Folate Deficiency Was Associated with Increased Alanine Aminotransferase and Glutamyl Transpeptidase Concentrations in a Chine

Total Page:16

File Type:pdf, Size:1020Kb

Folate Deficiency Was Associated with Increased Alanine Aminotransferase and Glutamyl Transpeptidase Concentrations in a Chine J Nutr Sci Vitaminol, 62, 265–271, 2016 Folate Deficiency Was Associated with Increased Alanine Aminotransferase and Glutamyl Transpeptidase Concentrations in a Chinese Hypertensive Population: A Cross-Sectional Study Wen-Xing LI1,2, Wei LI3, Jia-Qian CAO4,5, Haiyue YAN3, Yuanyuan SUN3, Hong ZHANG3, Qiang ZHANG3, Ling TANG3, Manman WANG3, Jing-Fei HUANG2,6,7 and Dahai LIU3,* 1 Institute of Health Sciences, Anhui University, Hefei 230601, Anhui, P. R. China 2 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, P. R. China 3 Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, P. R. China 4 CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China 5 University of Chinese Academy of Sciences, Beijing 100049, P. R. China 6 KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, P. R. China 7 Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming 650223, Yunnan, P. R. China (Received February 29, 2016) Summary Alanine aminotransferase (ALT), aspartate transaminase (AST), and glutamyl transpeptidase (GGT) were three key enzymes in the hepatic metabolism. This study aimed to investigate the effect of homocysteine (Hcy) metabolism gene polymorphisms and serum Hcy and folate level on the hepatic functions in a Chinese hypertensive population. A repre- sentative sample with 480 subjects aged 28–75 was enrolled in 2005.9–2005.12 from six hospitals in different Chinese regions. Serum ALT, AST and GGT were measured by using an automatic biochemistry analyzer. Serum Hcy was measured by high-performance liq- uid chromatography, and serum folate was measured by chemiluminescent immunoassay. Known genotypes were detected by PCR-RFLP methods. The results showed that the MTHFR C677T mutation was related a decreased serum AST level (r520.11, p50.026), whereas the MTHFR A1298C mutation elevated serum AST level (r50.11, p50.032). Furthermore, multiple regression analysis showed that folate deficiency was associated with higher serum ALT (b (SE): 0.13 (0.06), p50.031) and GGT level (b (SE): 0.18 (0.07), p50.011). However, serum Hcy level may not affect the hepatic functions. Our data suggested that hepatic func- tions were affected by MTHFR gene polymorphisms and serum folate level. Further studies are needed to confirm these correlations in a larger population. Key Words folate deficiency, MTHFR gene polymorphisms, alanine aminotransferase, aspartate transaminase, glutamyl transpeptidase Fatty liver disease (FLD), including primary non-alco- closely related to many important biochemical processes holic fatty liver disease (NAFLD) and the severe form, in vivo. A mouse experiment suggested that maternal non-alcoholic steatohepatitis (NASH) is the most com- low folate and selenium diet altered liver gene expression mon form of liver disease and is increasing through- patterns in the offspring after weaning (5). And a previ- out the world (1). In Western adults, the prevalence of ous study showed that folate supplementation reduced NAFLD assessed by ultrasound is 20–30% and the prev- the serum ALT level in high baseline ALT (.40 IU/L) alence of NASH is 3–16% (2). Alanine aminotransfer- individuals (6). In addition, a higher serum homocys- ase (ALT), aspartate transaminase (AST) and glutamyl teine (Hcy) level also showed strongly correlation with transpeptidase (GGT) are three key enzymes in the liver liver disease (7, 8). metabolism. Studies showed that high levels of ALT, AST Methylenetetrahydrofolate reductase (MTHFR), and GGT were associated with liver disease (3). Further- methionine synthase (MTR) and methionine synthase more, serum ALT and AST levels showed relevance with reductase (MTRR) are three key regulatory enzymes in the histopathological changes in liver biopsies of hepa- the folate and Hcy metabolisms (9). MTHFR catalyses titis C patients (4). In one carbon metabolism, folate is the reduction of 5,10-methylenetetrahydrofolate (5,10- MTHF) to 5-methyltetrahydrofolate (5-MTHF) and * To whom correspondence should be addressed. 