Solar Science with the Atacama Large Millimeter/Submillimeter Array-A
Total Page:16
File Type:pdf, Size:1020Kb
Noname manuscript No. (will be inserted by the editor) Solar science with the Atacama Large Millimeter/submillimeter Array – A new view of our Sun S. Wedemeyer · T. Bastian · R. Brajsaˇ · H. Hudson · G. Fleishman · M. Loukitcheva · B. Fleck · E. P. Kontar · B. De Pontieu · P. Yagoubov · S. K. Tiwari · R. Soler · J. H. Black · P. Antolin · E. Scullion · S. Gunar´ · N. Labrosse · H.-G. Ludwig · A. O. Benz · S. M. White · P. Hauschildt · J. G. Doyle · V. M. Nakariakov · T. Ayres · P. Heinzel · M. Karlicky · T. Van Doorsselaere · D. Gary · C. E. Alissandrakis · A. Nindos · S. K. Solanki · L. Rouppe van der Voort · M. Shimojo · Y. Kato · T. Zaqarashvili · E. Perez · C. L. Selhorst · M. Barta Received: April 24, Accepted: December 10, 2015 Sven Wedemeyer Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029 Blindern, N-0315 Oslo, Norway E-mail: [email protected] European ARC, Czech node, Astronomical Institute ASCR, Ondrejov, Czech Republic Tel. : +47-228 56 520 Fax : +47-228 56 505 E-mail : E-mail: [email protected] T. Bastian National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA 22903, USA R. Brajsaˇ Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia European ARC, Czech node, Astronomical Institute ASCR, Ondrejov, Czech Republic H. Hudson Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450, USA SUPA, School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK G. Fleishman Center For Solar-Terrestrial Research, Physics Department, New Jersey Institute of Technology, 323 MLK blvd, Newark, NJ 07102, USA M. Loukitcheva Astronomical Institute, Saint-Petersburg University, Universitetskii pr. 28, 198504 Saint-Petersburg, Russia Max-Planck-Institut fur¨ Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Gottingen,¨ Germany B. Fleck ESA Science Operations Department, c/o NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA E. P. Kontar arXiv:1504.06887v4 [astro-ph.SR] 4 Jan 2016 SUPA, School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK B. De Pontieu 2 Lockheed Martin Solar & Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, B. 252, Palo Alto, CA 94304, USA Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029 Blindern, N-0315 Oslo, Norway P. Yagoubov European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild- Strasse 2, D-85748 Garching bei Munchen,¨ Germany S. K. Tiwari NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35805, USA R. Soler Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain J. H. Black Chalmers University of Technology, Dept. of Earth and Space Sciences, Onsala Space Observatory, SE-43992 Onsala, Sweden P. Antolin National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan E. Scullion Trinity College Dublin, College Green, Dublin 2, Ireland S. Gunar´ School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK Astronomical Institute, Academy of Sciences, Fricova˘ 298, 251 65 Ondrejov,˘ Czech Republic (on leave) N. Labrosse SUPA, School of Physics & Astronomy, University of Glasgow, UK H.-G. Ludwig ZAH, Landessternwarte Konigstuhl¨ 12, D-69117 Heidelberg, Germany A. O. Benz FHNW, Institute for 4D Technologies, Windisch, Switzerland S. M. White Space Vehicles Directorate, AFRL, 3550 Aberdeen Avenue SE, Bldg 427, Kirtland AFB, NM 87117-5776, USA P. Hauschildt Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany J. G. Doyle Armagh Observatory, College Hill BT61 9DG, N. Ireland V. M. Nakariakov Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK T. Ayres Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309, USA P. Heinzel Astronomical Institute, Academy of Sciences, Fricova˘ 298, 251 65 Ondrejov,˘ Czech Republic M. Karlicky Astronomical Institute, Academy of Sciences, Fricova˘ 298, 251 65 Ondrejov,˘ Czech Republic European ARC, Czech node, Astronomical Institute ASCR, Ondrejov, Czech Republic T. Van Doorsselaere Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3000 Leuven, Belgium D. Gary Center For Solar-Terrestrial Research, Physics Department, New Jersey Institute of Technology, 323 MLK blvd, Newark, NJ 07102, USA 3 Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful tool for observing the Sun at high spatial, temporal, and spectral resolution. These capa- bilities can address a broad range of fundamental scientific questions in solar physics. The radiation observed by ALMA originates mostly from the chromosphere – a complex and dy- namic region