinematics Rindler: Ch5: sec. 25-30, 32 Last time we intruduced the contravariant 4-vector HUB, (II.6-)II.7, p142-146 +part of I.9-1.10, 154-162 vector The world is inconsistent! and the covariant 4-vector component as implicit sum over We also introduced the scalar product For a 4-vector square we have thus spacelike timelike lightlike Today we will introduce some useful 4-vectors, but rst we introduce the proper time, which is simply the time percieved in an intertial frame (i.e. time by a clock moving with observer) If the observer is at rest, then only the time component changes but all observers agree on ✁S, therefore we have for an observer at constant speed L4:2 For a general world line, corresponding to an accelerating observer, we have Using this it makes sense to de ne the 4-velocity As transforms as a contravariant 4-vector and as a scalar indeed transforms as a contravariant 4-vector, so the notation makes sense! We also introduce the 4-acceleration Let's calculate the 4-velocity: and the 4-velocity square Multiplying the 4-velocity with the mass we get the 4-momentum Note: In Rindler m is called m and Rindler's I will always mean with . which transforms as, i.e. is, a contravariant 4-vector. Remark: in some (old) literature the factor is referred to as the relativistic mass or relativistic inertial mass. L4:3 The spatial components of the 4-momentum is the relativistic 3-momentum or simply relativistic momentum and the 0-component turns out to give the energy: Remark: Taylor expanding for small v we get: rest energy nonrelativistic kinetic energy for v=0 nonrelativistic momentum For the 4-momentum square we have: As you may expect we have conservation of 4-momentum, i.e.
    [Show full text]
  • Phys 446: Solid State Physics / Optical Properties
    Phys 446: Solid State Physics / Optical Properties Fall 2015 Lecture 2 Andrei Sirenko, NJIT 1 Solid State Physics Lecture 2 (Ch. 2.1-2.3, 2.6-2.7) Last week: • Crystals, • Crystal Lattice, • Reciprocal Lattice Today: • Types of bonds in crystals Diffraction from crystals • Importance of the reciprocal lattice concept Lecture 2 Andrei Sirenko, NJIT 2 1 (3) The Hexagonal Closed-packed (HCP) structure Be, Sc, Te, Co, Zn, Y, Zr, Tc, Ru, Gd,Tb, Py, Ho, Er, Tm, Lu, Hf, Re, Os, Tl • The HCP structure is made up of stacking spheres in a ABABAB… configuration • The HCP structure has the primitive cell of the hexagonal lattice, with a basis of two identical atoms • Atom positions: 000, 2/3 1/3 ½ (remember, the unit axes are not all perpendicular) • The number of nearest-neighbours is 12 • The ideal ratio of c/a for Rotated this packing is (8/3)1/2 = 1.633 three times . Lecture 2 Andrei Sirenko, NJITConventional HCP unit 3 cell Crystal Lattice http://www.matter.org.uk/diffraction/geometry/reciprocal_lattice_exercises.htm Lecture 2 Andrei Sirenko, NJIT 4 2 Reciprocal Lattice Lecture 2 Andrei Sirenko, NJIT 5 Some examples of reciprocal lattices 1. Reciprocal lattice to simple cubic lattice 3 a1 = ax, a2 = ay, a3 = az V = a1·(a2a3) = a b1 = (2/a)x, b2 = (2/a)y, b3 = (2/a)z reciprocal lattice is also cubic with lattice constant 2/a 2. Reciprocal lattice to bcc lattice 1 1 a a x y z a2 ax y z 1 2 2 1 1 a ax y z V a a a a3 3 2 1 2 3 2 2 2 2 b y z b x z b x y 1 a 2 a 3 a Lecture 2 Andrei Sirenko, NJIT 6 3 2 got b y z 1 a 2 b x z 2 a 2 b x y 3 a but these are primitive vectors of fcc lattice So, the reciprocal lattice to bcc is fcc.
    [Show full text]
  • The Concept of the Photon—Revisited
    The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser.