5-MTHF is a cofactor for Hcy methylation to methionine E-mail: [email protected] when catalyzed by the MTR-cobalamin complex (10, 265 266 LI W-X et al. 11). Over time, the cobalamin(I) cofactor of MTR is oxi- Table 1. Clinical and epidemiologic characteristics of dized to form cobalamin(II), leading to inactivation of the study population. MTR. Thus, MTRR is required for reversion of oxidized cobalamin(II) to CH3-cobalamin(III) to maintain the Characteristic n Value/Percentage activity of MTR (12). MTHFR C677T and A1298C are two common muta- Age, y 480 56.8610.0 tions in the MTHFR enzyme. A study carried out in Height, cm 480 162.768.1 Weight, kg 480 68.4611.0 Turkey showed both 677C/T and 1298A/C mutations BMI, kg/m2 480 25.863.4 were more common in NAFLD groups compared with SBP, mmHg 480 154.3611.7 the controls (13). However, another study in a Brazil- DBP, mmHg 480 93.368.5 ian population showed that the MTHFR C677T and Folate, nmol/L 479 12.6 (9.7–15.7) A1298C polymorphisms are not genetic risk factors for Hcy, mmol/L 480 13.2 (9.9–15.9) the development of NAFLD whereas higher Hcy level ALT, IU/L 435 22.7 (16.0–32.6) was related the incidence of NAFLD (14). The effect if AST, IU/L 377 24.4 (20.0–31.0) polymorphisms of MTR A2756G and MTRR A66G on GGT, IU/L 412 21.2 (14.0–30.0) the hepatic functions have not been adequately studied. Sex Our previous studies found that the mutations of Male 208 43.3% MTHFR C677T, MTHFR A1298C, MTR A2756G and Female 272 56.7% MTRR A66G jointly elevate the folate deficiency risk Clinical Centers Ha’rbin 60 12.5% (15). Further, the combination effects of genotypes and Shanghai 64 13.3% low folate increased the dyslipidemia risk (16). Based on Shenyang 79 16.5% the metabolism connections between folate and these Beijing 120 25.0% hepatic enzymes, we hypothesized that these four gene Xi’an 78 16.3% polymorphisms in combination with Hcy/folate may Nanjing 79 16.5% affect the hepatic functions. The aim of the present MTHFR C677T study was to investigate the effects of serum folate and CC 118 24.6% Hcy and genotypes on the hepatic functions in Chinese CT 242 50.4% hypertensive patients. TT 120 25.0% MTHFR A1298C MATERIALS AND METHODS AA 332 69.9% AC 127 26.7% This study was conducted using data collected in a CC 16 3.4% previous study (16). This was a multicenter, randomized, MTR A2756G double-blind controlled trial in hypertensive Chinese AA 393 81.9% adults. Details regarding “Study subjects,” “Randomiza- AG 83 17.3% tion and double blinding,” “Data collection procedures,” GG 4 0.8% and “Laboratory tests” have been previously described MTRR A66G (16, 17). In total, 480 patients with mild or moderate AA 155 32.7% hypertension were recruited from six hospitals in differ- AG 240 50.6% GG 79 16.7% ent Chinese regions (Ha’rbin, Shanghai, Shenyang, Bei- jing, Xi’an, and Nanjing) from September to December BMI: body mass index, SBP: systolic blood pressure, DBP: 2005. All six hospitals were certified as clinical phar- diastolic blood pressure, Hcy: homocysteine, ALT: alanine macology centers by the State Food and Drug Adminis- aminotransferase, AST: aspartate transaminase, GGT: tration in China. This study was approved by the Ethics glutamyl transpeptidase, MTHFR: methylenetetrahy- Committee of Peking University First Hospital, Beijing, drofolate reductase, MTR: methionine synthase, MTRR: China. All procedures followed were in accordance with methionine synthase reductase. the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in were 3.5% and 4.2%, respectively (16). Serum folate 2000(5) (18). The purpose and procedures of the study was determined by chemiluminescent immunoassay were carefully explained to all participants, and written using a Beckman Coulter ACCESS Immunoassay System informed consent was obtained from each participant. (Beckman-Coulter Canada Inc., Mississauga, Canada). Demographic and clinical information was obtained The intra- and inter-assay coefficients of variation were at baseline. Blood samples collected at baseline were 2.3% and 3.7%, respectively (16). The polymerase chain used for the measurement of serum Hcy, folate, ALT, reaction-restriction fragment length polymorphism AST and GGT levels. All these tests were performed in (PCR-RFLP) method was applied to detect the MTHFR the six study center laboratories; serum ALT, AST and C677T, MTHFR A1298C, MTR A2756G, and MTRR GGT were measured by using an automatic biochem- A66G genotypes. Each genotyping reaction mixture istry analyzer (17). Hcy concentration was determined contained 4 ng dried DNA, 0.08 mL 40 assay locus-spe- in duplicate by high-performance liquid chromatogra- cific probe, and 2.0 mL TaqMan universal polymerase phy. The intra- and inter-assay coefficients of variation chain reaction (PCR) master mix in a final volume of Low Folate Elevate Serum ALT and GGT 267 Table 2. Associations of gene polymorphisms and measure of hepatic function. Genotypes ALT AST GGT MTHFR C677T CC 23.0 (17.8–32.0) 25.6 (21.3–31.0) 20.4 (14.0–28.8) CT 23.1 (16.0–33.4) 24.6 (20.0–31.0) 21.9 (15.0–30.8) TT 21.7 (16.0–32.8) 22.8 (18.0–29.3) 20.9 (13.0–30.7) r 20.04 20.11
