Characterization of Proanthocyanidin Oligomers of Ephedra Sinica

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Proanthocyanidin Oligomers of Ephedra Sinica molecules Article Characterization of Proanthocyanidin Oligomers of Ephedra sinica Joanna Orejola, Yosuke Matsuo ID , Yoshinori Saito and Takashi Tanaka * ID Department of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; [email protected] (J.O.); [email protected] (Y.M.); [email protected] (Y.S.) * Correspondence: [email protected]; Tel.: +81-95-819-2432 Received: 14 July 2017; Accepted: 3 August 2017; Published: 6 August 2017 Abstract: Ephedra sinica, an important plant in Chinese traditional medicine, contains a complex mixture of proanthocyanidin oligomers as major constituents; however, only the minor components have been chemically characterized. In this study, oligomers with relatively large molecular weights, which form the main body of the proanthocyanidin fractions, were separated by adsorption and size-exclusion chromatography. Acid-catalyzed degradation in the presence of mercaptoethanol or phloroglucinol led to the isolation of 18 fragments, the structures of which were elucidated from their experimental and TDDFT-calculated ECD spectra. The results indicated that (−)-epigallocatechin was the main extension unit, while catechin, the A-type epigallocatechin–gallocatechin dimer, and the A-type epigallocatechin homodimer, were identified as the terminal units. Among the degradation products, thioethers of gallocatechin with 3,4-cis configurations, a B-type prodelphinidin dimer, a prodelphinidin trimer with both A- and B-type linkages, and a prodelphinidin dimer with an α-substituted A-type linkage were new compounds. In addition, a phloroglucinol adduct of an A-type prodelphinidin dimer, a doubly-linked phloroglucinol adduct of epigallocatechin, and a unique product with a flavan-3-ol skeleton generated by the rearrangement of the aromatic rings were also isolated. Keywords: Ephedra sinica; proanthocyanidin; oligomer; thiolysis; phloroglucinolysis; TDDFT; ECD 1. Introduction Ephedra sinica Stapf (Fam. Ephedraceae) is one of the most important plants in traditional medicine, and is used as a diuretic, antipyretic, diaphoretic, and for relieving a cough and asthma [1]. As the crude drug, it has an official monograph in both the Chinese and Japanese Pharmacopoeias, where it is standardized against the major alkaloids, ephedrine and pseudoephedrine [2]. Thus, the main emphasis is conventionally given to its alkaloidal content, despite the fact that this only constitutes about 0.7–0.8% of the whole plant [3,4]. Clearly, the motivation for this is the proven clinical effects of these alkaloids on the respiratory, central nervous, and cardiovascular systems [5]. However, many species of Ephedra have also been shown to contain significant amounts of proanthocyanidins [6]. Recently, many health benefits of foods and medicinal plants have been attributed to proanthocyanidins [7], and some of their biological activities, including hypotensive and vasorelaxant effects [8,9], improvement of the airway microenvironment in asthma [10], and the inhibition of inflammation and remodeling in murine models of chronic asthma [11], are responsible for the aforementioned activities of E. sinica, especially its respiratory and cardiovascular effects. A number of studies have shown that Ephedra spp. also display other biological activities that are not attributed to alkaloids, including antimicrobial [12,13], antioxidant [14], anti-inflammatory [15,16], immunosuppressive [17], antiviral [18], anti-invasive, antiangiogenic, antitumor [19], and cytotoxic [20] Molecules 2017, 22, 1308; doi:10.3390/molecules22081308 www.mdpi.com/journal/molecules Molecules 2017, 22, 1308 2 of 18 Molecules 2017, 22, 1308 2 of 18 cell lines SGC-7901, HepG2, and HeLa [21]. In addition, a decrease in the uremic toxin parameters of cellproperties.rats lineswas reportedlySGC The-7901, dimeric inducedHepG2, proanthocyanidins andby the HeLa administration [21]. ofIn E.addition, sinica of proanthocyanidinshow a decrease cytotoxic in the activity oligomers uremic against toxin of E. theparameters sinica tumor [22,23 cell of]. ratslines wasAs SGC-7901, for reportedly the composition HepG2, induced and of by HeLa the the proanthocyanidins [administration21]. In addition, of a proanthocyanidinof decrease E. sinica in, monomeric the uremic oligomers toxinflavan of parameters-3 E.