Cosmic Times

Total Page:16

File Type:pdf, Size:1020Kb

Cosmic Times National Aeronautics and Space Administration Early Edition Age of the Universe: Cosmic Times Size of the Universe: 2 Billion Years 1929 280 Million Light Years Andromeda Nebula Lies Outside Milky Way Galaxy Spiral Nebulae are indeed “Island Universes” stronomer Edwin Hubble of the Mount Wilson Observa­ Atory at Pasadena, Califor­ nia has solved a mystery. Spiral nebulae in our universe have been a mystery to astronomers. Nebu­ lae look like fuzzy pinwheels in the sky. Astronomers weren’t sure if these nebulae were in our own galaxy or outside of it. Hubble figured out that these objects are much farther away than other as­ tronomers thought. That means they are distant galaxies and not a part of our own Milky Way Galaxy. While figuring this out, Dr. Hubble also figured out how far away the Image credit: Hale Observatories, courtesy AIP Emilio Segre Visual Archives Andromeda Galaxy is from us. Edwin Hubble Dr. Hubble’s observations support Dr. Heber Curtis’ views. In a de­ reflecting telescope in the orld.w showed that there were individu­ bate with Dr. Harlow Shapley in Hubble said that the telescope fo­ al stars in the nebula. They also 1920, Dr. Curtis said that bright, cused a few of the closest, neigh­ showed that some of the stars spread-out nebulae are fairly boring spiral nebulae into swarms changed in brightness over time. close to earth and are a part of of stars. One of the nebulae was These changing stars, known as the Milky Way. Spiral nebulae, on the Andromeda Nebula. Hubble Cepheid variable stars, were the the other hand, are much farther estimates that the Andromeda key in figuring out distances to away and are not part of the Milky Nebula is as large and holds as nebulae. In the nebulae Hubble Way. much matter as the Milky Way studied, the true brightness of Galaxy. The Andromeda Nebula the Cepheids was known based On December 30, 1924, Dr. Hub­ might contain three to four billion on how Cepheid stars change ble announced that he had taken stars that make one billion times in brightness. Scientists had al­ photographs of a few bright spiral the light of the Sun. ready known how light dims over nebulae with the Mt. Wilson Hook­ a distance. That means the dis­ er telescope, which is the largest The photographs Hubble took tance to the star and the nebula “Andromeda ” continued on page 2 2 “Andromeda” continued from page 1 the star is located in can both be Classifying Nebulae found by comparing the apparent brightness of the Cepheid stars to or over a thousand years, their true brightness. astronomers have won­ Fdered about nebulae. Spiral galaxies Dr. Hubble’s work builds on the Nebulae appear to be faint earlier work of Miss Henrietta clouds of gas and dust far off in Swan Leavitt of the Harvard Col­ the universe. Until recently, there lege Observatory and the work of haven’t been enough observa­ Dr. Harlow Shapley of the Mount tions of nebulae to put them into Wilson Observatory. categories. Images From NASA & STScI In 1912, Miss Leavitt was the first During his study of spiral nebu­ astronomer to see the importance lae, Dr. Hubble came up with a of the Cepheid variable stars. The Elliptical galaxies giant stars are named after the first system to classify all nebulae. star of its kind found—Delta Ce­ He put them into three basic cat­ phei in the constellation Cepheus. egories. These categories are When Miss Leavitt was studying elliptical, spiral, and irregular. the Cepheid stars in the Small The three categories are then di­ Magellanic Cloud, she saw that vided further based on the nebu­ the Cepheids would get brighter, lae’s shapes (like spherical to Images From NASA & STScI then fade, then get brighter again. elongated elliptical, for example) She also noticed that the length and structure (hazy to distinct of time, or period, it took for the spiral arms, barred spirals, etc.) Barred spiral galaxies star to go through this cycle was related to its true brightness. The Although Dr. Hubble’s system longer the period of the star, the shows an order of change based brighter the star. on the evolution of the nebu­ The Small Magellanic Cloud, lae, it was mainly based on the where Miss Leavitt was studying nebulae’s structural forms. Clas­ Cepheid stars, is a large group sification through photographic Images From NASA & STScI of stars visible in the southern classification should be the inde- hemisphere of the Earth. Since pendent consideration, Hubble Hubble classification of different all of the Cepheid stars she was said. Future study of the nebu­ types of galaxies (also called nebu- studying were in the Small Mag- lae will be the test for the new lae) ellanic