Corticoadrenal Activity in Rat Regulates Betaine-Homocysteine S-Methyltransferase Expression with Opposite Effects in Liver and Kidney

Total Page:16

File Type:pdf, Size:1020Kb

Corticoadrenal Activity in Rat Regulates Betaine-Homocysteine S-Methyltransferase Expression with Opposite Effects in Liver and Kidney Corticoadrenal activity in rat regulates betaine-homocysteine S-methyltransferase expression with opposite effects in liver and kidney 1,2,3, 1 2 1 OSVALDO FRIDMAN *, ANALÍA VMORALES , LAURA EBORTONI , PAULA CTURK-NOCETO and ELIO APRIETO1 11Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana (UAI), 2Instituto de Oncología Ángel H Roffo, 3Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, ArgentinaBuenos Aires, Argentina *Corresponding author (Email, [email protected]) Betaine-homocysteine S-methyltransferase (BHMT) is an enzyme that converts homocysteine (Hcy) to methionine using betaine as a methyl donor. Betaine also acts as osmolyte in kidney medulla, protecting cells from high extracellular osmolarity. Hepatic BHMT expression is regulated by salt intake. Hormones, particularly cortico- steroids, also regulate BHMT expression in rat liver. We investigated to know whether the corticoadrenal activity plays a role in kidney BHMT expression. BHMT activity in rat kidneys is several orders of magnitude lower than in rat livers and only restricted to the renal cortex. This study confirms that corticosteroids stimulate BHMT activity in the liver and, for the first time in an animal model, also up-regulate the BHMT gene expression. Besides, unlike the liver, corticosteroids in rat kidney down-regulate BHMT expression and activity. Given that the classical effect of adrenocortical activity on the kidney is associated with sodium and water re-absorption by the distal tubule leading to volume expansion, by promoting lesser use of betaine as a methyl donor, corticosteroids would preserve betaine for its other role as osmoprotectant against changes in the extracellular osmotic conditions. We conclude that corticosteroids are, at least in part, responsible for the inhibition of BHMT expression and activity in rat kidneys. [Fridman O, Morales AV, Bortoni LE, Turk-Noceto PC and Prieto EA 2012 Corticoadrenal activity in rat regulates betaine-homocysteine S-methyltransferase expression with opposite effects in liver and kidney. J. Biosci. 37 115–123] DOI 10.1007/s12038-011-9171-5 1. Introduction condensed with serine to form cystathionine. This latter reaction is catalysed by cystathionine β-synthase. Remethy- Homocysteine (Hcy), a sulphur-containing non-protein lation of Hcy to methionine occurs through two separate amino acid, is an intermediary in the metabolism of paths, one is catalysed by 5-methyltetrahydrofolate- methionine. The elevation of plasma Hcy levels, known as homocysteine methyltransferase (methionine synthase) and hyperhomocysteinemia, is a recognized risk factor for the other by betaine-homocysteine methyltransferase coronary and cerebrovascular atherosclerosis and venous (BHMT; E.C. 2.1.1.5). The first enzyme, widely distributed thrombosis (Adachi et al. 2002; Albert et al. 2002; in animal tissues, requires as a cofactor and methyl donor Sundström et al. 2003). Methionine is incorporated with 5′-methyltetrahydrofolate and vitamin B12 respectively. On the diet and is S-adenosylated, leading to S-adenosylme- the other hand, BHMT, the only known enzyme that uses thionine, which can transfer its methyl group to cellular betaine as a substrate, mediates the transfer of a methyl acceptors, becoming S-adenosyl homocysteine. S-adenosyl group from betaine (N,N,N-trimethylglycine) to Hcy, form- homocysteine is then converted in homocysteine. The ing methionine and N,N-dimethylglycine (Sunden et al. intracellular Hcy may be remethylated to methionine or 1997; Millian and Garrow 1998). Methionine synthase is Keywords. Betaine; homocysteine; methylation; osmolyte http://www.ias.ac.in/jbiosci J. Biosci. 37(1), March 2012, 115–123, * Indian Academy of Sciences 115 Published online: 30 December 2011 116 Osvaldo Fridman et al. ubiquitously expressed (Chen et al. 1997) but the distribu- Garrow 2005; Schäfer et al. 2007) and also various tion of BHMT is more restricted (Delgado-Reyes et al. hormones, including corticosteroids, insulin, estradiol and 2001). BHMT has been shown to be expressed at high testosterone (Finkelstein et al. 1971;Ratnamet al. 2006). In levels in the livers of all vertebrate species tested. In the rat hepatoma cell line (H4IIE cells), the synthetic mammalian liver, BHMT represents 1% or more of the total glucocorticoid triamcinolone increases the level and rate of soluble protein (Garrow 1996). In addition to being present BHMT mRNA synthesis (Ratnam et al. 2006). in the liver, BHMT activity also is present at significant In the present study, we investigated the role of the levels in the pancreas of ruminants and guinea