Recommended publications
  • Methionine Synthase Supports Tumor Tetrahydrofolate Pools
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284521; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Methionine synthase supports tumor tetrahydrofolate pools Joshua Z. Wang1,2,#, Jonathan M. Ghergurovich1,3,#, Lifeng Yang1,2, and Joshua D. Rabinowitz1,2,* 1 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA 2 Department of Chemistry, Princeton University, Princeton, New Jersey, USA 3 Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA # These authors contributed equally to this work. *Corresponding author: Joshua Rabinowitz Department of Chemistry and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Rd, Princeton, NJ 08544, USA Phone: (609) 258-8985; e-mail: [email protected] Conflict of Interest Disclosure: J.D.R. is a paid advisor and stockholder in Kadmon Pharmaceuticals, L.E.A.F. Pharmaceuticals, and Rafael Pharmaceuticals; a paid consultant of Pfizer; a founder, director, and stockholder of Farber Partners and Serien Therapeutics. JDR and JMG are inventors of patents in the area of folate metabolism held by Princeton University. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284521; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Mammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl- THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR).
    [Show full text]
  • Defining Sources of Nutrient Limitation for Tumors By
    Defining sources of nutrient limitation for tumors by Mark Robert Sullivan B.S. Molecular Biology and Chemistry University of Pittsburgh (2013) Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2019 © 2019 Mark R. Sullivan. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author.......................................................................................................................... Department of Biology April 30, 2019 Certified by ...................................................................................................................................... Matthew G. Vander Heiden Associate Professor of Biology Thesis Supervisor Accepted by...................................................................................................................................... Amy E. Keating Professor of Biology Co-Director, Biology Graduate Committee 1 2 Defining sources of nutrient limitation for tumors by Mark Robert Sullivan Submitted to the Department of Biology on April 30, 2019 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology ABSTRACT Tumor growth requires that cancer cells accumulate sufficient biomass to grow and divide. To accomplish this, tumor cells must acquire
    [Show full text]
  • The Relationship Between Dietary Patterns and Depression Mediated
    Khosravi et al. BMC Psychiatry (2020) 20:63 https://doi.org/10.1186/s12888-020-2455-2 RESEARCH ARTICLE Open Access The relationship between dietary patterns and depression mediated by serum levels of Folate and vitamin B12 Maryam Khosravi1,2, Gity Sotoudeh3*, Maryam Amini4*, Firoozeh Raisi5, Anahita Mansoori6 and Mahdieh Hosseinzadeh7 Abstract Background: Major depressive disorder is among main worldwide causes of disability. The low medication compliance rates in depressed patients as well as the high recurrence rate of the disease can bring up the nutrition-related factors as a potential preventive or treatment agent for depression. The aim of this study was to investigate the association between dietary patterns and depression via the intermediary role of the serum folate and vitamin B12, total homocysteine, tryptophan, and tryptophan/competing amino acids ratio. Methods: This was an individually matched case-control study in which 110 patients with depression and 220 healthy individuals, who completed a semi-quantitative food frequency questionnaire were recruited. We selected the depressed patients from three districts in Tehran through non-probable convenience sampling from which healthy individuals were selected, as well. The samples selection and data collection were performed during October 2012 to June 2013. In addition, to measure the serum biomarkers 43 patients with depression and 43 healthy people were randomly selected from the study population. To diagnose depression the criteria of Diagnostic and StatisticalManualofMentalDisorders, fourth edition, were utilized. Results: The findings suggest that the healthy dietary pattern was significantly associated with a reduced odds of depression (OR: 0.75; 95% CI: 0.61–0.93) whereas the unhealthy dietary pattern increased it (OR: 1.382, CI: 1.116–1.71).