Cloud, they were all about classification system. ♦ the same distance from Earth. So each Cepheid’s brightness was directly related to its period. clusters. He assumed that Ce­ or absolute magnitude, of each of pheids in distant globular clusters the stars. He then observed their Soon after Miss Leavitt’s discov­ act the same as closer Cepheids. apparent brightness, or apparent ery, Dr. Shapley started looking Based on that, he found that the magnitude. Once he knew the for Cepheids in globular star clus­ most distant clusters in the Milky difference between how bright a ters in our own Milky Way galaxy. Way galaxy are about 200,000 star looked and how bright it truly Globular clusters are ball-shaped light years away. was, he was able to calculate its groups of tens of thousands of distance from the Earth. He found densely packed stars. He used Dr. Hubble studied the periods of that the Andromeda nebula was Miss Leavitt’s period-brightness the Cepheid variable stars in the about 900,000 light years away. relationship to figure out the dis­ Andromeda nebula. He was able This is the most distant object tance to more than 230 globular to figure out the true brightness, known so far. ♦ 3 Universe is Expanding – “Red Shift” is Proof of Einstein’s General Theory sing the 100-inch Hooker nebulae are being pulled along as certain amount. Astronomers will Telescope at Mount Wilson space expands. need larger telescopes and new UObservatory, Dr. Edwin standard candles in order to mea­ Hubble has studied many spiral Hubble’s discoveries build on the sure even greater distances. nebulae. He has discovered that work of Dr. Vesto M. Slipher of they are moving away from us at Lowell Observatory in Flagstaff, A new instrument may help. Last a fast pace. This is strong evi­ AZ. In 1912, Dr. Slipher first re­ year, the Rockefeller Foundation dence of an expanding universe. corded the electromagnetic spec­ agreed to give 6 million dollars to He has also figured out that the tra of spiral nebulae. Almost all of pay for the construction of a new farther away a nebula, the faster it the 40 spectra Slipher gathered observatory with a 200-inch tele­ moves away. were red-shifted. This means that scope. This new telescope will most of them were moving away collect four times more light than Hubble and another astronomer from us. However, his study of the 100-inch telescope Hubble and colleague, Milton Humason, nebulae led him to the conclusion uses right now. measured the speeds and dis­ that they were moving away at tances of 24 of these nebulae. only 600 miles per second. Einstein’s General Theo­ Because they are moving so ry Holds True quickly, their light waves (electro­ Hubble’s work is a large break­ magnetic spectra) are stretched through in our understanding of The past decade has been an out. Because red light has the the universe. But there is still a exciting and challenging time for longest wavelength, this is known big question. How far out into the the development of scientific un­ as “redshift.” The team noticed universe does his model hold up? derstanding of the universe. Sci­ that dimmer, more distant objects The 100-inch telescope can show entists have been testing their have a larger redshift than objects Cepheid variable stars clearly in ideas about the universe against closer to Earth. Hubble said in a the nearest nebulae. In far off Einstein’s 1916 Theory of General recent paper that his measure­ nebulae, where the Cepheids are Relativity. Einstein’s theory de­ ments led to a useful speed-dis­ barely visible, Hubble uses the scribes the universe as three di­ tance relationship. Hubble found brightest individual stars, some mensions of space (length, width, that redshifts increase as they get of them 50 to 100 times brighter and depth) and another dimen­ farther from us. than the Cepheids, as standard sion of time. The theory says that candles. gravity curves this space-time and Dr. Hubble figured out the dis­ that this curve controls the natural tances to 24 nebulae using Ce­ Today’s telescopes, and the stars motions of objects in space. pheid variable stars. Astronomers they see, can only show Hubble a use these stars to figure out the “Expanding ” continued on page 4 distance to the nebula they are found in. Once Hubble knew how far away the nebulae were, he could then compare their distance to their redshift in order to look for a pattern. He found that the most distant objects are speeding away from us at perhaps thousands of miles per second. Dr. Hubble’s recent discoveries show that the volume of space itself is expanding. Spiral nebu­ lae seem to be moving away from each other at a speed that increases with distance, but the nebulae aren’t just moving.