pigs, and in corticoadrenal activity to regulate BHMT in the liver and the kidney cortex of guinea pigs, pigs and primates kidney of an in vivo rat model. Our aim was to determine (Delgado-Reyes et al. 2001; Delgado-Reyes and Garrow whether corticosteroids are involved in the regulation of 2005). In humans, pigs and guinea pigs, BHMT has been kidney BHMT expression. specifically localized to the proximal tubules of kidney. In contrast, BHMT activity in rat kidney has been reported to 2. Material and methods be either absent (McKeever et al. 1991) or very low (Finkelstein et al. 1971). Delgado-Reyes et al. (2001) and 2.1 Chemicals and reagents Delgado-Reyes and Garrow (2005) found that whole rat kidney homogenates have about 1–2% of the BHMT- Betaine hydrochloride, L-Hcy thiolactone hydrochloride, specific activity as that found in liver. Betaine, a body Dowex 1-X4 (OH−; 200–400 mesh) resin, protease inhibitor requirement, is found at high levels in certain foods cocktail and 3,3′-diaminodbenzidine were purchased from (De Zwart et al. 2003; Zeisel et al. 2003) and is absorbed 14 directly from the diet via non-specific transporters in the Sigma-Aldrich. [ C-methyl]-betaine (57 mCi/mmol) was gut. Betaine can also be endogenously produced in the liver obtained from Moravek Biochemicals. Scintillation cocktail and kidney cortex from its metabolic precursor choline Optiphase Hisafe 3 was obtained from Perkin Elmer. Anti- (Zhang et al. 1992; Zeisel and Blusztajn 1994; Fischer et al. BHMT polyclonal antibodies (rabbit) were kindly provided by 2005). In addition to its important role as a methyl donor in Dra. María A Pajares Instituto de Investigaciones Biomédicas one-carbon metabolism, betaine, together with myo-inositol, Alberto Sols (CSIC-UAM), Madrid, Spain. Goat anti-rabbit sorbitol, taurine and glycerophosphorylcholine, plays a vital IgG horseradish peroxidase, peroxidase-labelled goat anti- function as an organic osmolyte that is accumulated by the rabbit IgG secondary antibody, primers, Taq DNA polymerase cells of the inner medulla of animal and human kidneys to and SYBR Green PCR Master Mix, were supplied by maintain osmotic balance (Bagnasco et al. 1986; Garcia- Promega. All other chemicals were of the highest purity Perez and Burg 1991; Sizeland et al. 1995). Betaine available from commercial sources. regulates cell volume by counteracting changes in extracel- lular tonicity and stabilizing macromolecules against a 2.2 Animals variety of physiological perturbations (Häussinger 1996; Schliess and Häussinger 2002; Wehner et al. 2003). BHMT Adult male Sprague–Dawley rats weighing 210 to 230 g were expression and activity plays a key role in regulating betaine obtained from the Institute of Biology and Experimental concentrations (Finkelstein et al. 1982) and determines the Medicine Animal Facility (NIH Assurance Certificate # fate of betaine between its two divergent biological A5072-01) and were housed under controlled temperature functions: metabolized to provide a methyl group for (22°C) and humidity (50%) with 12 h/12 h light/dark cycles homocysteine methylation or stored to control cellular (lights on at 7:00 a.m.). Rats were fed with free access to osmolarity. In a recent work, Teng et al. (2011) showed that standard chow and tap water (or saline after adrenalectomy) deletion of BHMT in mice resulted in betaine accumulation and randomized into study and control groups. Animals were in most tissues. A number of nutritional factors were shown to play a role in the regulation of methyl group and Hcy 12 weeks old when sacrificed. All animal experiments metabolism by specifically altering the expression of key followed the NIH Guide for the Care and Use of Laboratory enzymes. BHMT activity and gene expression in rat liver are Animals and were approved by the Ethical Committee of the affected by the supply of dietary betaine, choline and Institute of Biology and Experimental Medicine. All efforts methionine (Finkelstein et al. 1982;Park et al. 1997;Park were made to minimize animal suffering and to reduce the and Garrow 1999). However, unlike the rat liver enzyme, rat number of rats used. Rats were euthanized by carbon dioxide kidney BHMT is refractory to treatment with low dietary asphyxiation (Slow and Garrow 2006) according to protocols methionine and choline (Delgado-Reyes et al. 2001;Slow for animal use, in agreement with NIH guidelines for care and Garrow 2006). In addition to diet, BHMT expression in and use of experimental animals and approved by the local liver is influenced by osmotic stress (Delgado-Reyes and ethical committee (IBYME-CONICET). J. Biosci. 37(1), March 2012 Corticosteroids down-regulate BHMT in rat kidney 117 2.3 Hormonal treatment and study procedure β-mercaptoethanol, 1 mg/mL lysozyme and (1 mL/20 g tissue) protease inhibitor cocktail, and centrifuged at 20,000g After 1 week of acclimatization, 20 rats were divided in two at 4°C for 30 min. After being heated to 95°C for 5 min, groups. Under Nembutol anaesthesia (60 mg/kg i.p.), one proteins were subjected to SDS-PAGE (30 and 100 μg group was bilaterally adrenalectomized (ADX) and the other protein/lane for liver and kidney respectively). Following was sham operated as adrenal-intact controls. The day after electrophoresis, gels were equilibrated with transfer buffer operation five rats of each group received i.m. injections of (39 mM glycine, 48 mM Tris-HCl, 0.03% SDS, and 20% methylprednisolone (MP) (Riedel-de Haën, Germany), methanol).
