TREND-3 Final Report
Total Page:16
File Type:pdf, Size:1020Kb
TREND-3 Radiation Environments of Astronomy Missions and LEO Missions Final Report ESTEC Contracts1 No. 10725/94/NL/JG(SC) and No. 11711/95/NL/JG(SC) WO-3 Authors BIRA/IASB J. Lemaire (Project Manager) D. Heynderickx, M. Kruglanski MSSL A.D. Johnstone (MSSL Coordinator) D.J. Rodgers, S. Szita, G. Jones MPAe E. Keppler (MPAe Coordinator) R. Friedel, G. Loidl August 1998 1ESA Technical Management: E.J. Daly (WMA) APPENDIX 4 ESA STUDY CONTRACT REPORT No ESA Study Contract Report will be accepted unless this sheet is inserted at the beginning of each volume of the Report. ESA CONTRACT NO: SUBJECT: Radiation Environments of Astronomy NAME OF CONTRACTOR: 10725/94/NL/JG, Missions and LEO Missions BIRA/IASB, MSSL, MPAe WO-3 to 11711/95/NL/JG ESACR()No: STAR CODE No. of Volumes: 1 CONTRACTOR’S REFERENCE This is Volume No: 1 ABSTRACT: The contract work presented in this Final Report is a follow-up of the TREND-2 study (ESA/ESTEC TRP Contract No. 9828/92/NL/FM). A number of new radiation belt models have been developed based on data from the following satellite experiments: AZUR/EI-88, SAMPEX/PET, UARS/PEM, CRRES/MEA, and ISEE/WIM. For each ex- periment, the mission and instrument characteristics and the data base formats have been described in detail in the Technical Notes of the project, and are summarised in this Final Report. The data binning procedures and the formats and limitations of the new models are described as well. The models have been intercompared where applicable, and have been compared to the standard NASA models AP-8 and AE-8. All new models have been implemented in the software package UNIRAD. Besides the models developed in the framework of TREND-3, the ESA-SEE1 (Vampola 1996) model and the CRRESPRO (Meffert & Gussenhoven 1994) and CRRESELE (Brautigam & Bell 1995) models have also been adapted to and integrated in UNIRAD. A large effort has been devoted to the development of a comprehensive Fortran subroutine library, called L UNILIB, with the following functionalities: calculation of magnetic coordinates (e.g. B , )andadia- batic invariants, coordinate transformations, field line and drift shell tracing, and averages of the atmo- spheric and ionospheric density over drift shells. The library is extensively documented on the World- Wide Web. An extensive study has been made of the anisotropy of the low altitude trapped proton flux. After a review of the literature, one of the most commonly used models has been implemented in UNIRAD, together with an improved version. In addition, a method has been developed to render the anisotropy effects in terms of a natural coordinate system attached to the magnetic field. The method has been validated with the SAMPEX/PET data base. Appropriate analytical functions have been found to fit the pitch angle distributions measured by CR- RES/MEA. Finally, a new, corrected, Meteosat-3/SEM-2 data base has been produced. The work described in this report was done under ESA contract. Responsibility for the contents resides in the author or organisation that prepared it. Names of authors: J. Lemaire, D. Heynderickx, A.D. Johnstone, E. Keppler, M. Kruglanski, D.J. Rodgers, G. Jones, S. Szita, R. Friedel, G. Loidl NAME OF ESA STUDY MANAGER ESA BUDGET HEADING E.J. Daly DIV: WMA DIRECTORATE Sections to be completed by ESA Information to be provided by ESA Study Manager Contents List of symbols xix List of acronyms xxi Preface xxv Work performed by BIRA/IASB ............................ xxv Work performed by MSSL . ............................xxvi Work performed by MPAe . ............................xxvii Acknowledgments xxix 1 General overview and results 1 1.1ImprovementsofUNIRAD............................ 1 1.1.1 Newtrappedparticlemodels....................... 3 1.1.2 Directional flux modules . ..................... 3 1.1.3 UNILIB Library . ............................ 3 1.2Anisotropyoftrappedprotonfluxes....................... 4 1.2.1 Conversionofomnidirectionaltounidirectionalfluxes......... 4 1.2.2 Generalisedanisotropymodel...................... 4 1.3 AZUR/EI-88 Data base and radiation belt model . .............. 5 1.4SAMPEX/PETDatabaseandradiationbeltmodel............... 5 1.5UARS/PEMDatabaseandradiationbeltmodel................. 5 1.6 Comparisons of the new trapped proton models . .............. 6 1.7ISEE/WAPSDatabaseandradiationbeltmodel................. 6 1.8 CRRES/MEA Data base and radiation belt model . .............. 7 1.9 Radiation losses and particle injection studies . .............. 7 1.10Meteosat/SEM-2Database............................ 8 i ii CONTENTS 2 UNIRAD Improvements and subroutine library 11 2.1 Implementation of new trapped particle models in UNIRAD ........... 11 2.1.1 The UNIRAD programsuite....................... 