Early Edition

Total Page:16

File Type:pdf, Size:1020Kb

Early Edition National Aeronautics and Space Administration Early Edition Age of the Universe: Cosmic Times Size of the Universe: Infinite 1919 300,000 Light Years Sun’s Gravity Bends Starlight— Einstein’s Theory Triumphs ir Joseph Thompson said, Sir Joseph made this announce­ stein said that the change in the “One of the greatest...of ment at a meeting of both the light’s position could be measured Sachievements in the history Royal Society and the Royal As­ by taking photographs of the star of human thought” was a new pre­ tronomical Society in London on when its light is passing close to diction Dr. Albert Einstein made. November 6, 1919. A large num­ the Sun, then photographed again This prediction was proven true ber of astronomers and physicists later in the year when the distant during the total eclipse of the Sun were at the meeting. Everyone star’s light is not passing close on May 29, 1919. His prediction was very excited, and they all to the Sun. These photographs was that light bends around large, agreed that observations made must be taken very carefully and massive objects like the Sun. during the eclipse proved Dr. Ein­ very precisely. However, what makes the predic­ stein’s prediction to be correct. Dr. tion different from other predic­ Albert Einstein is a Professor of Dr. Einstein’s General Theory of tions is that Einstein said the light Physics at the University of Ber­ Relativity explains that “gravity” bends around objects twice as lin and also the Director of Kaiser and “inertia” are the same. The much as what Sir Isaac Newton Wilhelm Physical Institute in Ger­ “force” of gravity pressing you said it should two hundred years many. down on a chair is the same force ago. you feel when the automobile you The Prediction are riding in quickly slows down, and you keep moving forward. Dr. Two hundred years ago, Sir Isaac Einstein says gravity, like inertia, Newton explained how gravity does not pull an object (this is dif­ works in his book, Optics. New- ferent than what Newton said). ton said if a ray of light from a Instead, anything in space that distant star passes by the edge has mass will warp and curve of a large or massive object, then both space and time around the the ray of light should be bent by object. Dr. Einstein also says that the gravity of that object. Newton the amount of curvature is directly thought gravity was a force that related to the mass of the object. pulled things toward an object. The more mass an object has, The more mass an object has, the the stronger the curve around the stronger its pull would be. The ob­ object. This curvature of space is ject with the largest mass near the what curves the path of light com­ Earth is the Sun. Based on New­ ing from a distant star. ton’s ideas, light from a distant As stated earlier, Dr. Einstein’s star shining just at the edge of the highly mathematical prediction Image credit: Ferdinand Schmutzer, via Wikimedia Commons Sun would be bent a very small was that the Sun’s gravity should amount by the Sun’s gravity. Ein­ Albert Einstein “Gravity” continued on page 2 2 “Gravity” continued from page 1 bend starlight twice as much as Newton’s earlier calculations said it should. May’s Solar Eclipse Dr. Einstein published his predic­ tion in Germany four years ago, in 1915, during the Great War between England and Germany. During that time, a Dutch astrono­ mer smuggled a copy of Dr. Ein­ stein’s research paper out of Eu­ rope and into England. Once the paper was safe in England, Arthur Stanley Eddington, the Plumar­ ian professor of Astronomy and Experimental Philosophy at Cam­ Image credit: Royal Observatory Greenwich bridge University, read Einstein’s Map showing the path of the moon’s shadow during May’s eclipse, stretching prediction. Eddington’s position at from South America to Africa. Cambridge University is the same one Newton held when he came up with his Theory of Gravity. eclipse. Sir Frank Dyson agreed, vatory, led by Dr. Crommelin, ar­ and sent Dr. Andrew Crommelin rived in Brazil in June of 1919 in Other astronomers had read ear­ and his group to northern Brazil to time to get ready for the eclipse lier versions of Einstein’s research view and photograph the eclipse. and to photograph groups of stars and already tried to test his pre­ in the sky. Early on the day of dictions during total solar eclipses As long as the weather was clear the eclipse, they were nervous in 1912 and 1914. However, they at one of the two places on the day because it was cloudy. But later were not successful in their at­ of the eclipse, it would be possible on the clouds cleared and the tempts due to cloudy weather in to take pictures. They needed to group’s observations were made 1912 and the start of the Great take pictures of the totally eclipsed with almost complete success. War in 1914. When astronomers Sun along with some of the bright The group stayed in Brazil until studied the conditions of the up­ stars that appeared close to the July so they could also take pic­ coming 1919 eclipse, it seemed Sun. tures of the same group of stars that the Sun would be in a good during a time when their light did position, right in the middle of