-ols sinica [12,24 [22,23 of] and rats]. wasdimeric reportedlyAs forproanthocyanidins the composition induced by theofwith the administration A proanthocyanidins-type linkage ofs proanthocyanidin have of beenE. sinica isolated, monomeric oligomers [12,21,25 flavan of–28E.]. sinica- 3The-ols p [[12,2422resence,23].] and of dimericprodelphinidinAs forproanthocyanidins the compositiontrimers and with of tetramers the A proanthocyanidins-type withlinkage A-s andhave ofB beenE.-type sinica isolated linka, monomericges [12,21,25 has also flavan-3-ols–28 ]been. The shownp [resence12,24 ][12] and of. prodelphinidinHowever,dimeric proanthocyanidins these trimersflavan-3 -andols with andtetramers proanthocyanidins A-type with linkages A- and have are B been -minortype isolatedlinka componentsges [12 has,21 , 25alsoof– the28 been]. total The shown polyphenol presence [12] of. However,prodelphinidincontent, and these our trimers flavanpreliminary- and3-ols tetramers andHPLC proanthocyanidins and with TLC A- andanalysis B-type are of linkagestheminor extract components has suggested also been of that shownthe thetotal [ 12main polyphenol]. However, body of contentthethese polyphenols flavan-3-ols, and our preliminarywas and a proanthocyanidinscomplex HPLC mix andture TLC of are analysisoligomers minor of components, thedetected extract as ofsuggested a the broad total thathump polyphenol the onmain the content,body HPLC of thebaselineand polyphenols our and preliminary at the was origin HPLCa complex of the and TLC TLCmix plateture analysis ( Figureof oligomers of 1a the). Thus, extract, detected the suggestedpresent as a study broad that aimed thehump main at characterizingon body the HPLC of the baselinepolyphenolsthese proanthocyanidin and at was the a origin complex oligomersof the mixture TLC byplate of acid oligomers, (Figure-catalyzed 1a detected). Thus, degradation the as present a broad in studythe hump presence aimed on the at of HPLC characterizing nucleophilic baseline theseagents,and at proanthocyanidin thethat origin is, 2-mercaptoethanol of the TLC oligomers plate (Figureor by phloroglucinol. acid1a).-catalyzed Thus, the The degradation present degradation study in aimed theinvolve presence atd characterizing the ofcleavage nucleophilic of these the agents,proanthocyanidininterflavan that bondsis, 2-mercaptoethanol oligomersunder acidic by acid-catalyzedconditions or phloroglucinol., generating degradation The flavan degradation in- the3-ols presence from involve the ofd nucleophilic terminalthe cleavage unitsagents, of andthe interflavanflavanylthat is, 2-mercaptoethanol-4 cations bonds fromunder the oracidic extension phloroglucinol. conditions units, , whichThegenerating degradation were trappeflavan involvedd-3 -byols nucleophilic from the cleavage the terminal agents of the ( interflavanSchemeunits and 1) flavanyl[29]bonds. under-4 cations acidic from conditions, the extension generating units, flavan-3-ols which were from trappe thed terminal by nucleophilic units and agents flavanyl-4 (Scheme cations 1) [29]from. the extension units, which were trapped by nucleophilic agents (Scheme1)[29]. CH-09 [MaxABS (200.0--550.0 nm)] alkaloids CH-09 [MaxABS (200.0--550.0 nm)] alkaloids 400000 proanthocyanidin oligomers proanthocyanidin oligomers 400000 proanthocyanidin oligomers proanthocyanidin oligomers 300000 300000 200000 Intensity[µAU] UV (max abs) (max UV 200000 Intensity[µAU] UV (max abs) (max UV 100000 100000 0 0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 0 10 20 Retention 30 Time [min] 40 50 (min) 0 10 20 30 40 50 (min) 0 0.0 10.010 20.020 30.030 4040.0 50.050 (min)60.0 0 10 20 30 40 50 (min) Retention(a) Time [min] (b) (a) (b) Figure 1. HPLC profiles of 60% EtOH extract of E. sinica (a) and proanthocyanidin oligomer fraction Figure(b). 