11 2.1.2 TheTREPprogram............................ 13 2.1.3 Newtrappedparticlemodels....................... 14 2.1.4 TheESA-SEE1model.......................... 15 2.1.5 The CRRESPRO and CRRESELE models . .............. 15 2.1.5.1 The CRRESPRO model . .............. 16 2.1.5.1.1 ThePROTELinstrument.............. 16 2.1.5.1.2 Protonfluxmodels................. 17 2.1.5.2 The CRRESELE model . .............. 18 2.1.5.2.1 The HEEF instrument . .............. 18 2.1.5.2.2 Electronfluxmodels................ 19 2.1.6 Structureofthemodeldatafiles..................... 19 2.1.7 Interpolationinfluxmaps........................ 20 2.1.8 Conversiontoomnidirectionalfluxes.................. 21 2.1.9 ModificationstoTREP.......................... 22 2.2 The UNIRAD library . ............................ 23 2.2.1 Portability . ............................ 23 2.2.2 Sources . ............................ 23 2.2.3 Functionality of the library . ..................... 24 2.2.4 Conventions used in the UNIRAD library . .............. 24 2.2.4.1 Units.............................. 24 2.2.4.2 Coordinate systems . ..................... 25 2.2.4.3 Component identifiers ..................... 25 2.2.4.3.1 Errortrapping.................... 26 2.2.5 Library documentation . ..................... 26 2.2.6 Installationandusage........................... 26 2.2.6.1 Initialization . ..................... 27 2.2.6.2 Main subroutines . ..................... 27 2.2.7 Models included in the library . ..................... 28 2.2.7.1 Magneticfieldmodels..................... 28 2.2.7.2 Atmospheric models . ..................... 29 2.2.7.3 Collisional cross section models . .............. 30 2.2.8 Magneticdriftshell............................ 30 2.2.8.1 Field line tracing . ..................... 30 CONTENTS iii 2.2.8.2 Drift shell tracing . ..................... 31 2.2.9 Content of the library . ..................... 34 3 Proton anisotropy 35 3.1 Introduction . ................................... 35 3.2Conventionaltrappedprotonanisotropymodels................. 36 3.2.1 Notations................................. 36 3.2.1.1 Unidirectionalflux....................... 38 3.2.2 Pitch-angledistribution.......................... 38 3.2.2.1 Heckman-Nakanopitch-angledistribution.......... 39 3.2.2.2 Badhwar-Konradipitch-angledistribution.......... 40 3.2.2.3 Comparison between Heckman-Nakano and Badhwar-Kon- radidistributions........................ 41 3.2.3 Lenchek-SingerEast-Westasymmetrymodel.............. 42 3.2.4 Combination of the angular distributions . .............. 43 3.2.4.1 Globalnormalisation..................... 44 3.2.4.2 Separate normalisation . .............. 44 3.2.4.3 Liouville’s theorem . ..................... 45 3.2.5 ArmstrongandWattsmodels....................... 46 3.2.6 BK-MINandBK-MAXmodels..................... 49 3.3Generalisedanisotropymodel.......................... 50 3.3.1 Firstorderexpansionoftheperpendicularflux............. 50 3.3.2 Natural coordinate system . ..................... 51 L 3.3.3 Evaluation of ............................. 52 3.3.4 Applicationtofluxmeasurements.................... 55 L 3.3.4.1 Variation of GC ........................ 58 3.3.4.2 Fluxscaleheight........................ 59 3.3.4.3 East-Westasymmetry..................... 60 3.4 Intercomparison of the anisotropy models . .............. 61 3.4.1 Angular distribution predicted by VF1-MIN and BK-MIN models . 61 3.4.1.1 Angular distribution at 450 km altitude . ....... 64 3.4.1.2 Angular distribution at 1,500 km altitude . ....... 65 3.4.2 Comparisonwiththesemi-empiricalmodel............... 65 3.5ANISOsoftwareoverview............................ 69 3.5.1 Attitude interface file . ..................... 70 3.5.1.1 ChangesimplementedintheSAPREprogram........ 71 iv CONTENTS 3.5.2 ANISOprogram............................. 71 3.5.2.1 Programcheck......................... 74 3.5.3 ANISOPOS................................ 76 3.5.3.1 Example............................ 77 4 The AZUR/EI-88 data base and radiation belt model 79 4.1 The AZUR mission . ............................ 79 4.1.1 Missiongoals............................... 79 4.1.2 TheEI-88/1andEI-88/2protontelescopes............... 82 4.1.2.1 Measurementprinciple.................... 82 4.1.2.2 Detector layout and energy range . .............. 84 4.2TheEI-88database................................ 87 4.2.1 Retrievalofthedatasets......................... 88 4.2.2 Cleaningofthedatasets......................... 92 4.2.2.1 Rejectioncriteria....................... 92 4.3 Model construction . ............................ 95 4.3.1 Effective areas of the EI-88 detectors . .............. 96 4.3.2 Selectionofbinsizes........................... 97 4.3.3 Correction for telescope field of view . .............. 97 4.3.4 Finalfluxmap.............................. 104 4.3.5