a Results Discussed not pass by the Sun. By July, the group of bright stars. Also, the Sun had moved away from this Sun’s light would be totally blocked Later, at the meeting in London group of stars. Once they took the by the Moon for more than five in November, Sir Frank Dyson second set of photographs, they minutes, which would give pho­ described the work of the two returned to Greenwich, England, tographers enough time to take groups. The reason for the meet­ where each photographic plate pictures of the Sun and the stars ing was to decide if Einstein’s pre­ was carefully measured two times at the same time. diction was correct. They wanted each. to see if the light coming from the Professor Eddington decided to stars was bent (deflected) by the The other group from Cambridge lead a group to the island of Prin­ Sun as the stars’ light passed by University arrived on the island of cipe, near the coast of Africa, the Sun. Sir Frank said that if the Principe on April 23, 1919. But where the eclipse could be pho­ Sun did bend the light, the stars there were problems on the island tographed. He also convinced Sir would seem farther away from the with clouds. “We soon realized Frank Dyson, the Director of the Sun than they actually were. The that the prospects of a clear sky Royal Observatory to send an­ group also had to figure out how at the end of May were not very other group to a different location. far out of position the stars would good,” said Professor Eddington. This would increase their chances be on the photographic plates. At the beginning of the eclipse, of success, reducing the chance that clouds would block the The group from the Royal Obser­ “Gravity” continued on page 3 3 “Gravity” continued from page 2 Why a Total Solar ? the sky was completely cloudy. Eclipse About half an hour before the complete eclipse, or “totality,” the oth Sir Isaac Newton and Dr. Albert Einstein predicted that a group was able to catch glimpses ray of light from a star passing very close to the edge of the of the Sun through the clouds. BSun (as seen from Earth) will be bent, or deflected. A bend They took photographs just as in the star’s light would make the star look slightly farther away from they had planned, but only two the edge of the Sun than it really is. out of the 16 photographic plates showed enough stars to measure. Dr. Einstein’s Theory of Relativity predicts that the amount of deflec­ Unlike the group from the Royal tion should be twice as much as the amount of deflection Newton Observatory who stayed until predicted. July to take a second set of pho­ tographs, the Cambridge Univer­ The astromers would get better accuracy of their measurements the sity group was not able to stay on more stars there were near the Sun in the sky during the eclipse. Principe Island to take a second They would also get better results the more pictures they could take set of photographs to compare during the eclipse. This would give them better accuracy when the first photos to. comparing Dr. Einstein’s predictions to Newton’s predictions. Each year, on May 29th, as the Earth revolves around the Sun, the Sun During the meeting, Sir Frank ex­ appears to pass in front of a cluster of stars in the constellation Tau­ plained how they made observa­ rus. The cluster of stars, called Hyades, is so bright that they are tions, the equipment they used, clearly visible without a telescope during the winter in the night sky. and how the photographic plates were measured back at the Green­ wich Observatory. He also talked The only way this star cluster could be viewed on May 29th would about how the star positions dur­ be if the Sun was totally eclipsed and its light was blocked. On May ing the eclipse compared to their 29, 1919, a total eclipse happened, which allowed Dr.
Recommended publications
  • Chapter I Review Papers Harlow Shapley
    Chapter I Review Papers Harlow Shapley Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.40, on 25 Sep 2021 at 08:30:59, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0074180900042340 Helen Sawyer Hogg and Willis Shapley remembering Willis Shapley fielding questions on his father Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.40, on 25 Sep 2021 at 08:30:59, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0074180900042340 SHAPLEY'S DEBATE Michael Hoskin Cambridge University The attempt to make three-dimensional sense of the Milky Way goes back to a most unlikely origin: the English antiquary of the early eighteenth century, William Stukeley, remembered today for associating the Druids with Stonehenge. Stukeley came from Lincolnshire and so was a fellow-countryman of Isaac Newton, and as a result he was privileged to talk with the great man from time to time. In his Memoirs of Newton Stukeley records one conversation they had in about 1720, in which Stukeley proposed that the Sun and the brightest stars of the night sky make up what we today would term a globular cluster, and this cluster is surrounded by a gap, outside of which lie the small stars of the Milky Way in the form of a flattened ring. Stukeley's remarkable suggestion was recorded only in his manuscript memoirs, and had no effect on the subsequent history of astronomy.