Recommended publications
  • The Birth of Stars and Planets
    Unit 6: The Birth of Stars and Planets This material was developed by the Friends of the Dominion Astrophysical Observatory with the assistance of a Natural Science and Engineering Research Council PromoScience grant and the NRC. It is a part of a larger project to present grade-appropriate material that matches 2020 curriculum requirements to help students understand planets, with a focus on exoplanets. This material is aimed at BC Grade 6 students. French versions are available. Instructions for teachers ● For questions and to give feedback contact: Calvin Schmidt [email protected], ​ ● All units build towards the Big Idea in the curriculum showing our solar system in the context of the Milky Way and the Universe, and provide background for understanding exoplanets. ● Look for Ideas for extending this section, Resources, and Review and discussion ​ ​ ​ ​ ​ questions at the end of each topic in this Unit. These should give more background on ​ each subject and spark further classroom ideas. We would be happy to help you ​ expand on each topic and develop your own ideas for your students. Contact us at ​ the [email protected]. ​ ​ Instructions for students ● If there are parts of this unit that you find confusing, please contact us at [email protected] for help. ​ ● We recommend you do a few sections at a time. We have provided links to learn more about each topic. ● You don’t have to do the sections in order, but we recommend that. Do sections you find interesting first and come back and do more at another time. ● It is helpful to try the activities rather than just read them.
    [Show full text]
  • Chapter I Review Papers Harlow Shapley
    Chapter I Review Papers Harlow Shapley Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.40, on 25 Sep 2021 at 08:30:59, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0074180900042340 Helen Sawyer Hogg and Willis Shapley remembering Willis Shapley fielding questions on his father Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.40, on 25 Sep 2021 at 08:30:59, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0074180900042340 SHAPLEY'S DEBATE Michael Hoskin Cambridge University The attempt to make three-dimensional sense of the Milky Way goes back to a most unlikely origin: the English antiquary of the early eighteenth century, William Stukeley, remembered today for associating the Druids with Stonehenge. Stukeley came from Lincolnshire and so was a fellow-countryman of Isaac Newton, and as a result he was privileged to talk with the great man from time to time. In his Memoirs of Newton Stukeley records one conversation they had in about 1720, in which Stukeley proposed that the Sun and the brightest stars of the night sky make up what we today would term a globular cluster, and this cluster is surrounded by a gap, outside of which lie the small stars of the Milky Way in the form of a flattened ring. Stukeley's remarkable suggestion was recorded only in his manuscript memoirs, and had no effect on the subsequent history of astronomy.
    [Show full text]
  • Our Milky Way.Key
    Our Milky Way Learning Objectives ! What is the Milky Way? The Herschels thought we were at the center of our Galaxy...why were they wrong? ! How did Shapley prove we aren’t at the center? What are globular clusters? Cepheid Variable stars? ! How do we use Cepheid Variables to measure distance? ! What are the components of our Galaxy? What color are old stars? Young stars? Does our Galaxy get older or younger as you move out (i.e. from the disk to the halo)? ! How do we know our Galaxy is a spiral galaxy? ! Do stars in our Galaxy’s disk orbit as Kepler’s Laws would predict? What is a rotation curve? Why does our Galaxy’s rotation curve suggest dark matter exists? The Milky Way ! Our Galaxy is a collection of stars, nebulae, molecular clouds, and stellar remnants ! All bound together by gravity ! Connected by the stellar evolution cycle Determining the Shape of our Galaxy ! The number of 6400 ly stars were counted in all directions from 1300 ly the Sun by Sun Caroline Herschel and her brother William ! They assumed that all stars have the same brightness and that space contains no dust – these are incorrect assumptions ! They thus concluded that the Sun is at the center of the Universe - which is not true The Importance of Dust ! Dust dims and reddens starlight ! There is more dust toward the center of the Galaxy ! Consequence: We underestimate the number of stars in one direction ! We appear to be near the center, but we’re not Us Star Sun Can’t see stars here (if we’re looking for blue light from them) How Do We Find the Galactic Center?