    [Show full text]
  • High Plasma Homocysteine and Low Serum Folate Levels Induced by Antiepileptic Drugs in Down Syndrome
    High Plasma Homocysteine and Low Serum Folate Levels induced by Antiepileptic drugs in down Syndrome Volume 18, Number 2, 2012 Abstract IJDS Volume 1, Number 1 Clinical and epidemiological studies suggested an association between hyper-homocysteinemia (Hyper-Hcy) and cerebro- vascular disease. Experimental studies showed potential pro- Authors convulsant activity of Hcy, with several drugs commonly used to treat patients affected by neurological disorders also able to Antonio Siniscalchi,1 modify plasma Hcy levels. We assessed the effect of long-term Giovambattista De Sarro,2 AED treatment on plasma Hcy levels in patients with Down Simona Loizzo,3 syndrome (DS) and epilepsy. We also evaluated the relation- Luca Gallelli2 ship between the plasma Hcy levels, and folic acid or vitamin B12. We enrolled 15 patients in the Down syndrome with epi- 1 Department of lepsy group (DSEp, 12 men and 3 women, mean age 22 ± 12.5 Neuroscience, Neurology years old) and 15 patients in the Down syndrome without Division, “Annunziata” epilepsy group (DSControls, 12 men and 3 women, mean age Hospital, 20 ± 13.7 years old). In the DSEp group the most common Cosenza, Italy form of epilepsy was simple partial epilepsy, while the most common AED used was valproic acid. Plasma Hcy levels were 2 Department of Health Science, School of significantly higher (P < 0.01) in the DSEp group compared Medicine, University with the DSControl group. Significant differences (P < 0.01) of Catanzaro, Clinical between DSEp and DSControls were also observed in serum Pharmacology Unit, concentrations of folic acid, but not in serum levels of vitamin Mater Domini University B12.
    [Show full text]
  • Insulin Resistance and Endothelial Function Are Improved After Folate
    European Journal of Endocrinology (2004) 151 483–489 ISSN 0804-4643 CLINICAL STUDY Insulin resistance and endothelial function are improved after folate and vitamin B12 therapy in patients with metabolic syndrome: relationship between homocysteine levels and hyperinsulinemia Emanuela Setola, Lucilla Domenica Monti1, Elena Galluccio1, Altin Palloshi2, Gabriele Fragasso2, Rita Paroni3, Fulvio Magni4, Emilia Paola Sandoli1, Pietro Lucotti, Sabrina Costa1, Isabella Fermo3, Marzia Galli-Kienle4, Anna Origgi, Alberto Margonato2 and PierMarco Piatti Cardiovascular and Metabolic Rehabilitation Unit, Rehabilitation and Functional Reeducation Division, 1Laboratory L20, Core Laboratory, Diabetology, Endocrinology, Metabolic Disease Unit, 2Clinical Cardiology Unit, Cardiothoracic and Vascular Department, 3Department of Laboratory Medicine, Scientific Institute H. San Raffaele and 4University of Milano-Bicocca, Faculty of Medicine, Milan, Italy (Correspondence should be addressed to PM Piatti, Cardiovascular and Metabolic Rehabilitation Unit, Via Olgettina 60, 20132 Milano, Italy; Email: [email protected]) Abstract Objective: The purpose of this study was (a) to study whether a folate and vitamin B12 treatment, aimed at decreasing homocysteine levels, might ameliorate insulin resistance and endothelial dys- function in patients with metabolic syndrome according to the National Cholesterol Education Pro- gram–Adult Treatment Panel-III criteria and (b) to evaluate whether, under these metabolic conditions, there is a relationship between hyperhomocysteinemia and insulin resistance. Design and methods: A double-blind, parallel, identical placebo–drug, randomized study was per- formed for 2 months in 50 patients. Patients were randomly allocated to two groups. In group 1, patients were treated with diet plus placebo for 2 months. In group 2, patients were treated with diet plus placebo for 1 month, followed by diet plus folic acid (5 mg/day) plus vitamin B12 (500 mg/day) for another month.