    [Show full text]
  • Our Milky Way.Key
    Our Milky Way Learning Objectives ! What is the Milky Way? The Herschels thought we were at the center of our Galaxy...why were they wrong? ! How did Shapley prove we aren’t at the center? What are globular clusters? Cepheid Variable stars? ! How do we use Cepheid Variables to measure distance? ! What are the components of our Galaxy? What color are old stars? Young stars? Does our Galaxy get older or younger as you move out (i.e. from the disk to the halo)? ! How do we know our Galaxy is a spiral galaxy? ! Do stars in our Galaxy’s disk orbit as Kepler’s Laws would predict? What is a rotation curve? Why does our Galaxy’s rotation curve suggest dark matter exists? The Milky Way ! Our Galaxy is a collection of stars, nebulae, molecular clouds, and stellar remnants ! All bound together by gravity ! Connected by the stellar evolution cycle Determining the Shape of our Galaxy ! The number of 6400 ly stars were counted in all directions from 1300 ly the Sun by Sun Caroline Herschel and her brother William ! They assumed that all stars have the same brightness and that space contains no dust – these are incorrect assumptions ! They thus concluded that the Sun is at the center of the Universe - which is not true The Importance of Dust ! Dust dims and reddens starlight ! There is more dust toward the center of the Galaxy ! Consequence: We underestimate the number of stars in one direction ! We appear to be near the center, but we’re not Us Star Sun Can’t see stars here (if we’re looking for blue light from them) How Do We Find the Galactic Center?
    [Show full text]
  • At the Harvard Observatory
    Book Reviews 117 gravitational wave physicists, all of whom are members of an international group of over a thousand scientists engaged with the detection apparatus at two widely separated sites, one in Livingston, Louisiana and the other in Hanford, Washington. The emails research- ers in the collaboration exchanged and the queries Collins sent to the physicists who acted for him as “key informants” provide the bulk of the material for Collins’ “real- time” observations of this discovery in the making. At times, Collins finds the community of researchers exasperating and wrong-headed in their, in his view, overly secretive attitudes to their results. But Collins is not a detached witness of the events he describes and analyses. Instead, he is overall a highly enthusias- tic fan of the gravitational wave community. Collins has not sought out for Gravity’s Kiss the kinds of evidence one might have expected a historian to have pursued. Gravity’s Kiss, however, should be read on its terms. It is a work of reportage from an “embedded” sociologist of science with long experience of, and valuable connections in, the gravitational wave community. Along the way, he offers sharp insights into the work- ing of these scientists. Collins proves to be an excellent guide to the operations of a “Big Science” collaboration and the intense scrutiny of, and complicated negotiations around, the “[v]ery interesting event on ER8.” Robert W. Smith University of Alberta [email protected] “Girl-Hours” at the Harvard Observatory The Glass Universe: How the Ladies of the Harvard Observatory Took the Measure of the Stars.
    [Show full text]
  • Astronomy HOMEWORK Chapter 15
    Astronomy HOMEWORK Chapter 15 1. Where in the Galaxy is the solar system located? a. in the nucleus; b. in the halo; c. in a spiral arm; d. between two spiral arms; e. in the central bulge. d. between two spiral arms. Also, 26,000 LY from the center. 2. What is located in the nucleus of the Galaxy? a. a globular cluster; b. a spiral arm; c. a black hole; d. the solar system; e. a MACHO. c. a black hole. Of 4 million M⊙. 3. Which statement about the Milky Way Galaxy is correct? a. Our Galaxy is but one of many galaxies. b. Our Galaxy contains all stars in the universe. c. All stars in our Galaxy take the same time to complete one orbit. d. Most stars in our Galaxy are in the central bulge. e. None of the stars in our Galaxy move. a. Our Galaxy is but one of many [billions] of galaxies in the universe. 5. How did Edwin Hubble prove that M31 is not a nebula in our Milky Way Galaxy? M31 is the Andromeda Galaxy, called “Andromeda Nebula” at the time. Hubble identified several stars in M31 as Cepheid variables, and measured their pulsation periods and apparent brightness. He then used the known relationship between period and luminosity of Cepheid variables to determine their luminosity. Finally, he used the inverse square law to obtain their distance. Their distance put them many times farther away than the size of our Galaxy, which Shapley had determined in 1915. If they are farther away than the size of our Galaxy, they have to be outside it.