    [Show full text]
  • At the Harvard Observatory
    Book Reviews 117 gravitational wave physicists, all of whom are members of an international group of over a thousand scientists engaged with the detection apparatus at two widely separated sites, one in Livingston, Louisiana and the other in Hanford, Washington. The emails research- ers in the collaboration exchanged and the queries Collins sent to the physicists who acted for him as “key informants” provide the bulk of the material for Collins’ “real- time” observations of this discovery in the making. At times, Collins finds the community of researchers exasperating and wrong-headed in their, in his view, overly secretive attitudes to their results. But Collins is not a detached witness of the events he describes and analyses. Instead, he is overall a highly enthusias- tic fan of the gravitational wave community. Collins has not sought out for Gravity’s Kiss the kinds of evidence one might have expected a historian to have pursued. Gravity’s Kiss, however, should be read on its terms. It is a work of reportage from an “embedded” sociologist of science with long experience of, and valuable connections in, the gravitational wave community. Along the way, he offers sharp insights into the work- ing of these scientists. Collins proves to be an excellent guide to the operations of a “Big Science” collaboration and the intense scrutiny of, and complicated negotiations around, the “[v]ery interesting event on ER8.” Robert W. Smith University of Alberta [email protected] “Girl-Hours” at the Harvard Observatory The Glass Universe: How the Ladies of the Harvard Observatory Took the Measure of the Stars.
    [Show full text]
  • Astronomy HOMEWORK Chapter 15
    Astronomy HOMEWORK Chapter 15 1. Where in the Galaxy is the solar system located? a. in the nucleus; b. in the halo; c. in a spiral arm; d. between two spiral arms; e. in the central bulge. d. between two spiral arms. Also, 26,000 LY from the center. 2. What is located in the nucleus of the Galaxy? a. a globular cluster; b. a spiral arm; c. a black hole; d. the solar system; e. a MACHO. c. a black hole. Of 4 million M⊙. 3. Which statement about the Milky Way Galaxy is correct? a. Our Galaxy is but one of many galaxies. b. Our Galaxy contains all stars in the universe. c. All stars in our Galaxy take the same time to complete one orbit. d. Most stars in our Galaxy are in the central bulge. e. None of the stars in our Galaxy move. a. Our Galaxy is but one of many [billions] of galaxies in the universe. 5. How did Edwin Hubble prove that M31 is not a nebula in our Milky Way Galaxy? M31 is the Andromeda Galaxy, called “Andromeda Nebula” at the time. Hubble identified several stars in M31 as Cepheid variables, and measured their pulsation periods and apparent brightness. He then used the known relationship between period and luminosity of Cepheid variables to determine their luminosity. Finally, he used the inverse square law to obtain their distance. Their distance put them many times farther away than the size of our Galaxy, which Shapley had determined in 1915. If they are farther away than the size of our Galaxy, they have to be outside it.
    [Show full text]
  • How Supernovae Became the Basis of Observational Cosmology
    Journal of Astronomical History and Heritage, 19(2), 203–215 (2016). HOW SUPERNOVAE BECAME THE BASIS OF OBSERVATIONAL COSMOLOGY Maria Victorovna Pruzhinskaya Laboratoire de Physique Corpusculaire, Université Clermont Auvergne, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France; and Sternberg Astronomical Institute of Lomonosov Moscow State University, 119991, Moscow, Universitetsky prospect 13, Russia. Email: [email protected] and Sergey Mikhailovich Lisakov Laboratoire Lagrange, UMR7293, Université Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, CS 34229, Nice, France. Email: [email protected] Abstract: This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology—the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii. Keywords: supernovae, Pskovskii, Rust 1 INTRODUCTION However, from the moment that Albert Einstein (1879–1955; Whittaker, 1955) introduced into the In 1998–1999 astronomers discovered the accel- equations of the General Theory of Relativity a erating expansion of the Universe through the cosmological constant until the discovery of the observations of very far standard candles (for accelerating expansion of the Universe, nearly a review see Lipunov and Chernin, 2012).
