Heidker Unr 0139D 12054.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Heidker Unr 0139D 12054.Pdf University of Nevada, Reno Metabolic Effects of a Grape Seed Procyanidin Extract and its Relation to Bile Acid Homeostasis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology By Rebecca M. Heidker Dr. Marie-Louise Ricketts/Dissertation Advisor May, 2016 Copyright by Rebecca M. Heidker 2016 All rights reserved THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by REBECCA HEIDKER Entitled Metabolic Effects Of Grape Seed Procyanidin Extract On Risk Factors Of Cardiovascular Disease be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Marie-Louise Ricketts, Advisor Patricia Berinsone, Committee Member Patricia Ellison, Committee Member Cynthia Mastick, Committee Member Thomas Kidd, Graduate School Representative David W. Zeh, Ph. D., Dean, Graduate School May, 2016 i Abstract Bile acid (BA) recirculation and synthesis are tightly regulated via communication along the gut-liver axis and assist in the regulation of triglyceride (TG) and cholesterol homeostasis. Serum TGs and cholesterol are considered to be treatable risk factors for cardiovascular disease, which is the leading cause of death both globally and in the United States. While pharmaceuticals are common treatment strategies, nearly one-third of the population use complementary and alternative (CAM) therapy alone or in conjunction with medications, consequently it is important that we understand the mechanisms by which CAM treatments function at the molecular level. It was previously demonstrated that one such CAM therapy, namely a grape seed procyanidin extract (GSPE), reduces serum TGs via the farnesoid X receptor (Fxr). GSPE treatment also induces the expression of hepatic cholesterol 7α-hydroxylase (Cyp7a1), the rate limiting enzyme for de novo BA synthesis. Herein, we demonstrate that both gene and protein expression of Cyp7a1 is increased due to the fact that GSPE selectively regulates intestinal Fxr target genes involved in BA uptake and transport. Apical sodium dependent bile acid transporter (Asbt) expression is decreased with a concomitant reduction in fibroblast growth factor 15 (Fgf15), leading to a lack of repression on hepatic Cyp7a1. The subsequent 47% decrease in serum BAs and 69% increase in fecal BA excretion results in a significant reduction in serum TG and cholesterol. These Fxr dependent effects are lost in Fxr-/- mice, clearly demonstrating the critical role of this nuclear receptor. In a subsequent study we confirm that GSPE represses Asbt expression, while the BA sequestrant cholestyramine (CHY) induces expression. Treatment with either GSPE or CHY increases expression of Cyp7a1, with co-administration augmenting the increase. In the liver, GSPE and CHY independently induce expression of genes regulating cholesterol and lipid synthesis; however, when ii combined the expression of cholesterogenic and lipogenic genes induced by CHY is attenuated. Taken together these data indicate that GSPE has the potential for use either alone or as a complementary therapy in the treatment of hypertriglyceridemia and hypercholesterolemia. These findings, combined with the ability of low molecular weight procyanidins (LMW-PCNs) to modify intracellular proteins and signaling pathways led us to optimize a protocol for isolating LMW-PCNs from the seeds of grapes grown at the University of Nevada, Reno (UNR) vineyard. An ethyl acetate based extraction process utilizing whole seeds was found to be both time and cost effective, while preserving the anti-oxidant properties of the procyanidin-rich extract. This protocol will provide the basis for further extractions in order to conduct in vitro and in vivo testing, potentially allowing for the development of a value added product from the UNR vineyards. iii Dedication To my son, Andrew, for providing me with the inspiration to start this journey. To my family and friends who believed in me and supported me throughout this process. iv Acknowledgement I would like to thank my advisor and mentor, Marie-Louise Ricketts for fostering independence in her students. She has encouraged me to think critically and see my projects through to completion. She has also reminded me on multiple occasions that graduate school is always an up and down journey, and she has stayed with me throughout those ups and downs. I want to thank my labmates for their assistance, friendship and support. I’m lucky to have met and gotten to know each of you, and I’ve learned so much from being around you. I would also like to thank my committee members, Patricia Bernisone, Thomas Kidd, Patricia Ellison, and Cynthia Mastick. They have provided me with excellent guidance and suggestions along the way. I appreciate their support more than words can say. In addition, I need to thank my family for their support. My father, James Heidker, has cooked countless meals for me and my son when I’ve been too busy to keep up. He has always had faith in my ability to complete this process, and has answered more chemistry questions than I count. My mother, Jean Heidker, answered questions about basic assays and the science behind them while I got my feet under my as a research scientist. And last, but not least, my sister, Moira Kolada, taught me the ropes of graduate school at UNR. v List of Tables………………………………………………………………………….