    [Show full text]
  • Discoveries 1917 100” Hooker Telescope on Mt
    Discoveries 1917 100” Hooker telescope on Mt. Wilson 1920 “Debate on the Scale of the Universe” Interpretaon of the “Spiral Nebulae” Harlow Shapley “only gas clouds” within a single galacc Universe Sun far from the center Heber CurGs Sun at the center of our relavely small galaxy all the spiral nebulae are other galaxies Measure the size – HOW?? Fall 2018 1 Yardstck 1.Brightness (magnitude) 2.Parallax 3.Cepheid Variables November 23, 1924 Edwin Hubble, 35, published in the New York Times his discovery that there were many galaxies further away from the Milky Way. Fall 2018 2 MMilkyilky Way 1838 Discovery of stellar parallax 1838 Discovery of stellar parallax (F.Bessel) ) 1 1 1 Parsec = Parsec = = = 3.263.26 ly P (arcsec) (arcsec) 1 1 Mpc = 10= 106 parsecs = 3.26 million lightyears parsecs = 3.26 million lightyears Fall 2018 Fall 2018 213 Cepheid Variables At Harvard (Society For the Collegiate InstrucGon of Women) Oberlin and Radcliff Colleges she was capGvated by Astronomy. Variable stars vary periodically in brightness HenrieUa LeaviU HenrieUa found ~50) Cepheid variables Fall 2018 4 Edwin Hubble ! Confirmed the extra galacGc nature of nebulae using Cepheid variable yardsGck ! Observed that every galaxy appears to be moving away from every other one Farthest ones moving faster Fall 2018 5 Velocit measurement Doppler Effect Aer Einstein Fall 2018 6 Speed vs. Distance Fall 2018 7 Hubble Constant Not constant! Fall 2018 8 What is going on? Q1 Moving away? – the track back and find where they started Finally Copernicus is verified – we are not
    [Show full text]
  • How Telescopes Changed Our Understanding of Our Universe - Suggested Script PRESENTATION NOTE: This Presentation Can Take 45 Minutes to an Hour
    - How Telescopes Changed our Understanding of our Universe - Suggested Script PRESENTATION NOTE: This presentation can take 45 minutes to an hour. To shorten it, you may want to allow your audience to vote on the three or four questions they would like discussed. See Slide 3 for the questions covered in this presentation. 1. 400 years ago, before telescopes, our understanding of the universe was very different. This is what was believed: We live on a spherical ball orbited by the rest of a finite, spherical universe. Earth does not move. It is the center of the universe. Our Sun orbits the Earth, as do all the other planets and the Moon. The stars are distant objects, always perfect and unchanging. How did telescopes & associated technologies unlock the secrets of the universe and help us toward the understanding we have today where Earth is no longer at the center of the universe? Instead, we know that ours is a small planet orbiting a star in the suburbs of a large galaxy filled with billions of other stars and planets, surrounded by billions of other galaxies becoming increasingly ever distant from each other by the expansion of space. This is the story of how telescopes continuously changed our understanding of the universe and our place in it - transforming our view of our universe. And we still have much more to discover! 2. Before telescopes, we could only use our eyes and a variety of measuring instruments to plot the positions and movements of objects in the sky to create a limited understanding of our universe.