1. HPLC profiles ofof 60%60% EtOH EtOH extract extract of ofE. E. sinica sinica(a )(a and) and proanthocyanidin proanthocyanidin oligomer oligomer fraction fraction (b). (b). Scheme 1. Reaction mechanism of the acid-catalyzed cleavage of the interflavan bond in the presence Scheme 1. Reaction mechanism of the acid-catalyzed cleavage of the interflavan bond in the presence Schemeof nucleophiles 1. Reaction (Nu). mechanism of the acid-catalyzed cleavage of the interflavan bond in the presence of nucleophiles (Nu). of nucleophiles (Nu). 2. Results and Discussion 2. Results and Discussion 2.1. Composition of the Intact Proanthocyanidin Oligomer 2.1. Composition of the Intact Proanthocyanidin Oligomer The drieddried aerialaerial parts parts of ofE. E. sinica sinicawere were extracted extracted with with aqueous aqueous acetone acetone and fractionatedand fractionated by a series by a The dried aerial parts of E. sinica were extracted with aqueous acetone and fractionated by a seriesof chromatographic of chromatographic separation sepa methods,ration methods, including including size-exclusion size-exclusion chromatography chromatography [30]. The [30 fractions]. The series of chromatographic separation methods, including size-exclusion chromatography [30]. The fcontainingractions containing only oligomeric only oligomeric proanthocyanidins proantho accountedcyanidins foraccount
Recommended publications
  • Proanthocyanidin Metabolism, a Mini Review
    Nutrition and Aging 2 (2014) 111–116 111 DOI 10.3233/NUA-140038 IOS Press Proanthocyanidin Metabolism, a mini review Y.Y. Choy and A.L. Waterhouse∗ Viticulture and Enology, University of California, Davis, CA, USA Abstract. There is emerging evidence suggesting that consumption of beverage and food rich in polyphenol may offer protective effects against various neurodegenerative, cardiovascular diseases and cancers. Proanthocyanidins (PACs) are one of the most abundant polyphenol in human diets, but also one of the least absorbed polyphenol mostly due to their size and structure com- plexity. PACs or condensed tannins are oligomers and polymers of monomeric unit flavan-3-ol (+)-catechin or (−)-epicatechin. To date, the absorption and metabolism of PACs are still remains largely unknown. The aim of this mini review was to highlight the absorption and metabolism of PACs, their effect in the gut and sample preparation for analysis. Ultimately, the potential bioactivities derived from the interaction between PACs metabolites and the gut microbiota warrants further investigation. Keywords: Proanthocyanidins, phenolic acids, metabolism, colon 1. Introduction derived subunits. PACs that consists exclusively of (−)-epicatechin, (+)-catechin units, are known as pro- Polyphenols are among the ubiquitous constituents cyanidins because only cyanidin is released in acid, of foods of plant origins and are widely distributed and comprised the largest class of PACs, while those throughout the plant kingdom. Polyphenols can be with gallocatechin units release delphinidin. The size categorized into different groups such as flavonoids, or molecular weight of PACs can be expressed as phenolic acids, stilbenes and lignans. The flavonoids mean degree of polymerization (mDP).
    [Show full text]
  • Docking Characterization and in Vitro Inhibitory Activity of Flavan-3-Ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2
    ORIGINAL RESEARCH published: 30 November 2020 doi: 10.3389/fpls.2020.601316 Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2 Yue Zhu and De-Yu Xie* Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States We report to use the main protease (Mpro) of SARS-Cov-2 to screen plant flavan-3-ols and proanthocyanidins. Twelve compounds, (–)-afzelechin (AF), (–)-epiafzelechin (EAF), (+)-catechin (CA), (–)-epicatechin (EC), (+)-gallocatechin (GC), (–)-epigallocatechin Edited by: (EGC), (+)-catechin-3-O-gallate (CAG), (–)-epicatechin-3-O-gallate (ECG), Guodong Wang, Chinese Academy of Sciences, China (–)-gallocatechin-3-O-gallate (GCG), (–)-epigallocatechin-3-O-gallate (EGCG), Reviewed by: procyanidin A2 (PA2), and procyanidin B2 (PB2), were selected for docking simulation. pro Hiroshi Noguchi, The resulting data predicted that all 12 metabolites could bind to M . The affinity