Recommended publications
  • Methionine Synthase Supports Tumor Tetrahydrofolate Pools
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284521; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Methionine synthase supports tumor tetrahydrofolate pools Joshua Z. Wang1,2,#, Jonathan M. Ghergurovich1,3,#, Lifeng Yang1,2, and Joshua D. Rabinowitz1,2,* 1 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA 2 Department of Chemistry, Princeton University, Princeton, New Jersey, USA 3 Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA # These authors contributed equally to this work. *Corresponding author: Joshua Rabinowitz Department of Chemistry and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Rd, Princeton, NJ 08544, USA Phone: (609) 258-8985; e-mail: [email protected] Conflict of Interest Disclosure: J.D.R. is a paid advisor and stockholder in Kadmon Pharmaceuticals, L.E.A.F. Pharmaceuticals, and Rafael Pharmaceuticals; a paid consultant of Pfizer; a founder, director, and stockholder of Farber Partners and Serien Therapeutics. JDR and JMG are inventors of patents in the area of folate metabolism held by Princeton University. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284521; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Mammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl- THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR).
    [Show full text]
  • Defining Sources of Nutrient Limitation for Tumors By
    Defining sources of nutrient limitation for tumors by Mark Robert Sullivan B.S. Molecular Biology and Chemistry University of Pittsburgh (2013) Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2019 © 2019 Mark R. Sullivan. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author.......................................................................................................................... Department of Biology April 30, 2019 Certified by ...................................................................................................................................... Matthew G. Vander Heiden Associate Professor of Biology Thesis Supervisor Accepted by...................................................................................................................................... Amy E. Keating Professor of Biology Co-Director, Biology Graduate Committee 1 2 Defining sources of nutrient limitation for tumors by Mark Robert Sullivan Submitted to the Department of Biology on April 30, 2019 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology ABSTRACT Tumor growth requires that cancer cells accumulate sufficient biomass to grow and divide. To accomplish this, tumor cells must acquire
    [Show full text]
  • Involvements of Hyperhomocysteinemia in Neurological Disorders
    H OH metabolites OH Review Involvements of Hyperhomocysteinemia in Neurological Disorders Marika Cordaro 1,† , Rosalba Siracusa 2,† , Roberta Fusco 2 , Salvatore Cuzzocrea 2,3,* , Rosanna Di Paola 2,* and Daniela Impellizzeri 2 1 Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; [email protected] 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; [email protected] (R.S.); [email protected] (R.F.); [email protected] (D.I.) 3 Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA * Correspondence: [email protected] (S.C.); [email protected] (R.D.P.); Tel.: +39-090-6765208 (S.C. & R.D.P.) † The authors equally contributed to the review. Abstract: Homocysteine (HCY), a physiological amino acid formed when proteins break down, leads to a pathological condition called hyperhomocysteinemia (HHCY), when it is over a definite limit. It is well known that an increase in HCY levels in blood, can contribute to arterial damage and several cardiovascular disease, but the knowledge about the relationship between HCY and brain disorders is very poor. Recent studies demonstrated that an alteration in HCY metabolism or a deficiency in folate or vitamin B12 can cause altered methylation and/or redox potentials, that leads to a modification on calcium influx in cells, or into an accumulation in amyloid and/or tau protein involving a cascade of events that culminate in apoptosis, and, in the worst conditions, neuronal death. The present review will thus summarize how much is known about the possible role of HHCY in neurodegenerative disease.