    [Show full text]
  • Homocysteine: a Risk Factor Worth Treating
    Volume 6, No.1 2004 A CONCISE UPDATE OF IMPORTANT ISSUES CONCERNING NATURAL HEALTH INGREDIENTS Thomas G. Guilliams Ph.D. HOMOCYSTEINE: A RISK FACTOR WORTH TREATING As an emerging independent risk factor for cardiovascular disease and other aging diseases such as Alzheimer’s, homocysteine related research has generated a vast amount of literature and sparked a vigorous debate over the past decade. In fact, a comprehensive textbook is now available describing the role of homocysteine in health and disease (3). This review will survey the history of homocysteine research, the rationale for considering homocysteine as a causative agent, rather than just a marker for vascular diseases; and review the intervention trials for lowering homocysteine in patients. Homocysteine is a sulfur amino acid and a normal intermediate lesions in these individuals and he further postulated that in methionine metabolism. When excess homocysteine is made and moderately elevated homocysteine due to heterozygous mutations not readily converted into methionine or cysteine, it is excreted out of in homocysteine related genes or poor vitamin status would also lead the tightly regulated cell environment into the blood. It is the role of to increased risk of cardiovascular disease (4). the liver and kidney to remove excess homocysteine from the blood. By the early 1990’s, elevated homocysteine was being In many individuals with in-born errors of homocysteine considered an independent risk factor for cardiovascular disease metabolism, kidney or liver disease, nutrient deficiencies or (along with cholesterol and other lipid markers, age, gender, smoking concomitant ingestion of certain pharmaceuticals, homocysteine status, obesity, hypertension and diabetes).
    [Show full text]
  • Involvements of Hyperhomocysteinemia in Neurological Disorders
    H OH metabolites OH Review Involvements of Hyperhomocysteinemia in Neurological Disorders Marika Cordaro 1,† , Rosalba Siracusa 2,† , Roberta Fusco 2 , Salvatore Cuzzocrea 2,3,* , Rosanna Di Paola 2,* and Daniela Impellizzeri 2 1 Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; [email protected] 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; [email protected] (R.S.); [email protected] (R.F.); [email protected] (D.I.) 3 Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA * Correspondence: [email protected] (S.C.); [email protected] (R.D.P.); Tel.: +39-090-6765208 (S.C. & R.D.P.) † The authors equally contributed to the review. Abstract: Homocysteine (HCY), a physiological amino acid formed when proteins break down, leads to a pathological condition called hyperhomocysteinemia (HHCY), when it is over a definite limit. It is well known that an increase in HCY levels in blood, can contribute to arterial damage and several cardiovascular disease, but the knowledge about the relationship between HCY and brain disorders is very poor. Recent studies demonstrated that an alteration in HCY metabolism or a deficiency in folate or vitamin B12 can cause altered methylation and/or redox potentials, that leads to a modification on calcium influx in cells, or into an accumulation in amyloid and/or tau protein involving a cascade of events that culminate in apoptosis, and, in the worst conditions, neuronal death. The present review will thus summarize how much is known about the possible role of HHCY in neurodegenerative disease.
