Processes for the Preparation Of

Total Page:16

File Type:pdf, Size:1020Kb

Processes for the Preparation Of (19) TZZ Z_T (11) EP 2 999 708 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12P 33/16 (2006.01) C07J 1/00 (2006.01) 22.08.2018 Bulletin 2018/34 (86) International application number: (21) Application number: 14801828.6 PCT/IB2014/061590 (22) Date of filing: 21.05.2014 (87) International publication number: WO 2014/188353 (27.11.2014 Gazette 2014/48) (54) PROCESSES FOR THE PREPARATION OF DEHYDROEPIANDROSTERONE AND ITS INTERMEDIATES VERFAHREN ZUR HERSTELLUNG VON DEHYDROEPIANDROSTERON UND DESSEN ZWISCHENPRODUKTEN PROCÉDÉS DE PRÉPARATION DE DÉSHYDROÉPIANDROSTÉRONE ET DE SES INTERMÉDIAIRES (84) Designated Contracting States: • DAHANUKAR, Vilas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Hyderabad 500008 (IN) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Bates, Philip Ian Reddie & Grose LLP (30) Priority: 21.05.2013 IN 2214CH2013 The White Chapel Building 10 Whitechapel High Street (43) Date of publication of application: London E1 8QS (GB) 30.03.2016 Bulletin 2016/13 (56) References cited: (73) Proprietor: Dr. Reddy’s Laboratories Ltd. EP-A2- 0 133 995 US-A- 4 791 057 500 034 Andhra Pradesh (IN) US-A- 5 604 213 US-B1- 6 284 750 US-B2- 8 227 208 (72) Inventors: • FRYSZKOWSKA, Anna • MARGARET G WARD ET AL: "Reversibility of Cambridge CB4 1GF (GB) Steroid Delta-Isomerase II. THE REACTION • QUIRMBACH, Michael Siegfried SEQUENCE IN THE CONVERSION OF 4054 Basel (CH) ANDROST-4-ENE-3,17-DIONE TO 3-HY • GORANTLA, Srikanth Sarat Chandra DROXYANDROST-5-EN-17-ONE BY SHEEP Hyderabad 500047 ADRENAL MICROSOMES", THE JOURNAL OF Andhra Pradesh (IN) BIOLOGICAL CHEMISTRY, vol. 241, no. 13, 10 • ALIETI, Sanjay Reddy July 1966 (1966-07-10), pages 3147-3153, Hyderabad 500090 XP55323075, Andhra Pradesh (IN) • THOMAS J L ET AL: "Human placental • POREDDY, Srinivas Reddy 3beta-hydroxy-5-ene-steroid dehydrogenase Nalgonda 508374 and steroid 5 -> 4-ene-isomerase: Purification Andhra Pradesh (IN) from microsomes, substrate kinetics, and • DINNE, Naresh Kumar Reddy inhibition by product steroids", JOURNAL OF Mahaboob Nagar 509125 STEROID BIOCHEMISTRY, PERGAMON PRESS Andhra Pradesh (IN) PLC, GB, vol. 31, no. 5, 1 November 1988 • TIMMANNA, Upadhya (1988-11-01), pages785-793, XP025204752, ISSN: Hyderabad 500014 0022-4731, DOI: 10.1016/0022-4731(88)90287-7 Andhra Pradesh (IN) [retrieved on 1988-11-01] Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 999 708 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 999 708 B1 • THOMAS J L ET AL: "Human placental • DANIEL L. PURICH ET AL.: ’The Enzyme 3beta-hydroxy-5-ene-steroid dehydrogenase Reference: A Comprehensive Guidebook to and steroid 5-> 4-ene-isomerase: Purification Enzyme Nomenclature, Reactions, and Methods’ from mitochondria and kinetic profiles, December 2002, page 782 AND 783, XP008182555 biophysical characterization of the purified • AGUS ET AL.: ’Aldo-keto Reductase Family 1 mitochondrial and microsomal enzymes", Member C3 (AKR1C3) Is a Biomarker and JOURNAL OF STEROID BIOCHEMISTRY, Therapeutic Target for Castration-Resistant PERGAMON PRESS PLC, GB, vol. 33, no. 2, 1 ProstateCancer’ MOLECULAR MEDICINE vol. 18, August 1989 (1989-08-01) , pages 209-217, 22 January 2013, pages 1449 - 1455, XP055296681 XP025223153, ISSN: 0022-4731, DOI: • DATABASE GENBANK [Online] 28 January 2014 10.1016/0022-4731(89)90296-3 [retrieved on COPELANDET AL.: ’SPHINGOMONAS WITTICHII 1989-08-01] RW1, COMPLETE GENOME’, XP003032425 • BAWA ET AL.: ’Enzymatic Reduction of Ketones Retrieved from NCBI Database accession no. to Optically Active Secondary Alcohols’ CP000699 JOURNAL OF PHYSICAL SCIENCE vol. 19, no. ISSUE, 2008, pages 1 - 5, XP055296669 • JONES ET AL.: ’Steroids and steroidases.VI. On the C-17 specificity of the 5-3-ketoisomerase of Pseudomonas testosterone and evidence for substrate micelle formation’ CANADIAN JOURNAL OF CHEMISTRY vol. 46, no. 9, 1968, pages 1459 - 1465, XP055296672 2 EP 2 999 708 B1 Description INTRODUCTION 5 [0001] The present application relates to a regioselective and stereoselective processes for the preparation of dehy- droepiandrosterone (DHEA) and processes for its intermediates. BACKGROUND OF THE INVENTION 10 [0002] Dehydroepiandrosterone (DHEA) also known as androstenolone or prasterone or 3 β-hydroxyandrost-5-en-17- one or 5-androsten-3β-ol-17-one, is an important endogenous steroid hormone and has the structure of formula (I). 