    [Show full text]
  • Cosmic Times Teachers' Guide Table of Contents
    Cosmic Times Teachers’ Guide Table of Contents Cosmic Times Teachers’ Guide ....................................................................................... 1 1919 Cosmic Times ........................................................................................................... 3 Summary of the 1919 Articles...................................................................................................4 Sun’s Gravity Bends Starlight .................................................................................................4 Sidebar: Why a Total Eclipse?.................................................................................................4 Mount Wilson Astronomer Estimates Milky Way Ten Times Bigger Than Thought ............4 Expanding or Contracting? ......................................................................................................4 In Their Own Words................................................................................................................4 Notes on the 1919 Articles .........................................................................................................5 Sun's Gravity Bends Starlight..................................................................................................5 Sidebar: Why a Total Eclipse?.................................................................................................7 Mount Wilson Astronomer Estimates Milky Way Ten Times Bigger Than Thought ............7 Expanding or Contracting? ......................................................................................................8
    [Show full text]
  • Discoveries 1917 100” Hooker Telescope on Mt
    Discoveries 1917 100” Hooker telescope on Mt. Wilson 1920 “Debate on the Scale of the Universe” Interpretaon of the “Spiral Nebulae” Harlow Shapley “only gas clouds” within a single galacc Universe Sun far from the center Heber CurGs Sun at the center of our relavely small galaxy all the spiral nebulae are other galaxies Measure the size – HOW?? Fall 2018 1 Yardstck 1.Brightness (magnitude) 2.Parallax 3.Cepheid Variables November 23, 1924 Edwin Hubble, 35, published in the New York Times his discovery that there were many galaxies further away from the Milky Way. Fall 2018 2 MMilkyilky Way 1838 Discovery of stellar parallax 1838 Discovery of stellar parallax (F.Bessel) ) 1 1 1 Parsec = Parsec = = = 3.263.26 ly P (arcsec) (arcsec) 1 1 Mpc = 10= 106 parsecs = 3.26 million lightyears parsecs = 3.26 million lightyears Fall 2018 Fall 2018 213 Cepheid Variables At Harvard (Society For the Collegiate InstrucGon of Women) Oberlin and Radcliff Colleges she was capGvated by Astronomy. Variable stars vary periodically in brightness HenrieUa LeaviU HenrieUa found ~50) Cepheid variables Fall 2018 4 Edwin Hubble ! Confirmed the extra galacGc nature of nebulae using Cepheid variable yardsGck ! Observed that every galaxy appears to be moving away from every other one Farthest ones moving faster Fall 2018 5 Velocit measurement Doppler Effect Aer Einstein Fall 2018 6 Speed vs. Distance Fall 2018 7 Hubble Constant Not constant! Fall 2018 8 What is going on? Q1 Moving away? – the track back and find where they started Finally Copernicus is verified – we are not
    [Show full text]
  • How Telescopes Changed Our Understanding of Our Universe - Suggested Script PRESENTATION NOTE: This Presentation Can Take 45 Minutes to an Hour
    - How Telescopes Changed our Understanding of our Universe - Suggested Script PRESENTATION NOTE: This presentation can take 45 minutes to an hour. To shorten it, you may want to allow your audience to vote on the three or four questions they would like discussed. See Slide 3 for the questions covered in this presentation. 1. 400 years ago, before telescopes, our understanding of the universe was very different. This is what was believed: We live on a spherical ball orbited by the rest of a finite, spherical universe. Earth does not move. It is the center of the universe. Our Sun orbits the Earth, as do all the other planets and the Moon. The stars are distant objects, always perfect and unchanging. How did telescopes & associated technologies unlock the secrets of the universe and help us toward the understanding we have today where Earth is no longer at the center of the universe? Instead, we know that ours is a small planet orbiting a star in the suburbs of a large galaxy filled with billions of other stars and planets, surrounded by billions of other galaxies becoming increasingly ever distant from each other by the expansion of space. This is the story of how telescopes continuously changed our understanding of the universe and our place in it - transforming our view of our universe. And we still have much more to discover! 2. Before telescopes, we could only use our eyes and a variety of measuring instruments to plot the positions and movements of objects in the sky to create a limited understanding of our universe.