…….…..ix List of Figures…………………………………………………………………………...….…..ix Chapter 1: Introduction…………………………………………………………………....…1 1.1. Grape seed procyanidin extract and health .............................................................. 2 1.1.1. Human Health Relevance ................................................................................. 2 1.1.2. Procyanidins ..................................................................................................... 2 1.1.3. Grape seed procyanidin extract ......................................................................... 4 1.1.4. Bioavailability .................................................................................................... 5 1.1.5. GSPE alleviates cardiovascular disease risk factors ......................................... 6 1.1.5.1. The impact of procyandins on atherosclerosis ............................................ 7 1.1.5.2. Effects of grape seed extracts on lipogenesis and diabetes mellitus ........... 8 1.1.5.3. Regulation of dyslipidemia .........................................................................10 1.2. Grape seed procyanidin extract and nuclear receptors ...........................................11 1.2.1 Nuclear receptors ..............................................................................................12 1.2.2. Structure of nuclear receptors ..........................................................................14 1.2.3. Classification of nuclear receptors ....................................................................16 1.2.3.1. Class I nuclear receptors ...........................................................................17 1.2.4. Class II nuclear receptors .................................................................................18 1.2.4.1. Farnesoid X receptor .................................................................................19 1.2.5. Class III nuclear receptors ................................................................................21 1.2.5.1. Small heterodimer partner .........................................................................21 1.3. Bile acid synthesis ..................................................................................................24 1.3.1. Classical bile acid synthesis .............................................................................28 vi 1.3.2. Alternative bile acid synthesis ..........................................................................29 1.4. Enterohepatic recirculation .....................................................................................30 1.4.1. Bile acid transport in the small intestine ...........................................................32 1.4.2. Hepatic bile acid transport ................................................................................33 1.5. Cholesterol and triglyceride synthesis and transport ...............................................34 1.5.1. Cholesterol synthesis .......................................................................................34 1.5.2. Hepatic export of cholesterol and triglycerides .................................................36 1.5.3. Intestinal transport of triglycerides and cholesterol ...........................................37 1.5.4. Excretion of cholesterol ....................................................................................40 1.6. Summary ................................................................................................................40 Chapter 2: Dietary Procyanidins Selectively Modulate Intestinal Farnesoid X Receptor-regulated Gene Expression to Alter Enterohepatic Bile Acid Recirculation: Elucidation of a Novel Mechanism to Reduce Triglyceridemia…....45 2.1. Abstract ..................................................................................................................47 2.2. Introduction .............................................................................................................49 2.3. Materials and Methods ...........................................................................................51 2.4. Results
Recommended publications
  • UNIVERSITY of CALIFORNIA, SAN DIEGO The