Nihon Pharmaceutical scores of PA2 and PB2 were predicted to be −9.2, followed by ECG, GCG, EGCG, University, Japan Ericsson Coy-Barrera, and CAG, −8.3 to −8.7, and then six flavan-3-ol aglycones, −7.0 to −7.7. Docking Universidad Militar Nueva characterization predicted that these compounds bound to three or four subsites (S1, Granada, Colombia S1′, S2, and S4) in the binding pocket of Mpro via different spatial ways and various *Correspondence: De-Yu Xie formation of one to four hydrogen bonds. In vitro analysis with 10 available compounds pro [email protected] showed that CAG, ECG, GCG, EGCG, and PB2 inhibited the M activity with an IC50 value, 2.98 ± 0.21, 5.21 ± 0.5, 6.38 ± 0.5, 7.51 ± 0.21, and 75.3 ± 1.29 µM, Specialty section: respectively, while CA, EC, EGC, GC, and PA2 did not have inhibitory activities.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UNIVERSITY OF CALIFORNIA Santa Barbara A-type Procyanidins and Their Effects on the Aggregation of Tau Prevalent in Alzheimer’s Disease A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biochemistry and Molecular Biology by Michael James Weingart Committee in charge: Professor John Lew, Chair Professor Rolf E. Christoffersen Professor Benjamin E. Reese January 2018 The thesis of Michael James Weingart is approved. ________________________________________ Benjamin E. Reese ________________________________________ Rolf E. Christoffersen ________________________________________ John Lew, Committee Chair January 2018 A-type Procyanidins and Their Effects on the Aggregation of Tau Prevalent in Alzheimer’s Disease Copyright © 2018 by Michael James Weingart iii Acknowledgements Thank you to Professor John Lew and Dylan Peterson for welcoming me into the lab, for giving me the opportunity to work on this project in the first place, and for teaching me pretty much everything I know about lab work. Thank you to Professors Ben Reese and Rolf Christoffersen for taking time out of their schedules to serve on my committee. And thank you to my parents for always being supportive no matter what I decided to pursue. iv Abstract A-type Procyanidins and Their Effects on the Aggregation of Tau Prevalent in Alzheimer’s Disease by Michael James Weingart Alzheimer’s disease (AD) affects over 40 million people worldwide: a number that is expected to grow to over 100 million by 2050.1 Despite this, there is a shortage of AD drugs on the market, with only five having been FDA approved, and no new ones since 2003.2 A major problem is that these drugs are merely symptomatic treatments.
    [Show full text]
  • Peel of Traditional Apple Varieties As a Great Source of Bioactive Compounds: Extraction by Micro-Matrix Solid-Phase Dispersion
    foods Article Peel of Traditional Apple Varieties as a Great Source of Bioactive Compounds: Extraction by Micro-Matrix Solid-Phase Dispersion Ante Lonˇcari´c 1,* , Katarina Matanovi´c 1, Perla Ferrer 2 , Tihomir Kovaˇc 1 , Bojan Šarkanj 3 , Martina Skendrovi´cBabojeli´c 4 and Marta Lores 2 1 Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhaˇca20, HR 31000 Osijek, Croatia; [email protected] (K.M.); [email protected] (T.K.) 2 Faculty of Chemistry, University of Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain; [email protected] (P.F.); [email protected] (M.L.) 3 Department of Food Technology, University Centre Koprivnica, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia; [email protected] 4 Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-31-544-350 Received: 4 December 2019; Accepted: 8 January 2020; Published: 11 January 2020 Abstract: Micro matrix solid phase dispersion (micro-MSPD) was optimized by response surface methodology for the extraction of polyphenols from the peel of twelve traditional and eight commercial apple varieties grown in Croatia. The optimized micro-MSPD procedure includes the use of 0.2 g of sample, 0.8 g of dispersant, a 57% solution of methanol in water as the solvent and 5 mL of extract volume. The total polyphenolic index (TPI) and antioxidant activity (AA) were measured by spectrophotometric assays. Eighteen polyphenolic compounds were identified in all investigated apples by HPLC-DAD and LC-(ESI)-MS.