15 20 [0003] Dehydroepiandrosterone (DHEA) is a key intermediate in the synthesis of steroidal molecules, including but not limited to abiraterone acetate, a drug used in the treatment of castration-resistant prostate cancer. [0004] An article by J.Bryan Jones et al., "Steroids and steroidases.VI. On the C-17 specificity of the Δ5-3-ketoisomer- 25 ase of Psudomonas testosterone and evidence for substrate micelle formation," Candian Journal of Chemistry, 46,1459-1465 (1968) describes a process for the preparation of androst-5-ene-3,17-dione , an intermediate used for the preparation of DHEA. The process disclosed in the said reference involves reacting androst-4-ene-3,17-dione with potassium t-butoxide in t-butyl alcohol under nitrogen atmosphere for 90 minutes at 20°C, followed by quenching the reaction mass by rapid addition of 10% aqueous acetic acid, adding excess sodium bicarbonate, extracting with ether, 30 evaporating at room temperature and recrystallization from acetone to give androst-5-ene-3,17-dione. [0005] However, the above process is disadvantageous in that, it involves the use of higher amounts of base i.e., 10 equivalents of potassium tert-butoxide, results in the formation of oxidized impurities of androst-5-ene-3,17-dione and has workup procedure which may not suitable on an industrial scale and thereby results in low and unsatisfactory yields. [0006] Accordingly, there remains a need to provide improved processes for preparing androst-5-ene-3,17-dione that 35 eliminates and reduces the drawbacks of the prior art in a convenient manner. [0007] Chinese Patent Application Publication No. 102212099 disclose a multistep process for the preparation of dehydroepiandrosterone starting from 16-dehydropregnenolone acetate and involves the reaction steps as depicted in Scheme 1 below. 40 45 [0008] Chinese Patent Application Publication No. 102603841 disclose a multistep process for the preparation of dehydroepiandrosterone from 4-androsten-3,17-dione, and involves the reaction steps as depicted in Scheme 2 below. 50 55 3 EP 2 999 708 B1 5 10 15 20 [0009] Chinese Patent Application Publication No. 102603839 describes a multistep synthetic process for preparation of dehydroepiandrosterone starting from 16-dehydropregnenolone acetate, which involves (i) preparation of 16-dehy- dropregnenolone acetate oxime (ii) Beckmann rearrangement of 16-dehydropregnenolone acetate oxime to obtain de- hydroepiandrosterone acetate (iii) hydrolysis of dehydroepiandrosterone acetate to give dehydroepiandrosterone. The reaction steps of the said process are depicted in Scheme 3 below. 25 30 35 40 [0010] Chinese Patent Application Publication No. CN 101362789 and 101717422, Korean patent application Publi- 45 cation No. 2004040555 also discloses synthetic processes for the preparation of dehydroepiandrosterone. [0011] The above described synthetic processes for the preparation of dehydroepiandrosterone includes multiple steps, and a sequence of protection/deprotection steps in order to achieve a stereo- and regioselective reduction at position C3 and may not be suitable for commercial scale synthesis. [0012] Mamoli et al., in US2186906 describes biochemical hydrogenation process for the conversion of a keto-com- 50 pound of the cyclopentano-10,13-dimethyl-poly-hydro-phenanthrene series ( Δ4,5-androstendione) into a corresponding