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The Transporter-Opsin-G protein-coupled receptor (TOG) Superfamily A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biology by Daniel Choi Yee Committee in charge: Professor Milton H. Saier Jr., Chair Professor Yunde Zhao Professor Lin Chao 2014 The Thesis of Daniel Yee is approved and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2014 iii DEDICATION This thesis is dedicated to my parents, my family, and my mentor, Dr. Saier. It is only with their help and perseverance that I have been able to complete it. iv TABLE OF CONTENTS Signature Page ............................................................................................................... iii Dedication ...................................................................................................................... iv Table of Contents ........................................................................................................... v List of Abbreviations ..................................................................................................... vi List of Supplemental Files ............................................................................................ vii List of
    [Show full text]
  • Determination of Total Procyanidins in Selected Chocolate and Confectionery Products Using DMAC
    SPSFAM-FLAV-11 Based from Call for Methods 12-21-2011 PAYNE ET AL.: JOURNAL OF AOAC INTERNATIONAL VOL. 93, NO. 1, 2010 89 DIETARY SUPPLEMENTS Determination of Total Procyanidins in Selected Chocolate and Confectionery Products Using DMAC MARK J. PAYNE,WILLIAM JEFFREY HURST,andDAVI D A. STUART Hershey Center for Health and Nutrition, The Hershey Co., 1025 Reese Ave, Hershey, PA 17033 BOXIN OU and ELLEN FAN Brunswick Laboratories (USA), 50 Commerce Way, Norton, MA 02766 HONGPING JI and YAN KOU Brunswick Laboratories (China), 218 Xing Hu Rd, Suzhou Industrial Park, China 215125 A simple, specific, high-throughput colorimetric which the monomers are linked through C4÷C8 or, less method based on the reaction of frequently, C4÷C6 linkages. In the less common A-type 4-dimethylaminocinnamaldehyde (DMAC) with procyanidins, the monomers are connected through C2÷O÷C7 flavan-3-ols was developed to determine total or C2÷O÷C5 linkages. Procyanidins are widely distributed in procyanidins in selected cacao-based products. plants and are found in significant quantities in foods such as Extracts of defatted samples were dispensed into a fruits, spices, tea, wine, nuts, and cocoa (1). Of the many types of 96-well plate and reacted with DMAC. The polyphenols, flavan-3-ols, flavonols, and anthocyanidins are the absorbance of the reaction products was most abundant classes found in plants (2). The interest in measured at 640 nm and compared to polyphenol antioxidants has increased dramatically due to their commercially available procyanidin B2 as a ability to scavenge free radicals and their association with a standard.
    [Show full text]
  • Proanthocyanidin Metabolism, a Mini Review
    Nutrition and Aging 2 (2014) 111–116 111 DOI 10.3233/NUA-140038 IOS Press Proanthocyanidin Metabolism, a mini review Y.Y. Choy and A.L. Waterhouse∗ Viticulture and Enology, University of California, Davis, CA, USA Abstract. There is emerging evidence suggesting that consumption of beverage and food rich in polyphenol may offer protective effects against various neurodegenerative, cardiovascular diseases and cancers. Proanthocyanidins (PACs) are one of the most abundant polyphenol in human diets, but also one of the least absorbed polyphenol mostly due to their size and structure com- plexity. PACs or condensed tannins are oligomers and polymers of monomeric unit flavan-3-ol (+)-catechin or (−)-epicatechin. To date, the absorption and metabolism of PACs are still remains largely unknown. The aim of this mini review was to highlight the absorption and metabolism of PACs, their effect in the gut and sample preparation for analysis. Ultimately, the potential bioactivities derived from the interaction between PACs metabolites and the gut microbiota warrants further investigation. Keywords: Proanthocyanidins, phenolic acids, metabolism, colon 1. Introduction derived subunits. PACs that consists exclusively of (−)-epicatechin, (+)-catechin units, are known as pro- Polyphenols are among the ubiquitous constituents cyanidins because only cyanidin is released in acid, of foods of plant origins and are widely distributed and comprised the largest class of PACs, while those throughout the plant kingdom. Polyphenols can be with gallocatechin units release delphinidin. The size categorized into different groups such as flavonoids, or molecular weight of PACs can be expressed as phenolic acids, stilbenes and lignans. The flavonoids mean degree of polymerization (mDP).
