An Understanding of the Prostate Cancer Pathophysiology for the Identification of Biomarkers That Support an Early Diagnosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proteomic Profile of Human Spermatozoa in Healthy And
Cao et al. Reproductive Biology and Endocrinology (2018) 16:16 https://doi.org/10.1186/s12958-018-0334-1 REVIEW Open Access Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals Xiaodan Cao, Yun Cui, Xiaoxia Zhang, Jiangtao Lou, Jun Zhou, Huafeng Bei and Renxiong Wei* Abstract Asthenozoospermia is considered as a common cause of male infertility and characterized by reduced sperm motility. However, the molecular mechanism that impairs sperm motility remains unknown in most cases. In the present review, we briefly reviewed the proteome of spermatozoa and seminal plasma in asthenozoospermia and considered post-translational modifications in spermatozoa of asthenozoospermia. The reduction of sperm motility in asthenozoospermic patients had been attributed to factors, for instance, energy metabolism dysfunction or structural defects in the sperm-tail protein components and the differential proteins potentially involved in sperm motility such as COX6B, ODF, TUBB2B were described. Comparative proteomic analysis open a window to discover the potential pathogenic mechanisms of asthenozoospermia and the biomarkers with clinical significance. Keywords: Proteome, Spermatozoa, Sperm motility, Asthenozoospermia, Infertility Background fertilization failure [4] and it has become clear that iden- Infertility is defined as the lack of ability to achieve a tifying the precise proteins and the pathways involved in clinical pregnancy after one year or more of unprotected sperm motility is needed [5]. and well-timed intercourse with the same partner [1]. It is estimated that around 15% of couples of reproductive age present with infertility, and about half of the infertil- Application of proteomic techniques in male ity is associated with male partner [2, 3]. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
9-Azido Analogs of Three Sialic Acid Forms for Metabolic Remodeling Of
Supporting Information 9-Azido Analogs of Three Sialic Acid Forms for Metabolic Remodeling of Cell-Surface Sialoglycans Bo Cheng,†,‡ Lu Dong,†,§ Yuntao Zhu,†,‡ Rongbing Huang,†,‡ Yuting Sun,†,‖ Qiancheng You,†,‡ Qitao Song,†,§ James C. Paton, ∇ Adrienne W. Paton,∇ and Xing Chen*,†,‡,§,⊥,# †College of Chemistry and Molecular Engineering, ‡Beijing National Laboratory for Molecular Sciences, §Peking−Tsinghua Center for Life Sciences,‖Academy for Advanced Interdisciplinary Studies, ⊥Synthetic and Functional Biomolecules Center, and #Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China ∇Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia Page S1 Table of Contents: Scheme S1.……………………………………………………….........……………. S3 Figure S1……………………………………………………..………..……………. S3 Figure S2……………………………………………………..………..…………… S4 Figure S3……………………………………………………..………..…………… S4 Figure S4……………………………………………………..………..…………… S5 Figure S5……………………………………………………..………..…………… S6 Figure S6……………………………………………………..………..…………….S7 Figure S7……………………………………………………..………..…………….S8 Figure S8……………………………………………………..………..…………….S9 Experimental Procedures……………………………….…........…………....S10-S27 Table S1………………………………………………..………..…………….S28-S48 Supporting Reference……………………………………………….......………...S49 Page S2 Scheme S1. Synthesis of 9AzNeu5Gc Figure S1: a, b, c, d) Representative scatter plots (FSC vs. SSC) and histograms of flow cytometry analysis -
Dataset for the Quantitative Proteomics Analysis of the Primary Hepatocellular Carcinoma with Single and Multiple Lesions
Data in Brief 5 (2015) 226–240 Contents lists available at ScienceDirect Data in Brief journal homepage: www.elsevier.com/locate/dib Data Article Dataset for the quantitative proteomics analysis of the primary hepatocellular carcinoma with single and multiple lesions Xiaohua Xing a,b, Yao Huang c, Sen Wang a,b, Minhui Chi a,b,c, Yongyi Zeng a,b,c, Lihong Chen a,b,c, Ling Li a,b,c, Jinhua Zeng a,b,c, Minjie Lin a,b, Xiao Han d, Jingfeng Liu a,b,c, Xiaolong Liu a,b,n a The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People’s Republic of China b The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People’s Republic of China c Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People’s