hydroxyl compound of the same series (Δ4,5-androstenole-17-one-3) which comprises subjecting such keto compound to the action of a reducing yeast-containing fermentation solution. [0013] Misaki et al., in US4791057 describes highly sensitive quantitative assay method for a component (which is a 3β-hydroxysteroid or a 3-ketosteroid) in a specimen to be assayed, which involves the steps of causing this component 55 in the specimen to take part in the 3 β-hydroxysteroid & 3-ketosteroid cycling reaction and measuring a detectable change in the reaction system comprising a 3β -hydroxysteroid oxidase and or 3 β-hydroxysteroid dehydrogenase. In the cycling reaction, 3β-hydroxysteroid oxidase consumes O 2 and converts 3-hydroxy steroid to a 3-ketosteroid, 3 β-hydroxysteroid dehydrogenase in the presence of reduced NAD(P) + converts 3-ketosteroid to a 3-hydroxy steroid and generate NAD(P). 4 EP 2 999 708 B1 The 3β-hydroxysteroid & 3-ketosteroid cycling reaction described in the said patent is schematically represented in Scheme 4 below: 5 10 15 20 [0014] Though the above references discloses a enzymatic conversion of 3-hydroxy steroid to 3-keto steroids or vice- versa, they do not disclose a process for the preparation of dehydroepiandrosterone and there remains a complex challenge in developing an improved process which displays required regioselectivity by reducing the 3-oxo group of the steroid leaving the 17-oxo group intact and stereoselectivity by producing the corresponding 3 β-hydroxy compound. [0015] The process according to the present application relates to an enzymatic process for the preparation of dehy- 25 droepiandrosterone. The enzymatic reduction process of the present application is eco-friendly, cost-effective and com- mercially viable. [0016] J. Biol. Chem. Vol 241(13) pp 3147-3153 (1966), J. Steroid Biochem. Vol 31(5) pp 785-793 (1988) and J. Steroid Biochem. Vol 33(2) pp 209-217 (1989) disclose the regiospecific reduction ofΔ 5-androstene-3,17-dione (II) to 3β-hydroxyandrost-5-en-17-one (I) using a mammalian ketoreductase enzyme in the presence of NADH.
Recommended publications
  • Effect of Dehydroepiandrosterone and Testosterone Supplementation on Systemic Lipolysis
    ORIGINAL ARTICLE Effect of Dehydroepiandrosterone and Testosterone Supplementation on Systemic Lipolysis Ana E. Espinosa De Ycaza, Robert A. Rizza, K. Sreekumaran Nair, and Michael D. Jensen Division of Endocrinology, Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905 Downloaded from https://academic.oup.com/jcem/article/101/4/1719/2804555 by guest on 24 September 2021 Context: Dehydroepiandrosterone (DHEA) and T hormones are advertised as antiaging, antiobe- sity products. However, the evidence that these hormones have beneficial effects on adipose tissue metabolism is limited. Objective: The objective of the study was to determine the effect of DHEA and T supplementation on systemic lipolysis during a mixed-meal tolerance test (MMTT) and an iv glucose tolerance test (IVGTT). Design: This was a 2-year randomized, double-blind, placebo-controlled trial. Setting: The study was conducted at a general clinical research center. Participants: Sixty elderly women with low DHEA concentrations and 92 elderly men with low DHEA and bioavailable T concentrations participated in the study. Interventions: Elderly women received 50 mg DHEA (n ϭ 30) or placebo (n ϭ 30). Elderly men received 75 mg DHEA (n ϭ 30),5mgT(nϭ 30), or placebo (n ϭ 32). Main Outcome Measures: In vivo measures of systemic lipolysis (palmitate rate of appearance) during a MMTT or IVGTT. Results: At baseline there was no difference in insulin suppression of lipolysis measured during MMTT and IVGTT between the treatment groups and placebo. For both sexes, a univariate analysis showed no difference in changes in systemic lipolysis during the MMTT or IVGTT in the DHEA group and T group when compared with placebo.