    [Show full text]
  • Recycling of Vitamin B12 and NAD+ Within the Pdu Microcompartment of Salmonella Enterica Shouqiang Cheng Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Recycling of vitamin B12 and NAD+ within the Pdu microcompartment of Salmonella enterica Shouqiang Cheng Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Cheng, Shouqiang, "Recycling of vitamin B12 and NAD+ within the Pdu microcompartment of Salmonella enterica" (2010). Graduate Theses and Dissertations. 11713. https://lib.dr.iastate.edu/etd/11713 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. + Recycling of vitamin B12 and NAD within the Pdu microcompartment of Salmonella enterica by Shouqiang Cheng A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Biochemistry Program of Study Committee: Thomas A. Bobik, Major Professor Alan DiSpirito Basil Nikolau Reuben Peters Gregory J. Phillips Iowa State University Ames, Iowa 2010 Copyright © Shouqiang Cheng, 2010. All rights reserved. ii Table of contents Abstract.............................................................................................................................
    [Show full text]
  • PC22 Doc. 22.1 Annex (In English Only / Únicamente En Inglés / Seulement En Anglais)
    Original language: English PC22 Doc. 22.1 Annex (in English only / únicamente en inglés / seulement en anglais) Quick scan of Orchidaceae species in European commerce as components of cosmetic, food and medicinal products Prepared by Josef A. Brinckmann Sebastopol, California, 95472 USA Commissioned by Federal Food Safety and Veterinary Office FSVO CITES Management Authorithy of Switzerland and Lichtenstein 2014 PC22 Doc 22.1 – p. 1 Contents Abbreviations and Acronyms ........................................................................................................................ 7 Executive Summary ...................................................................................................................................... 8 Information about the Databases Used ...................................................................................................... 11 1. Anoectochilus formosanus .................................................................................................................. 13 1.1. Countries of origin ................................................................................................................. 13 1.2. Commercially traded forms ................................................................................................... 13 1.2.1. Anoectochilus Formosanus Cell Culture Extract (CosIng) ............................................ 13 1.2.2. Anoectochilus Formosanus Extract (CosIng) ................................................................ 13 1.3. Selected finished
    [Show full text]
  • Anxiety & Depression.Pptx
    Doc Talks: Natural Approaches to Anxiety & Depression Prosper Natural Health Dr. Molly Force & Dr. Alicia McCubbins www.ProsperNaturalHealth.com This presentation is meant for educational use only, not as a form of diagnosis, management or treatment of any medical concerns. Anxiety l What is it? l Physical symptoms l Mental symptoms l Common causes Depression l What is it? l Physical symptoms l Mental symptoms l Common causes Plasticity- ability to change l Adaptive plasticity - improves function l Ex. Stroke rehabilitiation l Maladaptive plasticity- dysfunction l Ex. PTSD (post traumatic stress disorder) l Long term potentiation l Enhanced communication (post synaptic neuron receptor more efficient) The Brain & Neurons l Neurons l Cells of the nervous system l Become electrically charged to transmit information (Sodium-potassium pumps) l Neurons need: l Energy- ATP for sodium potassium pumps 1. Oxygen 2. Glucose 3. Mitochondria- Methyl donor (folic acid / 5MTHF, B12) l Neurotransmitters l Stimulation The Synapse Neurotransmitters l Chemical signals Excitatory Inhibitory Epinephrine GABA Norepinephrine Dopamine Acetylcholine Serotonin Neurotransmitter testing l Urinary l Problems: l Blood brain barrier l Peripheral marker only Natural Approach: Balance & Support Function l Stress levels l Oxygen l Blood sugar l Energy production (methyl donors) l Neurotransmitters Overall Brain Health l Sleep l Safe environmental input l Oxygen l Blood circulation (hypertension/ hypotension) l Iron (anemia) l Glucose (hypoglycemia/ hyperglycemia/ diabetes)
    [Show full text]
  • Polymorphisms in Methionine Synthase, Methionine Synthase Reductase and Serine Hydroxymethyltransferase, Folate and Alcohol Intake, and Colon Cancer Risk Susan E