    [Show full text]
  • Recycling of Vitamin B12 and NAD+ Within the Pdu Microcompartment of Salmonella Enterica Shouqiang Cheng Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Recycling of vitamin B12 and NAD+ within the Pdu microcompartment of Salmonella enterica Shouqiang Cheng Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Cheng, Shouqiang, "Recycling of vitamin B12 and NAD+ within the Pdu microcompartment of Salmonella enterica" (2010). Graduate Theses and Dissertations. 11713. https://lib.dr.iastate.edu/etd/11713 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. + Recycling of vitamin B12 and NAD within the Pdu microcompartment of Salmonella enterica by Shouqiang Cheng A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Biochemistry Program of Study Committee: Thomas A. Bobik, Major Professor Alan DiSpirito Basil Nikolau Reuben Peters Gregory J. Phillips Iowa State University Ames, Iowa 2010 Copyright © Shouqiang Cheng, 2010. All rights reserved. ii Table of contents Abstract.............................................................................................................................
    [Show full text]
  • S-Adenosylmethionine Deficiency and Brain Accumulation of S-Adenosylhomocysteine in Thioacetamide-Induced Acute Liver Failure
    nutrients Article S-Adenosylmethionine Deficiency and Brain Accumulation of S-Adenosylhomocysteine in Thioacetamide-Induced Acute Liver Failure Anna Maria Czarnecka , Wojciech Hilgier and Magdalena Zieli ´nska* Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawi´nskiego Street, 02-106 Warsaw, Poland; [email protected] (A.M.C.); [email protected] (W.H.) * Correspondence: [email protected]; Tel.: +48-22-6086470; Fax: +48-22-6086442 Received: 11 June 2020; Accepted: 15 July 2020; Published: 17 July 2020 Abstract: Background: Acute liver failure (ALF) impairs cerebral function and induces hepatic encephalopathy (HE) due to the accumulation of neurotoxic and neuroactive substances in the brain. Cerebral oxidative stress (OS), under control of the glutathione-based defense system, contributes to the HE pathogenesis. Glutathione synthesis is regulated by cysteine synthesized from homocysteine via the transsulfuration pathway present in the brain. The transsulfuration-transmethylation interdependence is controlled by a methyl group donor, S-adenosylmethionine (AdoMet) conversion to S-adenosylhomocysteine (AdoHcy), whose removal by subsequent hydrolysis to homocysteine counteract AdoHcy accumulation-induced OS and excitotoxicity. Methods: Rats received three consecutive intraperitoneal injections of thioacetamide (TAA) at 24 h intervals. We measured AdoMet and AdoHcy concentrations by HPLC-FD, glutathione (GSH/GSSG) ratio (Quantification kit). Results: AdoMet/AdoHcy ratio was reduced in the brain but not in the liver. The total glutathione level and GSH/GSSG ratio, decreased in TAA rats, were restored by AdoMet treatment. Conclusion: Data indicate that disturbance of redox homeostasis caused by AdoHcy in the TAA rat brain may represent a deleterious mechanism of brain damage in HE.
    [Show full text]
  • Association of Methionine to Homocysteine Status with Brain Magnetic Resonance Imaging Measures and Risk of Dementia
    Research JAMA Psychiatry | Original Investigation Association of Methionine to Homocysteine Status With Brain Magnetic Resonance Imaging Measures and Risk of Dementia Babak Hooshmand, MD, PhD, MPH; Helga Refsum, MD, PhD; A. David Smith, DPhil; Grégoria Kalpouzos, PhD; Francesca Mangialasche, MD, PhD; Christine A. F. von Arnim, MD; Ingemar Kåreholt, PhD; Miia Kivipelto, MD, PhD; Laura Fratiglioni, MD, PhD Supplemental content IMPORTANCE Impairment of methylation status (ie, methionine to homocysteine ratio) may be a modifiable risk factor for structural brain changes and incident dementia. OBJECTIVE To investigate the association of serum markers of methylation status and sulfur amino acids with risk of incident dementia, Alzheimer disease (AD), and the rate of total brain tissue volume loss during 6 years. DESIGN, SETTING, AND PARTICIPANTS This population-based longitudinal study was performed from March 21, 2001, to October 10, 2010, in a sample of 2570 individuals aged 60 to 102 years from the Swedish Study on Aging and Care in Kungsholmen who were dementia free at baseline and underwent comprehensive examinations and structural brain magnetic resonance imaging (MRI) on 2 to 3 occasions during 6 years. Data analysis was performed from March 1, 2018, to October 1, 2018. MAIN OUTCOMES AND MEASURES Incident dementia, AD, and the rate of total brain volume loss. RESULTS This study included 2570 individuals (mean [SD] age, 73.1 [10.4] years; 1331 [56.5%] female). The methionine to homocysteine ratio was higher in individuals who consumed vitamin supplements (median, 1.9; interquartile range [IQR], 1.5–2.6) compared with those who did not (median, 1.8; IQR, 1.3–2.3; P < .001) and increased per each quartile increase of vitamin B12 or folate.