    [Show full text]
  • Properties and Units in Clinical Pharmacology and Toxicology
    Pure Appl. Chem., Vol. 72, No. 3, pp. 479–552, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART XII. PROPERTIES AND UNITS IN CLINICAL PHARMACOLOGY AND TOXICOLOGY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, DAVID COWAN2, RAFAEL DE LA TORRE3 , IVAN BRUUNSHUUS1, MORTEN ROHDE1, and DESMOND KENNY4 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Drug Control Centre, London University, King’s College, London, UK; 3IMIM, Dr. Aiguader 80, Barcelona, Spain; 4Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994–1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996); Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada, 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H. Olesen, Office of Laboratory Informatics 76-6-1, Copenhagen University Hospital (Rigshospitalet), 9 Blegdamsvej, DK-2100 Copenhagen, Denmark. E-mail: [email protected] Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible.
    [Show full text]
  • UFC PROHIBITED LIST Effective June 1, 2021 the UFC PROHIBITED LIST
    UFC PROHIBITED LIST Effective June 1, 2021 THE UFC PROHIBITED LIST UFC PROHIBITED LIST Effective June 1, 2021 PART 1. Except as provided otherwise in PART 2 below, the UFC Prohibited List shall incorporate the most current Prohibited List published by WADA, as well as any WADA Technical Documents establishing decision limits or reporting levels, and, unless otherwise modified by the UFC Prohibited List or the UFC Anti-Doping Policy, Prohibited Substances, Prohibited Methods, Specified or Non-Specified Substances and Specified or Non-Specified Methods shall be as identified as such on the WADA Prohibited List or WADA Technical Documents. PART 2. Notwithstanding the WADA Prohibited List and any otherwise applicable WADA Technical Documents, the following modifications shall be in full force and effect: 1. Decision Concentration Levels. Adverse Analytical Findings reported at a concentration below the following Decision Concentration Levels shall be managed by USADA as Atypical Findings. • Cannabinoids: natural or synthetic delta-9-tetrahydrocannabinol (THC) or Cannabimimetics (e.g., “Spice,” JWH-018, JWH-073, HU-210): any level • Clomiphene: 0.1 ng/mL1 • Dehydrochloromethyltestosterone (DHCMT) long-term metabolite (M3): 0.1 ng/mL • Selective Androgen Receptor Modulators (SARMs): 0.1 ng/mL2 • GW-1516 (GW-501516) metabolites: 0.1 ng/mL • Epitrenbolone (Trenbolone metabolite): 0.2 ng/mL 2. SARMs/GW-1516: Adverse Analytical Findings reported at a concentration at or above the applicable Decision Concentration Level but under 1 ng/mL shall be managed by USADA as Specified Substances. 3. Higenamine: Higenamine shall be a Prohibited Substance under the UFC Anti-Doping Policy only In-Competition (and not Out-of- Competition).