    [Show full text]
  • Heidker Unr 0139D 12054.Pdf
    University of Nevada, Reno Metabolic Effects of a Grape Seed Procyanidin Extract and its Relation to Bile Acid Homeostasis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology By Rebecca M. Heidker Dr. Marie-Louise Ricketts/Dissertation Advisor May, 2016 Copyright by Rebecca M. Heidker 2016 All rights reserved THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by REBECCA HEIDKER Entitled Metabolic Effects Of Grape Seed Procyanidin Extract On Risk Factors Of Cardiovascular Disease be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Marie-Louise Ricketts, Advisor Patricia Berinsone, Committee Member Patricia Ellison, Committee Member Cynthia Mastick, Committee Member Thomas Kidd, Graduate School Representative David W. Zeh, Ph. D., Dean, Graduate School May, 2016 i Abstract Bile acid (BA) recirculation and synthesis are tightly regulated via communication along the gut-liver axis and assist in the regulation of triglyceride (TG) and cholesterol homeostasis. Serum TGs and cholesterol are considered to be treatable risk factors for cardiovascular disease, which is the leading cause of death both globally and in the United States. While pharmaceuticals are common treatment strategies, nearly one-third of the population use complementary and alternative (CAM) therapy alone or in conjunction with medications, consequently it is important that we understand the mechanisms by which CAM treatments function at the molecular level. It was previously demonstrated that one such CAM therapy, namely a grape seed procyanidin extract (GSPE), reduces serum TGs via the farnesoid X receptor (Fxr).
    [Show full text]
  • Identification of Proanthocyanidins from Litchi (Litchi Chinensis Sonn.) Pulp by LC-ESI- Q-TOF-MS and Their Antioxidant Activity
    RESEARCH ARTICLE Identification of Proanthocyanidins from Litchi (Litchi chinensis Sonn.) Pulp by LC-ESI- Q-TOF-MS and Their Antioxidant Activity Qiang Lv1, Fenglei Luo1, Xiaoyong Zhao1, Yu Liu2, Guibing Hu3, Chongde Sun1, Xian Li1*, Kunsong Chen1 1 Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China, 2 College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, PR China, 3 College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China * [email protected] Abstract Content of total proanthocyanidins as well as total phenolics, flavonoids, antioxidant activi- ties were evaluated for litchi (Litchi chinensis Sonn.) pulp of 32 cultivars. One cultivar, OPEN ACCESS Hemaoli, showed the highest total proanthocyanidins and total phenolics, and DPPH or Citation: Lv Q, Luo F, Zhao X, Liu Y, Hu G, Sun C, et ABTS radical scavenging activities. ESI-MS and NMR analysis of the Hemaoli pulp crude al. (2015) Identification of Proanthocyanidins from epi Litchi (Litchi chinensis Sonn.) Pulp by LC-ESI-Q- extracts (HPCE) showed that procyandins composed of ( )catechin unites with degree of TOF-MS and Their Antioxidant Activity. PLoS ONE polymerization (DP) of 2–6 were dominant proanthocyanidins in HPCE. After the HPCE 10(3): e0120480. doi:10.1371/journal.pone.0120480 was fractionated by a Sephadex LH-20 column, 32 procyanidins were identified by LC-ESI- Academic Editor: Hitoshi Ashida, Kobe University, Q-TOF-MS in litchi pulp for the first time. Quantification of individual procyanidin in HPCE in- JAPAN dicated that epicatechin, procyanidin B2, procyanidin C1 and A-type procyanidin trimer Received: August 15, 2014 were the main procyanidins.
    [Show full text]
  • Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum
    Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum : from Experimental Laboratory Research to Homemade Preparations Phu Cao Ngoc To cite this version: Phu Cao Ngoc. Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum : from Experimental Laboratory Research to Homemade Prepa- rations. Analytical chemistry. Université Montpellier, 2020. English. NNT : 2020MONTS051. tel-03173592 HAL Id: tel-03173592 https://tel.archives-ouvertes.fr/tel-03173592 Submitted on 18 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE MONTPELLIER En Chimie Analytique École doctorale sciences Chimiques Balard ED 459 Unité de recherche Institut des Biomolecules Max Mousseron Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum americanum: from Experimental Laboratory Research to Homemade Preparations Présentée par Phu Cao Ngoc Le 27 Novembre 2020
    [Show full text]
  • Identification of Procyanidin A2 in Grape and Wine of Vitis Vinifera L. Cv. Merlot Noir and Cabernet Sauvignon