    [Show full text]
  • Chapter 1 Waves in Two and Three Dimensions
    Chapter 1 Waves in Two and Three Dimensions In this chapter we extend the ideas of the previous chapter to the case of waves in more than one dimension. The extension of the sine wave to higher dimensions is the plane wave. Wave packets in two and three dimensions arise when plane waves moving in different directions are superimposed. Diffraction results from the disruption of a wave which is impingent upon an object. Those parts of the wave front hitting the object are scattered, modified, or destroyed. The resulting diffraction pattern comes from the subsequent interference of the various pieces of the modified wave. A knowl- edge of diffraction is necessary to understand the behavior and limitations of optical instruments such as telescopes. Diffraction and interference in two and three dimensions can be manipu- lated to produce useful devices such as the diffraction grating. 1.1 Math Tutorial — Vectors Before we can proceed further we need to explore the idea of a vector. A vector is a quantity which expresses both magnitude and direction. Graph- ically we represent a vector as an arrow. In typeset notation a vector is represented by a boldface character, while in handwriting an arrow is drawn over the character representing the vector. Figure 1.1 shows some examples of displacement vectors, i. e., vectors which represent the displacement of one object from another, and introduces 1 CHAPTER 1. WAVES IN TWO AND THREE DIMENSIONS 2 y Paul B y B C C y George A A y Mary x A x B x C x Figure 1.1: Displacement vectors in a plane.
    [Show full text]
  • Arxiv:1907.02183V1 [Cond-Mat.Mes-Hall] 4 Jul 2019
    Mapping Phonon Modes from Reduced-Dimensional to Bulk Systems Hyun-Young Kim, Kevin D. Parrish, and Alan J. H. McGaughey∗ Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA (Dated: July 5, 2019) Abstract An algorithm for mapping the true phonon modes of a film, which are defined by a two- dimensional (2D) Brillouin zone, to the modes of the corresponding bulk material, which are defined by a three-dimensional (3D) Brillouin zone, is proposed. The algorithm is based on normal mode decomposition and is inspired by the observation that the atomic motions generated by the 2D eigenvectors lead to standing-wave-like behaviors in the cross-plane direction. It is applied to films between two and ten unit cells thick built from Lennard-Jones (LJ) argon, whose bulk is isotropic, and graphene, whose bulk (graphite) is anisotropic. For LJ argon, the density of states deviates from that of the bulk as the film gets thinner due to phonon frequencies that shift to lower values. This shift is a result of transverse branch splitting due to the film's anisotropy and the emergence of a quadratic acoustic branch. As such, while the mapping algorithm works well for the thicker LJ argon films, it does not perform as well for the thinner films as there is a weaker correspondence between the 2D and 3D modes. For graphene, the density of states of even the thinnest films closely matches that of graphite due to the inherent anisotropy, except for a small shift at low frequency. As a result, the mapping algorithm works well for all thicknesses of the graphene films, indicating a strong correspondence between the 2D and 3D modes.
    [Show full text]
  • Chapter 3 Wave Properties of Particles
    Chapter 3 Wave Properties of Particles Overview of Chapter 3 Einstein introduced us to the particle properties of waves in 1905 (photoelectric effect). Compton scattering of x-rays by electrons (which we skipped in Chapter 2) confirmed Einstein's theories. You ought to ask "Is there a converse?" Do particles have wave properties? De Broglie postulated wave properties of particles in his thesis in 1924, based partly on the idea that if waves can behave like particles, then particles should be able to behave like waves. Werner Heisenberg and a little later Erwin Schrödinger developed theories based on the wave properties of particles. In 1927, Davisson and Germer confirmed the wave properties of particles by diffracting electrons from a nickel single crystal. 3.1 de Broglie Waves Recall that a photon has energy E=hf, momentum p=hf/c=h/, and a wavelength =h/p. De Broglie postulated that these equations also apply to particles. In particular, a particle of mass m moving with velocity v has a de Broglie wavelength of h λ = . mv where m is the relativistic mass m m = 0 . 1-v22/ c In other words, it may be necessary to use the relativistic momentum in =h/mv=h/p. In order for us to observe a particle's wave properties, the de Broglie wavelength must be comparable to something the particle interacts with; e.g. the spacing of a slit or a double slit, or the spacing between periodic arrays of atoms in crystals. The example on page 92 shows how it is "appropriate" to describe an electron in an atom by its wavelength, but not a golf ball in flight.