between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer layers of the solar atmosphere. Based on first solar test observations, strategies for regular solar campaigns are currently be- ing developed. State-of-the-art numerical simulations of the solar atmosphere and modeling of instrumental effects can help constrain and optimize future observing modes for ALMA. Here we present a short technical description of ALMA and an overview of past efforts and future possibilities for solar observations at submillimeter and millimeter wavelengths. In addition, selected numerical simulations and observations at other wavelengths demonstrate ALMA’s scientific potential for studying the Sun for a large range of science cases. Keywords Sun · photosphere · chromosphere · corona · magnetohydrodynamics · radiative transfer · flares · prominences 1 Introduction Despite decades of intensive research, the chromosphere of our Sun – an important atmo- spheric layer between the photosphere and the corona – is still elusive owing to the com- plicated nature of the partially ionized chromospheric plasma and its intricate interaction with radiation and the arising technical challenges for observing the emergent radiation (see C. E. Alissandrakis Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece. A. Nindos Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece. S. K. Solanki Max-Planck-Institut for Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Gottingen,¨ Germany School of Space Research, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea L. Rouppe van der Voort Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029 Blindern, N-0315 Oslo, Norway M. Shimojo National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Y. Kato Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029 Blindern, N-0315 Oslo, Norway T. Zaqarashvili Institute of Physics, University of Graz, UniversitŁtsplatz 5, 8010 Graz, Austria Abastumani Astrophysical Observatory at Ilia State University, University St. 2, Tbilisi, Georgia E. Perez SUPA, School of Physics & Astronomy, University of Glasgow, UK C. L. Selhorst University of Vale do Para´ıba (UNIVAP), Av. Shishima Hifumi, 2911 - Urbanova - CEP 12244-000, Sao˜ Jose´ dos Campos, Sao˜ Paulo, Brazil M. Barta European ARC, Czech node, Astronomical Institute ASCR, Ondrejov, Czech Republic Astronomical Institute, Academy of Sciences, Fricova˘ 298, 251 65 Ondrejov,˘ Czech Republic 4 Fig. 1 Examples of chromospheric images taken in the core of the Ca II infrared triplet line at λ = 854:2 nm with the CRISP instrument at the Swedish 1-m Solar Telescope (SST). (a) An active region with an on-going M1.1 class flare. (b) The chromosphere above a sunspot close to the limb. (c) A quiet region inside a coronal hole close to disk center. (d) A decaying active region with a pronounced magnetic network cell close to disk center. Fig. 1). While advances in instrumentation during recent years have led to improved chromo- spheric diagnostics, sparking renewed attention for this important interface layer, the diffi- culties with interpreting the few currently accessible diagnostics with complicated formation mechanisms have hampered progress. In contrast, radiation at millimeter wavelengths has been known to have great diagnostic potential but could not be exploited to full extent due to technical limitations so far, in particular, because technically achievable telescope apertures had been small for the relatively long wavelengths. Consequently, single dish observations did not have sufficient temporal or spatial resolution, and small interferometric arrays could not measure the full range of spatial scales in the chromosphere. The Atacama Large Millimeter/submillimeter Array (ALMA), which recently com- menced operation, is now an enormous leap forward in terms of spatial resolution at mil- 5 Fig. 2 Reconstructed interferometric images of a Quiet Sun region (left) and active region (right) from ob- servations with the Berkeley-Illinois-Maryland Array (BIMA). The yellow circles in the lower left corner of each panel represent the restored beam with a diameter 10”. Adopted from Loukitcheva et al. (2009, 2014). limeter and submillimeter wavelengths, offering an unprecedented view of the solar chromo- sphere and its interface with the upper photosphere and low transition region. For extended sources like the Sun, ALMA will achieve a spatial resolution that is close to what is currently possible at visible and infrared wavelengths. In addition, ALMA observes with high tempo- ral