    University of South Carolina Scholar Commons Faculty Publications Epidemiology and Biostatistics 2008 Polymorphisms in Methionine Synthase, Methionine Synthase Reductase and Serine Hydroxymethyltransferase, Folate and Alcohol Intake, and Colon Cancer Risk Susan E. Steck University of South Carolina - Columbia, [email protected] Temitope O. Keku Lesley M. Butler Joseph Galanko Beri Massa See next page for additional authors Follow this and additional works at: https://scholarcommons.sc.edu/ sph_epidemiology_biostatistics_facpub Part of the Public Health Commons Publication Info Postprint version. Published in Journal of Nutrigenetics and Nutrigenomics, Volume 1, Issue 4, 2008, pages 196-204. Steck, S. E., Keku, T., Butler, L. M., Galanko, J., Massa, B., Millikan, R. C., & Sandler, R. S. (2008). Polymorphisms in methionine synthase, methionine synthase reductase and serine hydroxymethyltransferase, folate and alcohol intake, and colon cancer risk. Journal of Nutrigenetics and Nutrigenomics, 1(4), 196-204. DOI: 10.1159/000136651 © Journal of Nutrigenetics and Nutrigenomics, 2008, Karger http://content.karger.com/produktedb/produkte.asp?DOI=10.1159/000136651 This Article is brought to you by the Epidemiology and Biostatistics at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Author(s) Susan E. Steck, Temitope O. Keku, Lesley M. Butler, Joseph Galanko, Beri Massa, Robert C. Millikan, and Robert S. Sandler This article is available at Scholar Commons: https://scholarcommons.sc.edu/sph_epidemiology_biostatistics_facpub/303 NIH Public Access Author Manuscript J Nutrigenet Nutrigenomics. Author manuscript; available in PMC 2009 October 7. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Nutrigenet Nutrigenomics.
    [Show full text]
  • Formate Metabolism in Health and Disease
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten Review Formate metabolism in health and disease Matthias Pietzke 1, Johannes Meiser 2, Alexei Vazquez 1,3,* ABSTRACT Background: Formate is a one-carbon molecule at the crossroad between cellular and whole body metabolism, between host and microbiome metabolism, and between nutrition and toxicology. This centrality confers formate with a key role in human physiology and disease that is currently unappreciated. Scope of review: Here we review the scientific literature on formate metabolism, highlighting cellular pathways, whole body metabolism, and interactions with the diet and the gut microbiome. We will discuss the relevance of formate metabolism in the context of embryonic development, cancer, obesity, immunometabolism, and neurodegeneration. Major conclusions: We will conclude with an outlook of some open questions bringing formate metabolism into the spotlight. Ó 2019 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Keywords Formate metabolism; One-carbon-metabolism; Cancer; Immune system; Neurodegeneration; Obesity 1. INTRODUCTION product of anaerobic fermentation of some bacteria species popu- lating the gut microbiome [7]. The formate generated by the gut Formic acid (HCOOH) was first isolated from distillation of ant bodies, bacteria can enter the circulation, adding to the endogenous pool of and it was subsequently named using the Latin word for ant, formica formate or being used as substrate for the growth of other bacteria [1]. Ants and other insects accumulate formic acid in secretory with aerobic metabolism [8].
    [Show full text]
  • Genome, Proteome and Physiology of the Thermophilic Bacterium Anoxybacillus Flavithermus
    Open Access Research2008SawetVolume al. 9, Issue 11, Article R161 Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1 Jimmy H Saw¤*‡‡, Bruce W Mountain¤†, Lu Feng¤‡§¶, Marina V Omelchenko¤¥, Shaobin Hou¤#, Jennifer A Saito*, Matthew B Stott†, Dan Li‡§¶, Guang Zhao‡§¶, Junli Wu‡§¶, Michael Y Galperin¥, Eugene V Koonin¥, Kira S Makarova¥, Yuri I Wolf¥, Daniel J Rigden**, Peter F Dunfield††, Lei Wang‡§¶ and Maqsudul Alam*# Addresses: *Department of Microbiology, University of Hawai'i, 2538 The Mall, Honolulu, HI 96822, USA. †GNS Science, Extremophile Research Group, 3352 Taupo, New Zealand. ‡TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China. §Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457, PR China. ¶Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, PR China. ¥National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA. #Advance Studies in Genomics, Proteomics and Bioinformatics, College of Natural Sciences, University of Hawai'i, Honolulu, HI 96822, USA. **School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK. ††Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada. ‡‡Current address: Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. ¤ These authors contributed equally to this work. Correspondence: Lei Wang. Email: [email protected]. Maqsudul Alam. Email: [email protected] Published: 17 November 2008 Received: 12 June 2008 Revised: 8 October 2008 Genome Biology 2008, 9:R161 (doi:10.1186/gb-2008-9-11-r161) Accepted: 17 November 2008 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2008/9/11/R161 © 2008 Saw et al.; licensee BioMed Central Ltd.