    IDENTIFICATION OF PROCYANIDIN A2 IN GRAPE AND WINE OF VITIS VINIFERA L. CV. MERLOT NOIR AND CABERNET SAUVIGNON IDENTIFICATION DU PROCYANIDOLE A2 DANS LE RAISIN ET LE VIN DE VITIS VINIFERA L. CV. MERLOT NOIR ET CABERNET SAUVIGNON. Nathalie VIVAS de GAULEJAC1, N. VIVAS1*, C. ABSALON2 and M.F. NONIER1 1Tonnellerie Demptos détaché au CESAMO (Centre d’Etude Structurale et d’Analyse des Molécules Organiques) Université Bordeaux I 351, cours de la Libération, 33405 Talence 2CESAMO (Centre d’Etude Structurale et d’Analyse des Molécules Organiques) Université Bordeaux I 351, cours de la Libération, 33405 Talence Abstract: Procyanidin A2 was identified in grapes and wines of Cabernet Sauvignon and Merlot noir. But the quan- tification show a limited presence of this compounds in wine, near the mg/L. In this concentration the procyani- din A2 was not able to participate to the bitterness character of red wines. Résumé : En utilisant différentes méthodes, nous avons identifié le procyanidole A2 dans des extraits partiellement purifiés de pellicules, de pépins et de vins de Merlot noir et de Cabernet Sauvignon. La particularité de ce procya- nidole est de posséder outre une liaison C4-C8, une seconde liaison éther C2-O-C7. Dans la littérature de nombreux auteurs ont attribué aux formes condensées des procyanidoles, comportant une ou plusieurs liaisons de ce type, de l’amertume. Il apparaît malgré une présence constante, une faible teneur de ce procyanidole dimère, voisin du mg/L dans les vins. À ces valeurs, le procyanidole A2 ne peut pas participer au caractère amer des vins rouges. Key words: grapes, wines, procyanidins A2, identification, quantification, bitterness Mots clés : raisins, vins, procyanidoles A2, identification, quantification, amertume INTRODUCTION chromatographic peak by comparison of retention time with a reference considered as a pure A2 compound.
    [Show full text]
  • Phenolic Profiles and Antioxidant Activity of Litchi (Litchi Chinensis Sonn.) Fruit Pericarp from Different Commercially Available Cultivars
    Molecules 2012, 17, 14954-14967; doi:10.3390/molecules171214954 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Phenolic Profiles and Antioxidant Activity of Litchi (Litchi Chinensis Sonn.) Fruit Pericarp from Different Commercially Available Cultivars Wu Li, Hong Liang, Ming-Wei Zhang *, Rui-Fen Zhang, Yuan-Yuan Deng, Zhen-Cheng Wei, Yan Zhang and Xiao-Jun Tang Key Laboratory of Functional Food Research, Ministry of Agriculture, Bio-Technical Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China; E-Mails: [email protected] (W.L.); [email protected] (H.L.); [email protected] (R.-F.Z.); [email protected] (Y.-Y.D.); [email protected] (Z.-C.W.); [email protected] (Y.Z.); [email protected] (X.-J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-20-8723-7865; Fax: +86-20-8723-6354. Received: 13 October 2012; in revised form: 5 December 2012 / Accepted: 11 December 2012 / Published: 17 December 2012 Abstract: Litchi fruit pericarp (LFP) contains significant amounts of phenolics which have been found to exhibit diverse biological activities. The purpose of this work was to determine the varietal differences in phenolic profiles and antioxidant activity of LFP from nine commercially available cultivars. The total phenolic and flavonoid contents ranged from 9.39 to 30.16 mg gallic acid equivalents/g fresh weight (FW) and from 7.12 to 23.46 mg catechin equivalents/g FW, respectively. The total anthocyanin contents ranged from 1.77 to 20.94 mg cyanidin-3-glucoside equivalents/100 g FW. Three anthocyanins, including cyanidin-3-rutinoside, cyanidin-3-glucoside, malvidin-3-glucoside, were detected, and cyanidin-3-rutinoside was the predominant constituent which contributes from 68.8% to 100% to total anthocyanins, The total procyanidin contents ranged from 4.35 to 11.82 mg epicatechin equivalents/g FW.
    [Show full text]
  • Reference Substances 2018/2019
    Reference Substances 2018 / 2019 Reference Substances Reference 2018/2019 Contents | 3 Contents Page Welcome 4 Our Services 5 Reference Substances 6 Index I: Alphabetical List of Reference Substances and Synonyms 156 Index II: Plant-specific Marker Compounds 176 Index III: CAS Registry Numbers 214 Index IV: Substance Classification 224 Our Reference Substance Team 234 Order Information 237 Order Form 238 Prices insert 4 | Welcome Welcome to our new 2018 / 2019 catalogue! PhytoLab proudly presents the new you will also be able to view exemplary Index I contains an alphabetical list of all 2018 / 2019 catalogue of phyproof® certificates of analysis and download substances and their synonyms. It pro- Reference Substances. The seventh edition material safety data sheets (MSDS). vides information which name of a refer- of our catalogue now contains well over ence substance is used in this catalogue 1300 phytochemicals. As part of our We very much hope that our product and guides you directly to the correct mission to be your leading supplier of portfolio meets your expectations. The list page. herbal reference substances PhytoLab of substances will be expanded even has characterized them as primary further in the future, based upon current If you are a planning to analyse a specific reference substances and will supply regulatory requirements and new scientific plant please look for the botanical them together with the comprehensive developments. The most recent information name in Index II. It will inform you about certificates of analysis you are familiar will always be available on our web site. common marker compounds for this herb. with.