    [Show full text]
  • Photons Where We Consider a Radiation field Whose Vector Potential a Ω = |K|C
    Photons where We consider a radiation field whose vector potential A ω = |k|c. satisfies the transversality condition Now ∇ · A = 0. A(x, t) 1 X X Because the electric and magnetic fields √ (α) ik·x ∗ (α) −ik·x = (ck,α(t)ˆ e + c (t)ˆ e ) V k,α 1 ∂ k α E = − A 1 X X c ∂t √ (α) ik·x ∗ (α) −ik·x = (ck,α(0)ˆ e + c (0)ˆ e ), B = ∇ × A V k,α k α satisfy the free space Maxwell equations where we have employed the four-vector notation ∇ · E = 0 k · x = k · x − ωt = k · x − |k|ct. ∂B ∇ × E = − ∂t The Hamiltonian function of the classical radiation field is ∇ · B = 0 Z 1 ∂E 1 2 2 3 ∇ × B = , H = (|B| + |E| ) d x c ∂t 2 1 Z = |∇ × A|2 + |(1/c)(∂A/∂t)|2 d3x. the vector potential satisfies the wave equation 2 1 ∂2A ∇2A − = 0. A straightforward calculation shows that c2 ∂t2 X X H = 2(ω/c)2c∗ c . We write the vector potential at the moment t = 0 as a k,α k,α α superposition of the periodically normalized plane waves k in an L-sided cube, Because the coefficients u (x) = ˆ(α)eik·x, −iωt k,α ck,α(t) = ck,α(0)e like: satisfy the equation of motion 1 X X 2 √ c¨ = −ω c , A(x, t)|t=0 = (ck,α(0)uk,α(x) k,α k,α V k α=1,2 it would look like the classical radiation field were +c∗ (0)u∗ (x)).
    [Show full text]
  • Theory of Electromagnetic Fields Part I: Maxwell’S Equations
    THE CERN ACCELERATOR SCHOOL Theory of Electromagnetic Fields Part I: Maxwell's Equations Andy Wolski The Cockcroft Institute, and the University of Liverpool, UK CAS Specialised Course on RF for Accelerators Ebeltoft, Denmark, June 2010 Theory of Electromagnetic Fields In these lectures, we shall discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to RF systems in accelerators: 1. Maxwell's equations • Maxwell's equations and their physical significance • Electromagnetic potentials • Electromagnetic waves and their generation • Electromagnetic energy 2. Standing Waves • Boundary conditions on electromagnetic fields • Modes in rectangular and cylindrical cavities • Energy stored in a cavity 3. Travelling Waves • Rectangular waveguides • Transmission lines Theory of EM Fields 1 Part I: Maxwell's Equations Theory of Electromagnetic Fields I shall assume some familiarity with the following topics: • vector calculus in Cartesian and polar coordinate systems; • Stokes' and Gauss' theorems; • Maxwell's equations and their physical significance; • types of cavities and waveguides commonly used in accelerators. The fundamental physics and mathematics is presented in many textbooks; for example: I.S. Grant and W.R. Phillips, \Electromagnetism," 2nd Edition (1990), Wiley. Theory of EM Fields 2 Part I: Maxwell's Equations Summary of relations in vector calculus In cartesian coordinates: @f @f @f ! grad f ≡ rf ≡ ; ; (1) @x @y @z @Ax @Ay @Az div A~ ≡ r · A~ ≡ + + (2) @x @y @z ^ ^ ^ x y z @ @ @ curl A~ ≡ r × A~ ≡ (3) @x @y @z Ax Ay Az @2f @2f @2f r2f ≡ + + (4) @x2 @y2 @z2 Note thatx ^,y ^ andz ^ are unit vectors parallel to the x, y and z axes, respectively.
    [Show full text]