    [Show full text]
  • Genome-Wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M
    CANCER GENOMICS & PROTEOMICS 11 : 1-12 (2014) Genome-wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M. MEERZAMAN 1,2 , CHUNHUA YAN 1, QING-RONG CHEN 1, MICHAEL N. EDMONSON 1, CARL F. SCHAEFER 1, ROBERT J. CLIFFORD 2, BARBARA K. DUNN 3, LI DONG 2, RICHARD P. FINNEY 1, CONSTANCE M. CULTRARO 2, YING HU1, ZHIHUI YANG 2, CU V. NGUYEN 1, JENNY M. KELLEY 2, SHUANG CAI 2, HONGEN ZHANG 2, JINGHUI ZHANG 1,4 , REBECCA WILSON 2, LAUREN MESSMER 2, YOUNG-HWA CHUNG 5, JEONG A. KIM 5, NEUNG HWA PARK 6, MYUNG-SOO LYU 6, IL HAN SONG 7, GEORGE KOMATSOULIS 1 and KENNETH H. BUETOW 1,2 1Center for Bioinformatics and Information Technology, National Cancer Institute, Rockville, MD, U.S.A.; 2Laboratory of Population Genetics, National Cancer Institute, National Cancer Institute, Bethesda, MD, U.S.A.; 3Basic Prevention Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, U.S.A; 4Department of Biotechnology/Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, U.S.A.; 5Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; 6Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea; 7Department of Internal Medicine, College of Medicine, Dankook University, Cheon-An, Korea Abstract . We report on next-generation transcriptome Worldwide, liver cancer is the fifth most common cancer and sequencing results of three human hepatocellular carcinoma the third most common cause of cancer-related mortality (1). tumor/tumor-adjacent pairs.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Anti-Inflammatory Activity of Sambucus Plant Bioactive
    Natural Product Sciences 25(3) : 215-221 (2019) https://doi.org/10.20307/nps.2019.25.3.215 Anti-inflammatory Activity of Sambucus Plant Bioactive Compounds against TNF-α and TRAIL as Solution to Overcome Inflammation Associated Diseases: The Insight from Bioinformatics Study Wira Eka Putra1, Wa Ode Salma2, Muhaimin Rifa'i3,* 1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia 2Department of Nutrition, Faculty of Medicine, Halu Oleo University, Indonesia 3Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia Abstract − Inflammation is the crucial biological process of immune system which acts as body’s defense and protective response against the injuries or infection. However, the systemic inflammation devotes the adverse effects such as multiple inflammation associated diseases. One of the best ways to treat this entity is by blocking the tumor necrosis factor alpha (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) to avoid the pro- inflammation cytokines production. Thus, this study aims to evaluate the potency of Sambucus bioactive compounds as anti-inflammation through in silico approach. In order to assess that, molecular docking was performed to evaluate the interaction properties between the TNF-α or TRAIL with the ligands. The 2D structure of ligands were retrieved online via PubChem and the 3D protein modeling was done by using SWISS Model. The prediction results of the study showed that caffeic acid (-6.4 kcal/mol) and homovanillic acid (-6.6 kcal/mol) have the greatest binding affinity against the TNF-α and TRAIL respectively. This evidence suggests that caffeic acid and homovanillic acid may potent as anti-inflammatory agent against the inflammation associated diseases.
    [Show full text]
  • Trimer Procyanidin Oligomers Contribute to the Protective Effects of Cinnamon Extracts on Pancreatic Β-Cells in Vitro
    Acta Pharmacologica Sinica (2016) 37: 1083–1090 © 2016 CPS and SIMM All rights reserved 1671-4083/16 www.nature.com/aps Original Article Trimer procyanidin oligomers contribute to the protective effects of cinnamon extracts on pancreatic β-cells in vitro Peng SUN1, 2, #, Ting WANG1, #, Lu CHEN2, #, Bang-wei YU1, Qi JIA2, Kai-xian CHEN1, 2, Hui-min FAN3, Yi-ming LI2, *, He-yao WANG1, * 1Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; 2School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; 3Department of Cardiovascular and Thoracic Surgery, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China Aim: Cinnamon extracts rich in procyanidin oligomers have shown to improve pancreatic β-cell function in diabetic db/db mice. The aim of this study was to identify the active compounds in extracts from two species of cinnamon responsible for the pancreatic β-cell protection in vitro. Methods: Cinnamon extracts were prepared from Cinnamomum tamala (CT-E) and Cinnamomum cassia (CC-E). Six compounds procyanidin B2 (cpd1), (–)-epicatechin (cpd2), cinnamtannin B1 (cpd3), procyanidin C1 (cpd4), parameritannin A1 (cpd5) and cinnamtannin D1 (cpd6) were isolated from the extracts. INS-1 pancreatic β-cells were exposed to palmitic acid (PA) or H2O2 to induce lipotoxicity and oxidative stress. Cell viability and apoptosis as well as ROS levels were assessed. Glucose-stimulated insulin secretion was examined in PA-treated β-cells and murine islets. Results: CT-E, CC-E as well as the compounds, except cpd5, did not cause cytotoxicity in the β-cells up to the maximum dosage using in this experiment.