    [Show full text]
  • 1929NL Homeed.Pdf
    National Aeronautics and Space Administration Home Edition Age of the Universe: Cosmic Times Size of the Universe: 2 Billion Years 1929 280 Million Light Years Andromeda Nebula lies outside the Milky Way Galaxy Spiral Nebulae are indeed “Island Universes” stronomer Edwin Hubble, inch reflector partially resolved a of the Mount Wilson few of the nearest, neighboring AObservatory at Pasadena, [spiral] nebulae into swarms of California, has solved the mystery stars.” One of the nearby nebulae of the spiral nebulae. The spiral Dr. Hubble photographed was the nebulae look like hazy pin-wheels Andromeda Nebula. He estimates in the sky. He has determined it is as large as the Milky Way that these objects are much more and holds as much matter. It may distant than previously thought. contain some three to four billion Therefore, they are distant galaxies stars that produce one-billion times and not part of our own Milky Way the light of the Sun. galaxy. In the process, Dr. Hubble was also able to determine the These photographs showed there distance to the spiral Andromeda were individual stars in the nebula. Nebula. They also showed some of the stars changed in brightness over Dr. Hubble’s observations support time. Known as Cepheid variable Image credit: Hale Observatories, courtesy AIP Emilio Segre Visual Archives the views Dr. Heber Curtis stars, these stars were the key Edwin Hubble at Mount Wilson Obser- expressed in a debate with Dr. to determining distances to the vatory Harlow Shapley in 1920. Curtis nebulae. The true brightness of stated that bright diffuse nebulae the Cepheids in the nebulae Swan Leavitt of the Harvard College are fairly close to Earth and are Hubble studied was known from Observatory and by Dr.
    [Show full text]
  • Cecilia Payne-Gaposchkin Brief Life of a Breakthrough Astronomer: 1900-1979 by Donovan Moore
    VITA Cecilia Payne-Gaposchkin Brief life of a breakthrough astronomer: 1900-1979 by donovan moore ffirmative actionfor portraits,” was how Nobel laure- laureate Ernest Rutherford, would look directly at her and begin each ate Dudley R. Herschbach, Baird professor of science, de- lecture with, “Ladies and gentlemen.” She recalled that “all the boys Ascribed the oil painting of Cecilia Payne-Gaposchkin that regularly greeted this witticism with thunderous applause…and at he and his wife, associate dean of the College Georgene Botyas Her- every lecture I wished I could sink into the earth.” schbach, had commissioned. For years, he had argued that there Unable to get an astronomy job in England when she graduated, were too few women on the faculty, and too little recognition for she applied for a fellowship at the Harvard College Observatory. Its the few there were. The portrait would hang in University Hall’s director, Harlow Shapley, offered her a $500 stipend. Arriving in the Faculty Room where, in the winter of 2002, there was only one oth- fall of 1923, she met the observatory’s hard-working women “comput- er painting of a woman: historian Helen Maud Cam. ers” who across four decades had produced nine 250-page volumes At the dedication, Jeremy Knowles, dean of the Faculty of Arts of stellar spectra. Those stellar data, etched into thousands of glass and Sciences, told the audience: “Every high-school student knows plates, made up a giant jigsaw puzzle waiting for the right person to that Newton discovered gravity, that Darwin discovered evolution, fit it together.
    [Show full text]
  • The Cosmic Web: Mysterious Architecture
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Chapter 1 Hubble Discovers the Universe It is fair to say that Edwin Hubble discovered the universe. Leeuwen- hoek peered into his microscope and discovered the microscopic world; Hubble used the great 100- inch- diameter telescope on Mount Wilson in California to discover the macroscopic universe. Before Hubble, we knew that we lived in an ensemble of stars, which we now call the Milky Way Galaxy. Th is is a rotating disk of 300 bil- lion stars. Th e stars you see at night are all members of the Milky Way. Th e nearest one, Proxima Centauri, is about 4 light- years away. Th at means that it takes light traveling at 300,000 kilometers per second about 4 years to get from it to us. Th e distances between the stars are enormous— about 30 million stellar diameters. Th e space between the stars is very empty, better than a laboratory vacuum on Earth. Sirius, the brightest star in the sky, is about 9 light- years away. Th e Milky Way is shaped like a dinner plate, 100,000 light- years across. We are located in this thin plate. When we look perpendicular to the plate, we see only those stars that are our next- door neighbors in the plate; most of the stars in these directions are less than a few hundred light- years away. We see about 8,000 naked- eye stars scattered over the entire sky; these are all our nearby neighbors in the plate, a tiny sphere of stars nestled within the thin width of the plate.