    [Show full text]
  • Reproductive DHEA-S
    Reproductive DHEA-S Analyte Information - 1 - DHEA-S Introduction DHEA-S, DHEA sulfate or dehydroepiandrosterone sulfate, it is a metabolite of dehydroepiandrosterone (DHEA) resulting from the addition of a sulfate group. It is the sulfate form of aromatic C19 steroid with 10,13-dimethyl, 3-hydroxy group and 17-ketone. Its chemical name is 3β-hydroxy-5-androsten-17-one sulfate, its summary formula is C19H28O5S and its molecular weight (Mr) is 368.5 Da. The structural formula of DHEA-S is shown in (Fig.1). Fig.1: Structural formula of DHEA-S Other names used for DHEA-S include: Dehydroisoandrosterone sulfate, (3beta)-3- (sulfooxy), androst-5-en-17-one, 3beta-hydroxy-androst-5-en-17-one hydrogen sulfate, Prasterone sulfate and so on. As DHEA-S is very closely connected with DHEA, both hormones are mentioned together in the following text. Biosynthesis DHEA-S is the major C19 steroid and is a precursor in testosterone and estrogen biosynthesis. DHEA-S originates almost exclusively in the zona reticularis of the adrenal cortex (Fig.2). Some may be produced by the testes, none is produced by the ovaries. The adrenal gland is the sole source of this steroid in women, whereas in men the testes secrete 5% of DHEA-S and 10 – 20% of DHEA. The production of DHEA-S and DHEA is regulated by adrenocorticotropin (ACTH). Corticotropin-releasing hormone (CRH) and, to a lesser extent, arginine vasopressin (AVP) stimulate the release of adrenocorticotropin (ACTH) from the anterior pituitary gland (Fig.3). In turn, ACTH stimulates the adrenal cortex to secrete DHEA and DHEA-S, in addition to cortisol.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET SECTION 1: PRODUCT IDENTIFICATION PRODUCT NAME DHEA (Prasterone) (Micronized) PRODUCT CODE 0733 SUPPLIER MEDISCA Inc. Tel.: 1.800.932.1039 | Fax.: 1.855.850.5855 661 Route 3, Unit C, Plattsburgh, NY, 12901 3955 W. Mesa Vista Ave., Unit A-10, Las Vegas, NV, 89118 6641 N. Belt Line Road, Suite 130, Irving, TX, 75063 MEDISCA Pharmaceutique Inc. Tel.: 1.800.665.6334 | Fax.: 514.338.1693 4509 Rue Dobrin, St. Laurent, QC, H4R 2L8 21300 Gordon Way, Unit 153/158, Richmond, BC V6W 1M2 MEDISCA Australia PTY LTD Tel.: 1.300.786.392 | Fax.: 61.2.9700.9047 Unit 7, Heritage Business Park 5-9 Ricketty Street, Mascot, NSW 2020 EMERGENCY PHONE CHEMTREC Day or Night Within USA and Canada: 1-800-424-9300 NSW Poisons Information Centre: 131 126 USES Adjuvant; Androgen SECTION 2: HAZARDS IDENTIFICATION GHS CLASSIFICATION Toxic to Reproduction (Category 2) PICTOGRAM SIGNAL WORD Warning HAZARD STATEMENT(S) Reproductive effector, prohormone. Suspected of damaging fertility or the unborn child. May cause harm to breast-fed children. Causes serious eye irritation. Causes skin and respiratory irritation. Very toxic to aquatic life with long lasting effects. AUSTRALIA-ONLY HAZARDS Not Applicable. PRECAUTIONARY STATEMENT(S) Prevention Wash thoroughly after handling. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Do not breathe dusts or mists. Do not eat, drink or smoke when using this product. Avoid contact during pregnancy/while nursing. Wear protective gloves, protective clothing, eye protection, face protection. Avoid release to the environment. Response IF ON SKIN (HAIR): Wash with plenty of water.
    [Show full text]
  • Human DHEA ELISA Kit (ARG80949)
    Product datasheet [email protected] ARG80949 Package: 96 wells Human DHEA ELISA Kit Store at: 4°C Summary Product Description ARG80949 DHEA ELISA Kit is an Enzyme Immunoassay kit for the quantification of DHEA in human serum and plasma (EDTA). Tested Reactivity Hu Tested Application ELISA Target Name DHEA Sensitivity 0.07 ng/ml Sample Type Serum and plasma (EDTA). Standard Range 0.3 - 30 ng/ml Sample Volume 25 μl Application Instructions Assay Time 1 h (RT/shaker), 30 min (dark) Properties Form 96 well Storage instruction Store the kit at 2-8°C. Keep microplate wells sealed in a dry bag with desiccants. Do not expose test reagents to heat, sun or strong light during storage and usage. Please refer to the product user manual for detail temperatures of the components. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Background Dehydroepiandrosterone (DHEA; androstenolone; 3b-hydroxy-5-androsten-17-one) is a C19 steroid produced in the adrenal cortex and, to a lesser extent, gonads. DHEA serves as a precursor in testosterone and estrogen synthesis. Due to the presence of a 17-oxo (rather than hydroxyl) group, DHEA has relatively weak androgenic activity, which has been estimated at ~10% that of testosterone. However in neonates, peripubertal children and in adult women, circulating DHEA levels may be several- fold higher than testosterone concentrations, and rapid peripheral tissue conversion to more potent androgens (androstenedione and testosterone) and estrogens may occur. Moreover, DHEA has relatively low affinity for sex-hormone binding globulin. These factors may enhance the physiologic biopotency of DHEA.