Republic of China d Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China article info abstract Article history: Hepatocellular Carcinoma (HCC) is one of the most common malig- Received 18 August 2015 nant tumor, which is causing the second leading cancer-related death Received in revised form worldwide. The tumor tissues and the adjacent noncancerous tissues 27 August 2015 obtained from HCC patients with single and multiple lesions were Accepted 28 August 2015 quantified using iTRAQ. A total of 5513 proteins (FDR of 1%) were Available online 8 September 2015 identified which correspond to roughly 27% of the total liver proteome. -
Transcriptome Profiling Revealed Potentially
Wang et al. BMC Genomics (2020) 21:546 https://doi.org/10.1186/s12864-020-06950-y RESEARCH ARTICLE Open Access Transcriptome profiling revealed potentially important roles of defensive gene expression in the divergence of insect biotypes: a case study with the cereal aphid Sitobion avenae Da Wang1,2, Deguang Liu1,2* , Xiaoqin Shi1,2, Yujing Yang1,2, Na Zhang1,2 and Zheming Shang1,2 Abstract Background: Many insects can develop differential biotypes on variable host plants, but the underlying molecular factors and mechanisms are not well understood. To address this issue, transcriptome profiling analyses were conducted for two biotypes of the cereal aphid, Sitobion avenae (Fabricius), on both original and alternative plants. Results: Comparisons between both biotypes generated 4174 differentially expressed unigenes (DEGs). In their response to host plant shift, 39 DEGs were shared by both biotypes, whereas 126 and 861 DEGs occurred only in biotypes 1 and 3, respectively. MMC (modulated modularity clustering) analyses showed that specific DEGs of biotypes 1 and 3 clustered into five and nine transcriptional modules, respectively. Among these DEGs, defense- related genes underwent intensive expression restructuring in both biotypes. However, biotype 3 was found to have relatively lower gene transcriptional plasticity than biotype 1. Gene enrichment analyses of the abovementioned modules showed functional divergence in defensive DEGs for the two biotypes in response to host transfer. The expression plasticity for some defense related genes was showed to be directly related to fecundity of S. avenae biotypes on both original and alternative plants, suggesting that expression plasticity of key defensive genes could have significant impacts on the adaptive potential and differentiation of S. -
The Effect of Acid on the Dynamics of Intracellular Zinc and the Marker Expressions Of
The Effect of Acid on the Dynamics of Intracellular Zinc and the Marker Expressions of Pluripotency in Somatic Cells A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Yuli Hu April 2021 © 2021 Yuli Hu. All Rights Reserved. 2 This thesis titled The Effect of Acid on the Dynamics of Intracellular Zinc and the Marker Expressions of Pluripotency in Somatic Cells by YULI HU has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Yang V. Li Professor of Biomedical Sciences Florenz Plassmann Dean, College of Arts and Sciences 3 Abstract YULI HU, M.S., April 2021, Biological Sciences The Effect of Acid on the Dynamics of Intracellular Zinc and the Marker Expressions of Pluripotency in Somatic Cells Director of Thesis: Yang V. Li Microenvironmental pH is one of the factors that affect the stability of zinc- protein binding. The tight binding between zinc and proteins is favored by the basic pH, whereas acidic pH favors a loose bound, and treatment of strong acid results in the dissociation of zinc. Physiologically, the stomach uses a very acidic pH to digest food which results in a high amount of soluble zinc in the stomach. Whether or not zinc co- present with acid and the effect of zinc on the gastric lining has rarely been discussed. In my experiments, acidic treatment induced the expression of a pluripotent marker in primary cultured gastric cells. It also stimulated the release of intracellular zinc, suggesting that acidic pH supported protein expression through dynamic zinc regulation. -
Effects of a Bacterial ACC Deaminase on Plant Growth