    [Show full text]
  • 1929NL Homeed.Pdf
    National Aeronautics and Space Administration Home Edition Age of the Universe: Cosmic Times Size of the Universe: 2 Billion Years 1929 280 Million Light Years Andromeda Nebula lies outside the Milky Way Galaxy Spiral Nebulae are indeed “Island Universes” stronomer Edwin Hubble, inch reflector partially resolved a of the Mount Wilson few of the nearest, neighboring AObservatory at Pasadena, [spiral] nebulae into swarms of California, has solved the mystery stars.” One of the nearby nebulae of the spiral nebulae. The spiral Dr. Hubble photographed was the nebulae look like hazy pin-wheels Andromeda Nebula. He estimates in the sky. He has determined it is as large as the Milky Way that these objects are much more and holds as much matter. It may distant than previously thought. contain some three to four billion Therefore, they are distant galaxies stars that produce one-billion times and not part of our own Milky Way the light of the Sun. galaxy. In the process, Dr. Hubble was also able to determine the These photographs showed there distance to the spiral Andromeda were individual stars in the nebula. Nebula. They also showed some of the stars changed in brightness over Dr. Hubble’s observations support time. Known as Cepheid variable Image credit: Hale Observatories, courtesy AIP Emilio Segre Visual Archives the views Dr. Heber Curtis stars, these stars were the key Edwin Hubble at Mount Wilson Obser- expressed in a debate with Dr. to determining distances to the vatory Harlow Shapley in 1920. Curtis nebulae. The true brightness of stated that bright diffuse nebulae the Cepheids in the nebulae Swan Leavitt of the Harvard College are fairly close to Earth and are Hubble studied was known from Observatory and by Dr.
    [Show full text]
  • Cecilia Payne-Gaposchkin Brief Life of a Breakthrough Astronomer: 1900-1979 by Donovan Moore
    VITA Cecilia Payne-Gaposchkin Brief life of a breakthrough astronomer: 1900-1979 by donovan moore ffirmative actionfor portraits,” was how Nobel laure- laureate Ernest Rutherford, would look directly at her and begin each ate Dudley R. Herschbach, Baird professor of science, de- lecture with, “Ladies and gentlemen.” She recalled that “all the boys Ascribed the oil painting of Cecilia Payne-Gaposchkin that regularly greeted this witticism with thunderous applause…and at he and his wife, associate dean of the College Georgene Botyas Her- every lecture I wished I could sink into the earth.” schbach, had commissioned. For years, he had argued that there Unable to get an astronomy job in England when she graduated, were too few women on the faculty, and too little recognition for she applied for a fellowship at the Harvard College Observatory. Its the few there were. The portrait would hang in University Hall’s director, Harlow Shapley, offered her a $500 stipend. Arriving in the Faculty Room where, in the winter of 2002, there was only one oth- fall of 1923, she met the observatory’s hard-working women “comput- er painting of a woman: historian Helen Maud Cam. ers” who across four decades had produced nine 250-page volumes At the dedication, Jeremy Knowles, dean of the Faculty of Arts of stellar spectra. Those stellar data, etched into thousands of glass and Sciences, told the audience: “Every high-school student knows plates, made up a giant jigsaw puzzle waiting for the right person to that Newton discovered gravity, that Darwin discovered evolution, fit it together.
    [Show full text]
  • The Cosmic Web: Mysterious Architecture
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Chapter 1 Hubble Discovers the Universe It is fair to say that Edwin Hubble discovered the universe. Leeuwen- hoek peered into his microscope and discovered the microscopic world; Hubble used the great 100- inch- diameter telescope on Mount Wilson in California to discover the macroscopic universe. Before Hubble, we knew that we lived in an ensemble of stars, which we now call the Milky Way Galaxy. Th is is a rotating disk of 300 bil- lion stars. Th e stars you see at night are all members of the Milky Way. Th e nearest one, Proxima Centauri, is about 4 light- years away. Th at means that it takes light traveling at 300,000 kilometers per second about 4 years to get from it to us. Th e distances between the stars are enormous— about 30 million stellar diameters. Th e space between the stars is very empty, better than a laboratory vacuum on Earth. Sirius, the brightest star in the sky, is about 9 light- years away. Th e Milky Way is shaped like a dinner plate, 100,000 light- years across. We are located in this thin plate. When we look perpendicular to the plate, we see only those stars that are our next- door neighbors in the plate; most of the stars in these directions are less than a few hundred light- years away. We see about 8,000 naked- eye stars scattered over the entire sky; these are all our nearby neighbors in the plate, a tiny sphere of stars nestled within the thin width of the plate.
    [Show full text]