    [Show full text]
  • Galactic and Extragalactic Studies, I. Notes on Fornax
    VOL. 25, 1939 ASTRONOMY: H. SHAPLEY 565 GALACTIC AND EXTRAGALACTIC STUDIES, I. NOTES ON THE PECULIAR STELLAR SYSTEMS IN SCULPTOR AND FORNAX By HARLOW SHAPLEY HARVARD COLLEGE OBSERVATORY Communicated October 7, 1939 1. Results of a General Search.-The examination of one hundred and fifty-two small-scale plates, covering something more than fifteen thousand square degrees of the sky in galactic latitudes higher than 120°, has failed to show any other objects similar to the stellar systems in Sculptor and Fornax reported last year.' The plates were made at the Boyden Station, Bloemfontein, with the AX camera attached to the Bruce tele- scope; the exposures are each uniformly three hours in length; the scale is 1 mm = 11 5. Since the new objects in Sculptor and Fornax are readily shown on such plates, we must infer from the fruitless search that stellar systems of this sort are infrequent in the neighborhood of our Galaxy and probably not frequent within a million light years.2 In the course of the search, two new globular clusters and two new objects of the Magellanic Cloud type have been noted. The new globular clusters are in (or superposed upon) the Fornax system. One, of magnitude 14.2, is in the position 2h 35m 585, -34058' (1900), practically at the center of the system.3 The other, a loose globular cluster near the southern edge, is in the position 2h 34m 33S, _35°14', and of magnitude approximately 14.4. There is a third very faint cluster of unidentified character, magnitude 16.6:, at 2" 35m 56', -34°51', which is also prob- ably a part of the Fornax system.
    [Show full text]
  • Henry Norris Russell
    NATIONAL ACADEMY OF SCIENCES H ENRY NORRIS R USSELL 1877—1957 A Biographical Memoir by HARLO W S HAPLEY Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1958 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. HENRY NORRIS RUSSELL October 25, i8yy—February 18, BY HARLOW SHAPLEY ENRY NORRIS RUSSELL was born on October 25, 1877, in Oyster H Bay, New York, the son of a Presbyterian minister. His educa- tion was acquired principally at home until the age of twelve, and then at the Princeton Preparatory School and Princeton University; from the latter he was graduated in 1897 with the highest standing ever attained by a Princeton undergraduate. Throughout all of his mature life, as a member of the Princeton faculty, he lived at 79 Alexander Street, but spent many summers on the New England coast or in travel. Russell was awarded in due course all the formal distinctions that America's leading astronomer merited. He was made a foreign as- sociate of the Royal Societies of London, Edinburgh, and Belgium; Correspondent of the French Academy of Sciences, and Associate of the Royal Astronomical Society of London. His honorary degrees came from Dartmouth, Louvain, Harvard, Chicago, Michoacan (Mexico); his medals and prizes from the Royal Astronomical So- ciety of London, the French Academy (Lalande and Janssen), Na- tional Academy of Sciences (Draper), Astronomical Society of the Pacific (Bruce), American Academy of Arts and Sciences (Rum- ford), Franklin Institute (Franklin), and the American Philosophi- cal Society (John L.
    [Show full text]
  • Connecting the Scientific and Socialist Virtues of Anton Pannekoek
    CHAOKANG TAI* Left Radicalism and the Milky Way: Connecting the Scientific and Socialist Virtues of Anton Pannekoek ABSTRACT Anton Pannekoek (1873–60) was both an influential Marxist and an innovative astronomer. This paper will analyze the various innovative methods that he developed to represent the visual aspect of the Milky Way and the statistical distribution of stars in the galaxy through a framework of epistemic virtues. Doing so will not only emphasize the unique aspects of his astronomical research, but also reveal its connections to his left radical brand of Marxism. A crucial feature of Pannekoek’s astronomical method was the active role ascribed to astronomers. They were expected to use their intuitive ability to organize data according to the appearance of the Milky Way, even as they had to avoid the influence of personal experience and theoretical presuppositions about the shape of the system. With this method, Pannekoek produced results that went against the Kapteyn Universe and instead made him the first astronomer in the Netherlands to find supporting evidence for Harlow Shapley’s extended galaxy. After exploring Pannekoek’s Marxist philosophy, it is argued that both his astronomical method and his interpretation of historical materialism can be seen as strategies developed to make optical use of his particular conception of the human mind. *Institute for Theoretical Physics Amsterdam, Anton Pannekoek Institute for Astronomy, and Vossius Center for History of Humanities and Sciences, University of Amsterdam, Science Park 904,POBox94485,
    [Show full text]