Effects of a bacterial ACC deaminase on plant growth-promotion by Jennifer Claire Czarny A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Biology Waterloo Ontario, Canada, 2008 c Jennifer Claire Czarny 2008 Author's declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Plants often live in association with growth-promoting bacteria, which provide them with several benefits. One such benefit is the lowering of plant ethylene levels through the action of the bacterial enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase that cleaves the immediate biosynthetic precursor of ethylene, ACC. The plant hormone ethylene is responsible for many aspects of plant growth and development but under stressful conditions ethylene exacerbates stress symptoms. The ACC deaminase-containing bacterium Pseudomonas putida UW4, isolated from the rhizosphere of reeds, is a potent plant growth- promoting strain and as such was used, along with an ACC deaminase minus mutant of this strain, to study the role of ACC deaminase in plant growth-promotion. Also, transgenic plants expressing a bacterial ACC deaminase gene were used to study the role of this enzyme in plant growth and stress tolerance in the presence and absence of nickel. Transcriptional changes occurring within plant tissues were investigated with the use of an Arabidopsis oligonucleotide microarray. The results showed that transcription of genes involved in hormone regulation, secondary metabolism and the stress response changed in all treatments. -
Frontiersin.Org 1 April 2015 | Volume 9 | Article 123 Saunders Et Al
ORIGINAL RESEARCH published: 28 April 2015 doi: 10.3389/fnins.2015.00123 Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study Norman R. Saunders 1*, Katarzyna M. Dziegielewska 1, Kjeld Møllgård 2, Mark D. Habgood 1, Matthew J. Wakefield 3, Helen Lindsay 4, Nathalie Stratzielle 5, Jean-Francois Ghersi-Egea 5 and Shane A. Liddelow 1, 6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia, 2 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark, 3 Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, 4 Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland, 5 Lyon Neuroscience Research Center, INSERM U1028, Centre National de la Recherche Scientifique UMR5292, Université Lyon 1, Lyon, France, 6 Department of Neurobiology, Stanford University, Stanford, CA, USA The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq Edited by: Joana A. Palha, was performed at embryonic day (E) 15 and adult with additional data obtained at University of Minho, Portugal intermediate ages from microarray analysis. The largest represented functional group Reviewed by: in the embryo was amino acid transporters (twelve) with expression levels 2–98 times Fernanda Marques, University of Minho, Portugal greater than in the adult. In contrast, in the adult only six amino acid transporters Hanspeter Herzel, were up-regulated compared to the embryo and at more modest enrichment levels Humboldt University, Germany (<5-fold enrichment above E15). -
Proteomic Analysis of Seminal Fluid from Men Exhibiting Oxidative Stress
Sharma et al. Reproductive Biology and Endocrinology 2013, 11:85 http://www.rbej.com/content/11/1/85 RESEARCH Open Access Proteomic analysis of seminal fluid from men exhibiting oxidative stress Rakesh Sharma1, Ashok Agarwal1*, Gayatri Mohanty1,6, Stefan S Du Plessis2, Banu Gopalan3, Belinda Willard4, Satya P Yadav5 and Edmund Sabanegh1 Abstract Background: Seminal plasma serves as a natural reservoir of antioxidants. It helps to remove excessive formation of reactive oxygen species (ROS) and consequently, reduce oxidative stress. Proteomic profiling of seminal plasma proteins is important to understand the molecular mechanisms underlying oxidative stress and sperm dysfunction in infertile men. Methods: This prospective study consisted of 52 subjects: 32 infertile men and 20 healthy donors. Once semen and oxidative stress parameters were assessed (ROS, antioxidant concentration and DNA damage), the subjects were categorized into ROS positive (ROS+) or ROS negative (ROS-). Seminal plasma from each group was pooled and subjected to proteomics analysis. In-solution digestion and protein identification with liquid chromatography tandem mass spectrometry (LC-MS/MS), followed by bioinformatics analyses was used to identify and characterize potential biomarker proteins. Results: A total of 14 proteins were identified in this analysis with 7 of these common and unique proteins were identified in both the ROS+ and ROS- groups through MASCOT and SEQUEST analyses, respectively. Prolactin- induced protein was found to be more abundantly present in men with increased levels of ROS. Gene ontology annotations showed extracellular distribution of proteins with a major role in antioxidative activity and regulatory processes. Conclusions: We have identified proteins that help protect against oxidative stress and are uniquely present in the seminal plasma of the ROS- men. -