    [Show full text]
  • Blood Levels of Homocysteine and Increased Risks of Cardiovascular Disease Causal Or Casual?
    REVIEW ARTICLE Blood Levels of Homocysteine and Increased Risks of Cardiovascular Disease Causal or Casual? William G. Christen, ScD; Umed A. Ajani, MBBS; Robert J. Glynn, ScD; Charles H. Hennekens, MD Background: Accumulating data from epidemiologi- load) and/or a greater frequency of elevated homocyste- cal studies suggest that individuals with elevated blood ine level in persons with cardiovascular disease as com- levels of homocysteine have increased risks of cardio- pared with persons without cardiovascular disease. Re- vascular disease. We reviewed the currently available evi- sults of most prospective studies, however, indicated dence of an association between homocysteine and car- smaller or no association. The few prospective studies diovascular disease and examined whether the strength that reported a positive association between homocys- of the evidence varies according to study design. teine level and risks of cardiovascular disease included patients with preexisting vascular disease. Methods: We used a computerized MEDLINE litera- ture search, 1966 through September 1998, to identify Conclusions: In contrast to cross-sectional and case- all epidemiological studies that examined the relation- control studies, results of prospective studies indicated ship of homocysteine level with risks of coronary heart less or no predictive ability for plasma homocysteine in or cerebrovascular disease. Two measures of plasma ho- cardiovascular disease. Instead, elevated homocysteine mocysteine level and its association with risk of cardio- level may be an acute-phase reactant that is predomi- vascular disease were extracted: mean homocysteine level nantly a marker of atherogenesis, or a consequence of in cases and controls, and relative risk of cardiovascular other factors more closely linked to risks of cardiovas- disease for elevated homocysteine level.
    [Show full text]
  • Melatonin As a Reducer of Neuro- and Vasculotoxic Oxidative Stress Induced by Homocysteine
    antioxidants Review Melatonin as a Reducer of Neuro- and Vasculotoxic Oxidative Stress Induced by Homocysteine Kamil Karolczak * and Cezary Watala Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland; [email protected] * Correspondence: [email protected] Abstract: The antioxidant properties of melatonin can be successfully used to reduce the effects of oxidative stress caused by homocysteine. The beneficial actions of melatonin are mainly due to its ability to inhibit the generation of the hydroxyl radical during the oxidation of homocysteine. Melatonin protects endothelial cells, neurons, and glia against the action of oxygen radicals generated by homocysteine and prevents the structural changes in cells that lead to impaired contractility of blood vessels and neuronal degeneration. It can be, therefore, assumed that the results obtained in experiments performed mainly in the in vitro models and occasionally in animal models may clear the way to clinical applications of melatonin in patients with hyperhomocysteinemia, who exhibit a higher risk of developing neurodegenerative diseases (e.g., Parkinson’s disease or Alzheimer’s disease) and cardiovascular diseases of atherothrombotic etiology. However, the results that have been obtained so far are scarce and have seldom been performed on advanced in vivo models. All findings predominately originate from the use of in vitro models and the scarcity of clinical evidence is huge. Thus, this mini-review should be considered as a summary of the outcomes of the initial research in the field concerning the use of melatonin as a possibly efficient attenuator of oxidative Citation: Karolczak, K.; Watala, C.
    [Show full text]