applied sciences Article Real-Time Model Predictive Control of Human Bodyweight Based on Energy Intake Alberto Peña Fernández 1, Ali Youssef 1, Charlotte Heeren 1, Christophe Matthys 2,3 and Jean-Marie Aerts 1,* 1 Department of Biosystems, Division Animal and Human Health Engineering, M3-BIORES: Measure, Model & Manage of Bioresponses Laboratory, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium 2 Nutrition & Obesity, Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Aging, KU Leuven, UZ Herestraat 49, 3000 Leuven, Belgium 3 Clinical Nutrition Unit, Department of Endocrinology, University Hospitals Leuven, 3000 Leuven, Belgium * Correspondence:
[email protected] Received: 3 June 2019; Accepted: 25 June 2019; Published: 27 June 2019 Featured Application: This work sets the basis for developing a control system that allows managing, in an automated and individualized manner, human bodyweight in terms of energy intake, by taking advantage of the real-time monitoring capabilities of the ever-growing wearable technology sector. Abstract: The number of overweight people reached 1.9 billion in 2016. Lifespan decrease and many diseases have been linked to obesity. Efficient ways to monitor and control body weight are needed. The objective of this work is to explore the use of a model predictive control approach to manage bodyweight in response to energy intake. The analysis is performed based on data obtained during the Minnesota starvation experiment, with weekly measurements on body weight and energy intake for 32 male participants over the course of 27 weeks. A first order dynamic auto-regression with exogenous variables model exhibits the best prediction, with an average mean relative prediction error value of 1.01 0.02% for 1 week-ahead predictions.