    [Show full text]
  • Cassia Fistula Leaves; UHPLC-QTOF-MS/MS
    plants Article Cassia fistula Leaves; UHPLC-QTOF-MS/MS Based Metabolite Profiling and Molecular Docking Insights to Explore Bioactives Role towards Inhibition of Pancreatic Lipase Zain Ul Aabideen 1 , Muhammad Waseem Mumtaz 1, Muhammad Tayyab Akhtar 2,* , Muhammad Asam Raza 1, Hamid Mukhtar 2 , Ahmad Irfan 3,4, Syed Ali Raza 5 , Tooba Touqeer 1, Muhammad Nadeem 1 and Nazamid Saari 6,* 1 Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan; [email protected] (Z.U.A.); [email protected] (M.W.M.); [email protected] (M.A.R.); [email protected] (T.T.); [email protected] (M.N.) 2 Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; [email protected] 3 Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; [email protected] 4 Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia 5 Department of Chemistry, GC University Lahore, Lahore 54000, Pakistan; [email protected] 6 Department of Food Science, University Putra Malaysia, Serdang 43400, Malaysia Citation: Aabideen, Z.U.; Mumtaz, * Correspondence: [email protected] (M.T.A.); [email protected] (N.S.) M.W.; Akhtar, M.T.; Raza, M.A.; Mukhtar, H.; Irfan, A.; Raza, S.A.; Abstract: The present work was aimed at investigating hydroethanolic leaf extracts of Cassia fistula Touqeer, T.; Nadeem, M.; Saari, N. for their antioxidant and pancreatic lipase (PL) enzyme inhibitory properties. The most active extract Cassia fistula Leaves; was selected to profile the phytoconstituents by UHPLC-QTOF-MS/MS technique.
    [Show full text]
  • Docking Characterization and in Vitro Inhibitory Activity of Flavan-3-Ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2
    ORIGINAL RESEARCH published: 30 November 2020 doi: 10.3389/fpls.2020.601316 Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2 Yue Zhu and De-Yu Xie* Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States We report to use the main protease (Mpro) of SARS-Cov-2 to screen plant flavan-3-ols and proanthocyanidins. Twelve compounds, (–)-afzelechin (AF), (–)-epiafzelechin (EAF), (+)-catechin (CA), (–)-epicatechin (EC), (+)-gallocatechin (GC), (–)-epigallocatechin Edited by: (EGC), (+)-catechin-3-O-gallate (CAG), (–)-epicatechin-3-O-gallate (ECG), Guodong Wang, Chinese Academy of Sciences, China (–)-gallocatechin-3-O-gallate (GCG), (–)-epigallocatechin-3-O-gallate (EGCG), Reviewed by: procyanidin A2 (PA2), and procyanidin B2 (PB2), were selected for docking simulation. pro Hiroshi Noguchi, The resulting data predicted that all 12 metabolites could bind to M . The affinity Nihon Pharmaceutical scores of PA2 and PB2 were predicted to be −9.2, followed by ECG, GCG, EGCG, University, Japan Ericsson Coy-Barrera, and CAG, −8.3 to −8.7, and then six flavan-3-ol aglycones, −7.0 to −7.7. Docking Universidad Militar Nueva characterization predicted that these compounds bound to three or four subsites (S1, Granada, Colombia S1′, S2, and S4) in the binding pocket of Mpro via different spatial ways and various *Correspondence: De-Yu Xie formation of one to four hydrogen bonds. In vitro analysis with 10 available compounds pro [email protected] showed that CAG, ECG, GCG, EGCG, and PB2 inhibited the M activity with an IC50 value, 2.98 ± 0.21, 5.21 ± 0.5, 6.38 ± 0.5, 7.51 ± 0.21, and 75.3 ± 1.29 µM, Specialty section: respectively, while CA, EC, EGC, GC, and PA2 did not have inhibitory activities.
    [Show full text]
  • USDA Database for the Proanthocyanidin Content of Selected Foods
    USDA Database for the Proanthocyanidin Content of Selected Foods Release 2 Prepared by Seema Bhagwat and David Haytowitz Nutrient Data Laboratory Beltsville Human Nutrition Research Center Agricultural Research Service U.S. Department of Agriculture September 2015 Slightly Revised December 2015 U.S. Department of Agriculture Agricultural Research Service Beltsville Human Nutrition Research Center Nutrient Data Laboratory 10300 Baltimore Avenue Building 005, Room 107, BARC-West Beltsville, Maryland 20705 Tel. 301-504-0630, FAX: 301-504-0632 E-Mail: [email protected] Web site: http://www.ars.usda.gov/nutrientdata/flav Table of Contents Release History ............................................................................................................. i Suggested Citation: ....................................................................................................... i Acknowledgements ...................................................................................................... ii Documentation ................................................................................................................ 1 Changes in the update of the proanthocyanidins database ......................................... 1 Data Sources ............................................................................................................... 1 Data Management ....................................................................................................... 2 Data Quality Evaluation...............................................................................................