Supplemental Data
Article TCF7L2 is a master regulator of insulin production and processing ZHOU, Yuedan, et al. Abstract Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of [...] Reference ZHOU, Yuedan, et al. TCF7L2 is a master regulator of insulin production and processing. Human Molecular Genetics, 2014, vol. 23, no. 24, p. 6419-6431 DOI : 10.1093/hmg/ddu359 PMID : 25015099 Available at: http://archive-ouverte.unige.ch/unige:45177 Disclaimer: layout of this document may differ from the published -
Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years Through Tissue and Urine Metabolomics
H OH metabolites OH Review Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics Ana Rita Lima 1,* , Joana Pinto 1 , Filipa Amaro 1, Maria de Lourdes Bastos 1,Márcia Carvalho 1,2,3,* and Paula Guedes de Pinho 1,* 1 UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; [email protected] (J.P.); [email protected] (F.A.); [email protected] (M.d.L.B.) 2 UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004 Porto, Portugal 3 Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal * Correspondence: [email protected] (A.R.L.); [email protected] (M.C.); [email protected] (P.G.d.P.); Tel.: +351-220-428-500 (A.R.L. & P.G.d.P.); +351-225-071-300 (M.C.) Abstract: Prostate cancer (PCa) is the second most diagnosed cancer in men worldwide. For its screening, serum prostate specific antigen (PSA) test has been largely performed over the past decade, despite its lack of accuracy and inability to distinguish indolent from aggressive disease. Metabolomics has been widely applied in cancer biomarker discovery due to the well-known metabolic reprogramming characteristic of cancer cells. Most of the metabolomic studies have Citation: Lima, A.R.; Pinto, J.; reported alterations in urine of PCa patients due its noninvasive collection, but the analysis of prostate Amaro, F.; Bastos, M.d.L.; Carvalho, tissue metabolome is an ideal approach to disclose specific modifications in PCa development. -
Analysis of Novel Targets in the Pathobiology of Prostate Cancer
ANALYSIS OF NOVEL TARGETS IN THE PATHOBIOLOGY OF PROSTATE CANCER by Katherine Elizabeth Bright D’Antonio B.S. in Biology, Gettysburg College, 2002 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cellular and Molecular Pathology University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This thesis was presented by Katherine D’Antonio It was defended on April 13, 2009 and approved by Beth Pflug, PhD, Associate Professor of Urology Luyuan Li, PhD, Associate Professor of Pathology George Michalopoulos, MD, PhD, Professor of Pathology Dan Johnson, PhD, Associate Professor of Medicine Dissertation Advisor: Robert Getzenberg, PhD, Professor of Urology ii Copyright © by Katherine D’Antonio 2009 iii ANALYSIS OF NOVEL TARGETS IN THE PATHOBIOLOGY OF PROSTATE CANCER Katherine D’Antonio, PhD University of Pittsburgh, 2009 The process of developing a greater understanding of the fundamental molecular mechanisms involved in prostate carcinogenesis will provide insights into the questions that still plague the field of prostate cancer research. The goal of this study was to identify altered genes that may have utility either as biomarkers, for improved diagnostic or prognostic application, or as novel targets important in the pathobiology of prostate cancer. We hypothesize that an improved understanding of the genomic and proteomic alterations associated with prostate cancer will facilitate the identification of novel biomarkers and molecular pathways critical to prostate carcinogenesis. In order to enhance our knowledge of the molecular alterations associated with prostate cancer, our laboratory performed microarray analysis comparing gene expression in healthy normal prostate to that in prostate cancer tissue.