    [Show full text]
  • Structure-Based Bioactive Phytochemical Design from Ayurvedic Formulations
    Structure-based bioactive phytochemical design from Ayurvedic formulations towards Spike and Mpro druggable targets of SARS-CoV-2 Anju Choorakottayil Pushkaran1, Prajeesh Nath EN2, Shantikumar V Nair1, Rammanohar Puthiyedath2, C Gopi Mohan1* 1Computational Biology and Bioinformatics Lab, Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India. 2Amrita School of Ayurveda, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India. *Corresponding author Dr. C Gopi Mohan E-mail id: [email protected]; [email protected] 1 Abstract The present COVID-19 global crisis invoked different disciplines of the biomedical research community to address the contagious human to human viral transmission and infection severity. Traditional or de novo drug discovery approach is a very time consuming process and will conflict with the urgency to discover new anti-viral drugs for combating the present global pandemic. Modern anti-viral drugs are not very effective and show resistance with serious adverse effects. Thus, identifying bioactive natural ingredients (phytochemical) from different medicinal plants or Ayurvedic formulations provides an effective alternative therapy for SARS-CoV-2 viral infections. We performed structure-based phytochemical design studies involving bioactive phytochemicals from medicinal plants towards two key druggable targets, spike glycoprotein and main protease (Mpro) of SARS-CoV-2. Phyllaemblicin class of phytocompounds showed better binding affinity towards both these SARS-CoV-2 targets and its binding mode revealed interactions with critical amino acid residues at its active sites. Also, we have successfully shown that the SARS-CoV-2 spike glycoprotein interaction towards human ACE2 receptor as its port of human cellular entry was blocked due to conformational variations in ACE2 receptor recognition by the binding of the phytocompound, Phyllaemblicin C at the ACE2 binding domain of spike protein.
    [Show full text]
  • Peanut-Skin Polyphenols, Procyanidin A1 and Epicatechin-(4 !6)-Epicatechin-(2 !O!7, 4 !8)-Catechin, Exert Cholesterol Micelle-Degrading Activity in Vitro
    121023 (214) Biosci. Biotechnol. Biochem., 77 (6), 121023-1–4, 2013 Note Peanut-Skin Polyphenols, Procyanidin A1 and Epicatechin-(4 !6)-epicatechin-(2 !O!7, 4 !8)-catechin, Exert Cholesterol Micelle-Degrading Activity in Vitro Tomoko TAMURA,1 Naoko INOUE,1 Megumi OZAWA,1 Akiko SHIMIZU-IBUKA,2 Soichi ARAI,1 y Naoki ABE,1 Hiroyuki KOSHINO,3 and Kiyoshi MURA1; 1Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan 2Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan 3RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Received January 4, 2013; Accepted February 27, 2013; Online Publication, June 7, 2013 [doi:10.1271/bbb.121023] We identified epicatechin-(4 !6)-epicatechin-(2 ! Here we report that a major peanut-skin polyphenol O!7, 4 !8)-catechin (EEC) in the skin of the peanut having a cholesterol micelle-degrading effect is epica- (Arachis hypogaea L.). EEC (a trimer) showed more techin-(4 !6)-epicatechin-(2 !O!7, 4 !8) cate- potent cholesterol micelle-degrading activity than pro- chin (EEC), in addition to the previously identified cyanidinAdvance A1 (a dimer) did in vitro. The hypercholester- View 3) procyanidin A1. olemia suppressing effect of a peanut skin polyphenol on Roasted peanut skin (40 g) was boiled in purified rats fed high-cholesterol diet in our preceding experi- water (1,000 mL) for 30 min, and the supernatant was ments might thus have been due primarily to a micelle taken by decantation and filtration.
    [Show full text]