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UNIVERSITY OF CALIFORNIA Santa Barbara A-type Procyanidins and Their Effects on the Aggregation of Tau Prevalent in Alzheimer’s Disease A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biochemistry and Molecular Biology by Michael James Weingart Committee in charge: Professor John Lew, Chair Professor Rolf E. Christoffersen Professor Benjamin E. Reese January 2018 The thesis of Michael James Weingart is approved. ________________________________________ Benjamin E. Reese ________________________________________ Rolf E. Christoffersen ________________________________________ John Lew, Committee Chair January 2018 A-type Procyanidins and Their Effects on the Aggregation of Tau Prevalent in Alzheimer’s Disease Copyright © 2018 by Michael James Weingart iii Acknowledgements Thank you to Professor John Lew and Dylan Peterson for welcoming me into the lab, for giving me the opportunity to work on this project in the first place, and for teaching me pretty much everything I know about lab work. Thank you to Professors Ben Reese and Rolf Christoffersen for taking time out of their schedules to serve on my committee. And thank you to my parents for always being supportive no matter what I decided to pursue. iv Abstract A-type Procyanidins and Their Effects on the Aggregation of Tau Prevalent in Alzheimer’s Disease by Michael James Weingart Alzheimer’s disease (AD) affects over 40 million people worldwide: a number that is expected to grow to over 100 million by 2050.1 Despite this, there is a shortage of AD drugs on the market, with only five having been FDA approved, and no new ones since 2003.2 A major problem is that these drugs are merely symptomatic treatments.
    [Show full text]
  • Distribution and Metabolism of Constituents and Metabolites of a Standardized Maritime Pine Bark Extract (Pycnogenol®) in Human
    Distribution and metabolism of constituents and metabolites of a standardized maritime pine bark extract (Pycnogenol®) in human serum, blood cells and synovial fluid of patients with severe osteoarthritis DISSERTATION zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Melanie Mülek aus Aschaffenburg Würzburg 2015 Eingereicht bei der Fakultät für Chemie und Pharmazie am: ……………………............. Gutachter der schriftlichen Arbeit: 1. Gutachter ……………………............. 2. Gutachter ……………………............. Prüfer des öffentlichen Promotionskolloquiums: 1. Prüfer ……………………............. 2. Prüfer ……………………............. 3. Prüfer ……………………............. Datum des öffentlichen Promotionskolloquiums: ……………………............. Doktorurkunde ausgehändigt am: ……………………............. Die vorliegende Arbeit wurde auf Anregung und unter Anleitung von Frau Prof. Dr. Petra Högger am Lehrstuhl für Pharmazeutische Chemie des Instituts für Pharmazie und Lebensmittelchemie der Julius-Maximilians-Universität Würzburg angefertigt. PAPERS INCLUDED IN THIS THESIS This thesis is divided into five publications, which are referred to in the text by their numbers 1-5. 1 Facilitated uptake of a bioactive metabolite of maritime pine bark extract (Pycnogenol) into human erythrocytes Kurlbaum, M., Mülek, M. and Högger P. PLoS One, 2013. 8: e63197 DOI: 10.1371/journal.pone.0063197 2 Highly sensitive analysis of polyphenols and their metabolites in human blood cells using dispersive SPE extraction and LC-MS/MS Mülek, M. and Högger, P. Anal Bioanal Chem, 2015. 407: 1885-1899 DOI 10.1007/s00216-014-8451-y 3 Profiling a gut microbiota-generated catechin metabolite’s fate in human blood cells using a metabolomic approach Mülek, M., Fekete, A., Wiest, J., Holzgrabe, U., Mueller, MJ. and Högger, P. J Pharm Biomed Anal, 2015. 114: 71-81 DOI: 10.1016/j.jpba.2015.04.042 4 Development of LC-ESI/MS/MS methods for quantification of polyphenols in human plasma and serum with particular consideration of matrix effects Mülek, M.
    [Show full text]