    [Show full text]
  • Betaine, CNS, Amix-C
    GHS SAFETY DATA SHEET AMERICAN CRYSTAL SUGAR COMPANY Prepared to U.S. OSHA Standards in compliance with the GHS system (29 CFR 1910.1200(g), rev. 2012 Section Identification CONCENTRATED BETAINE 1 SOLUTION, Used for supplemental BETAINE LIQUID SOLUTION, dietary nitrogen in livestock AMIX –C, (not for human CNS (CROSS-OVER NON- consumption) SUGARS) Manufacturer's Name No restrictions on use American Crystal Sugar Co. rd 101 North 3 Street Preparation Date: Moorhead, MN 56560 14 Jan 2015 Emergency Telephone Number: Revised: 20 June 2018 (218) 236-4400 Telephone Number for Information (218) 236-4324 Section Hazard(s) Identification No Hazardous Components 2 CNS is non-hazardous under normal conditions of use, storage, and handling. CNS is not considered combustible though in a dried state the organic components may provide secondary fuel for an existing fire. Section Composition / No Hazardous Components; it is a concentrated mixture of aqueous 3 Information on soluble material (composition may vary: betaine and other amino Ingredients acids) from the processing of the sugar beet root (Beta vulgaris) from which virtually all the sucrose and salts have been removed. Betaine (glycine betaine; Oxyneurine; N,N,N-trimethylglycine; Carboxymethyl)trimethylammonium inner salt): 30 – 40% anhydrous monohydrate C5H11NO2 C5H11NO2 · H2O Molecular Weight : 117.15 g/mol Molecular Weight : 135.16 g/mol CAS-No. : 107-43-7 CAS-No. : 590-47-6 EC-No. : 203-490-6 EC-No. : 203-490-6 Water, 30 – 45% CAS: 7732-18-5 Miscellaneous Organics, including other Amino Acids ~25% Cross-over Non-sugars (CNS)—American Crystal Sugar Company— 21 Jan 2015 Page 1 of 4 pages Section First Aid Measures SKIN: Redness and/or blistering of skin.
    [Show full text]
  • Folate Deficiency Was Associated with Increased Alanine Aminotransferase and Glutamyl Transpeptidase Concentrations in a Chine
    J Nutr Sci Vitaminol, 62, 265–271, 2016 Folate Deficiency Was Associated with Increased Alanine Aminotransferase and Glutamyl Transpeptidase Concentrations in a Chinese Hypertensive Population: A Cross-Sectional Study Wen-Xing LI1,2, Wei LI3, Jia-Qian CAO4,5, Haiyue YAN3, Yuanyuan SUN3, Hong ZHANG3, Qiang ZHANG3, Ling TANG3, Manman WANG3, Jing-Fei HUANG2,6,7 and Dahai LIU3,* 1 Institute of Health Sciences, Anhui University, Hefei 230601, Anhui, P. R. China 2 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, P. R. China 3 Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, P. R. China 4 CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China 5 University of Chinese Academy of Sciences, Beijing 100049, P. R. China 6 KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, P. R. China 7 Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming 650223, Yunnan, P. R. China (Received February 29, 2016) Summary Alanine aminotransferase (ALT), aspartate transaminase (AST), and glutamyl transpeptidase (GGT) were three key enzymes in the hepatic metabolism. This study aimed to investigate the effect of homocysteine (Hcy) metabolism gene polymorphisms and serum Hcy and folate level on the hepatic functions in a Chinese hypertensive population. A repre- sentative sample with 480 subjects aged 28–75 was enrolled in 2005.9–2005.12 from six hospitals in different Chinese regions.
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]