    [Show full text]
  • A10 Anabolic Steroids Hardcore Info
    CONTENTS GENERAL INFORMATION 3 Anabolic steroids – What are they? 4 How do they Work? – Aromatisation 5 More molecules – More problems 6 The side effects of anabolic steroids 7 Women and anabolic steroids 8 Injecting steroids 9 Abscesses – Needle Exchanges 10 Intramuscular injection 11 Injection sites 12 Oral steroids – Cycles – Stacking 13 Diet 14 Where do steroids come from? Spotting a counterfeit 15 Drug Information – Drug dosage STEROIDS 16 Anadrol – Andriol 17 Anavar – Deca-Durabolin 18 Dynabolon – Durabolin – Dianabol 19 Esiclene – Equipoise 20 Primobolan Depot – Proviron – Primobolan orals – Pronobol 21 Sustanon – Stromba, Strombaject – Testosterone Cypionate Testosterone Enanthate 22 Testosterone Propionate – Testosterone Suspension 23 Trenbolone Acetate – Winstrol OTHER DRUGS 24 Aldactone – Arimidex 25 Clenbuterol – Cytomel 26 Ephedrine Hydrochloride – GHB 27 Growth Hormone 28 Insulin 30 Insulin-Like Growth Factor-1 – Human Chorionic Gonadotrophin 31 Tamoxifen – Nubain – Recreational Drugs 32 Steroids and the Law 34 Glossary ANABOLIC STEROIDS People use anabolic steroids for various reasons, some use them to build muscle for their job, others just want to look good and some use them to help them in sport or body building. Whatever the reason, care needs to be taken so that as little harm is done to the body as possible because despite having muscle building effects they also have serious side effects especially when used incorrectly. WHAT ARE THEY? Anabolic steroids are man made versions of the hormone testosterone. Testosterone is the chemical in men responsible for facial hair, deepening of the voice and sex organ development, basically the masculine things Steroids are in a man. used in medicine to treat anaemia, muscle weakness after These masculine effects surgery etc, vascular are called the androgenic disorders and effects of testosterone.
    [Show full text]
  • Intrarosa™ (Prasterone)
    Intrarosa™ (prasterone) – New Drug Approval • On November 17, 2016, the FDA announced the approval of Endoceutics’ Intrarosa (prasterone), for the treatment of moderate to severe dyspareunia, a symptom of vulvar and vaginal atrophy (VVA), due to menopause. • Approximately 50% of postmenopausal women suffer from VVA. The symptoms of VVA are vaginal dryness, pain during sexual activity (dyspareunia) and irritation and itching. • Intrarosa contains the active ingredient, prasterone that is also known as dehydroepiandrosterone (DHEA). Prasterone is an inactive endogenous steroid and is converted into active androgens and/or estrogens. — Although DHEA is included in some dietary supplements, the efficacy and safety of those products have not been established for diagnosing, curing, mitigating, treating or preventing any disease. • The efficacy of Intrarosa was evaluated in two 12-week placebo-controlled trials enrolling 813 postmenopausal women with moderate to severe dyspareunia. The four co-primary efficacy endpoints were severity of dyspareunia, the % of vaginal superficial cells, the % of parabasal cells, and vaginal pH. — The mean change in severity of dyspareunia was -0.87 vs. -1.27 (p = 0.0132) in trial 1 and -1.06 vs. -1.42 (p = 0.0002) in trial 2 for placebo vs. Intrarosa, respectively. — The mean change in % superficial cells was 0.91% vs. 5.62% (p < 0.0001) in trial 1 and 1.75% vs. 10.2% (p < 0.0001) in trial 2 for placebo vs. Intrarosa, respectively. — The mean change in % parabasal cells was -1.62% vs. -47.4% (p < 0.0001) in trial 1 and -11.98% and -41.51% (p < 0.0001) in trial 2 for placebo vs.
    [Show full text]
  • The Effects of Dehydroepiandrosterone Sulfate on Counterregulatory Responses During Repeated Hypoglycemia in Conscious Normal Rats Darleen A
    The Effects of Dehydroepiandrosterone Sulfate on Counterregulatory Responses During Repeated Hypoglycemia in Conscious Normal Rats Darleen A. Sandoval, Ling Ping, Ray Anthony Neill, Sachiko Morrey, and Stephen N. Davis ␮ ⅐ ؊1 ⅐ ؊1 We previously determined that both antecedent hy- mol/l kg min ; P < 0.05). In summary, day-1 poglycemia and elevated cortisol levels blunt neu- antecedent hypoglycemia blunted neuroendocrine and roendocrine and metabolic responses to subsequent metabolic responses to next-day hypoglycemia. How- hypoglycemia in conscious, unrestrained rats. The adre- ever, simultaneous DHEA-S infusion during antecedent nal steroid dehydroepiandrosterone sulfate (DHEA-S) hypoglycemia preserved neuroendocrine and metabolic has been shown in several studies to oppose corticoste- counterregulatory responses during subsequent hypo- roid action. The purpose of this study was to determine glycemia in conscious rats. Diabetes 53:679–686, 2004 if DHEA-S could preserve counterregulatory responses during repeated hypoglycemia. We studied 40 male Sprague-Dawley rats during a series of 2-day protocols. he Diabetes Control and Complications Trial Day 1 consisted of two 2-h episodes of 1) hyperinsuline- mic (30 pmol ⅐ kg؊1 ⅐ min؊1) euglycemia (6.2 ؎ 0.2 established that intensive glucose control in type ANTE EUG), 2) hyperinsulinemic eug- 1 diabetic patients can slow the progression or ;12 ؍ mmol/l; n -plus simultaneous Tsignificantly reduce the onset of diabetic micro (8 ؍ lycemia (6.0 ؎ 0.1 mmol/l; n intravenous infusion of DHEA-S (30 mg/kg; ANTE EUG vascular complications (e.g., retinopathy, nephropathy, ؉ DHEA-S), 3) hyperinsulinemic hypoglycemia (2.8 ؎ neuropathy) (1). Unfortunately, the study also established ANTE HYPO), or 4) hyperinsulinemic that intensive glucose treatment causes an approximate ;12 ؍ mmol/l; n 0.1 -with simulta- threefold increase in the frequency of severe hypoglyce (8 ؍ hypoglycemia (2.8 ؎ 0.1 mmol/l; n neous intravenous infusion of DHEA-S (30 mg/kg; ANTE mia (2).
    [Show full text]
  • Assessment Report for Zytiga (Abiraterone) Procedure
    21 July 2011 EMA/CHMP/542871/2011 Committee for Medicinal Products for Human Use (CHMP) Assessment Report For Zytiga (abiraterone) Procedure No.: EMEA/H/C/002321 Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimle +44 (0)20 7523 7455 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union TABLE OF CONTENTS 1. Background information on the procedure .............................................. 5 1.1. Submission of the dossier .................................................................................... 5 1.2. Steps taken for the assessment of the product........................................................ 5 2. Scientific discussion................................................................................ 6 2.1. Introduction....................................................................................................... 6 2.2. Quality aspects .................................................................................................. 8 2.2.1. Introduction.................................................................................................... 8 2.2.2. Active Substance ............................................................................................. 9 2.2.3. Finished Medicinal Product .............................................................................. 10 2.2.4. Discussion on chemical, pharmaceutical
    [Show full text]
  • DHEA Sulfate, and Aging: Contribution of the Dheage Study to a Sociobiomedical Issue
    Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge Study to a sociobiomedical issue Etienne-Emile Baulieua,b, Guy Thomasc, Sylvie Legraind, Najiba Lahloue, Marc Rogere, Brigitte Debuiref, Veronique Faucounaug, Laurence Girardh, Marie-Pierre Hervyi, Florence Latourj, Marie-Ce´ line Leaudk, Amina Mokranel, He´ le` ne Pitti-Ferrandim, Christophe Trivallef, Olivier de Lacharrie` ren, Stephanie Nouveaun, Brigitte Rakoto-Arisono, Jean-Claude Souberbiellep, Jocelyne Raisonq, Yves Le Boucr, Agathe Raynaudr, Xavier Girerdq, and Franc¸oise Foretteg,j aInstitut National de la Sante´et de la Recherche Me´dicale Unit 488 and Colle`ge de France, 94276 Le Kremlin-Biceˆtre, France; cInstitut National de la Sante´et de la Recherche Me´dicale Unit 444, Hoˆpital Saint-Antoine, 75012 Paris, France; dHoˆpital Bichat, 75877 Paris, France; eHoˆpital Saint-Vincent de Paul, 75014 Paris, France; fHoˆpital Paul Brousse, 94804 Villejuif, France; gFondation Nationale de Ge´rontologie, 75016 Paris, France; hHoˆpital Charles Foix, 94205 Ivry, France; iHoˆpital de Biceˆtre, 94275 Biceˆtre, France; jHoˆpital Broca, 75013 Paris, France; kCentre Jack-Senet, 75015 Paris, France; lHoˆpital Sainte-Perine, 75016 Paris, France; mObservatoire de l’Age, 75017 Paris, France; nL’Ore´al, 92583 Clichy, France; oInstitut de Sexologie, 75116 Paris, France; pHoˆpital Necker, 75015 Paris, France; qHoˆpital Broussais, 75014 Paris, France; and rHoˆpital Trousseau, 75012 Paris, France Contributed by Etienne-Emile Baulieu, December 23, 1999 The secretion and the blood levels of the adrenal steroid dehydro- number of consumers. Extravagant publicity based on fantasy epiandrosterone (DHEA) and its sulfate ester (DHEAS) decrease pro- (‘‘fountain of youth,’’ ‘‘miracle pill’’) or pseudoscientific asser- foundly with age, and the question is posed whether administration tion (‘‘mother hormone,’’ ‘‘antidote for aging’’) has led to of the steroid to compensate for the decline counteracts defects unfounded radical assertions, from superactivity (‘‘keep young,’’ associated with aging.
    [Show full text]
  • Spironolactone for Adult Female Acne
    ® PPracticalEDIATRIC DERMATOLOGY Pearls From the Cutis Board Spironolactone for Adult Female Acne Many cases of acne are hormonal in nature, meaning that they occur in adolescent girls and women and are aggravated by hormonal fluctuations such as those that occur during the menstrual cycle or in the setting of underlying hormonal imbalances as seen in polycystic ovary syndrome. For these patients, antihormonal therapy such as spironolactone is a valid and efficacious option. Herein, initiation and utilization of this medication is reviewed. Adam J. Friedman, MD copy What should you do during the first Evaluation of these women with acne for the visit for a patient you may start possibility of hormonal imbalance may be necessary, on spironolactone? with the 2 most common causes of hyperandrogen- Some women will come in asking about spironolac- ismnot being polycystic ovary syndrome and congeni- tone for acne, so it is important to identify potential tal adrenal hyperplasia. The presence of alopecia, candidates for antihormonal therapy: hirsutism, acanthosis nigricans, or other signs of • Women with acne flares that cycle androgen excess, in combination with dysmenor- with menstruation Dorhea or amenorrhea, may be an indication that the • Women with adult-onset acne or persistent- patient has an underlying medical condition that recurrent acne past teenaged years, even needs to be addressed. Blood tests including testos- in the absence of clinical or laboratory signs terone, dehydroepiandrosterone, follicle-stimulating of hyperandrogenism hormone, and luteinizing hormone would be appro- • Women on oral contraceptives (OCs) who priate screening tests and should be performed dur- exhibit moderate to severe acne, especially ing the menstrual period or week prior; the patient with a hormonal patternCUTIS clinically should not be on an OC or have been on one within • Women not responding to conventional ther- the last 6 weeks of testing.
    [Show full text]