The Dehumidification Handbook, Third Edition

Total Page:16

File Type:pdf, Size:1020Kb

The Dehumidification Handbook, Third Edition The Dehumidification Handbook Third Edition ISBN 0-9717887-0-7 Copyright 1989, 2002 and 2019 © Munters Corporation The Dehumidification Handbook Third Edition Copyright 1989, 2002 and 2019 © Munters Corporation Reuse Of This Material For book reviews and personal educational and professional use, readers are encouraged to excerpt or photocopy and distribute any useful portion of this handbook, provided that the source of the material is appropriately referenced and the Munters copyright is acknowledged. For electronic distribution or if the material will be included in any printed publication, Munters Corporation must provide written authorization in advance of publication. For those uses, please contact Munters Corporation Marketing Department by mail at 79 Monroe Street, Amesbury, MA 01913, or by email at [email protected]. Disclaimer Although great care has been taken in the compilation and publication of this book, no warranties either expressed or implied are given in connection with the material. Neither the contributors nor the publisher take any responsibility whatsoever for any claims arising from its use. The entire risk of the use of this information is assumed by the user. However, to improve future editions, the publisher welcomes any and all comments, corrections or suggestions from readers. CONTRIBUTORS We would like to express our gratitude to Lew G. Harriman III as editor of the first two editions of this book and for guiding this work with interest. Also, we would like to thank the following original contributors and 1989 Editorial Advisory Board members for their work; Enno Abel, Nick Baranov, Bruce Bonner, Steven Brickley, Luiz Felipe de Carvalho, Douglas Kosar, Hansi Kruger, Ralph Lahmon, Milton Meckler, Mohamed Moledina, Terry Penny, Ing. Eugenio E. Sanchez, Daniel Schroeder, James Staunton, Steven Toth, Kenneth Welter, Sumner Weisman, Roland Wimmerstedt, and Jose Zulueta. In addition, we’d like to acknowledge and give special thanks to Steve Brickley, Jim Judge and Lindsay Judge for their content work and contributions to this (Third) edition of the book. We also extend special thanks to Doug Des Champs for the cover design and book layout of this (Third) edition and T.P.S Inc. for the printing and binding. Munters Corporation TABLE OF CONTENTS 1. INTRODUCTION .................................................................................10 2. PSYCHROMETRICS .............................................................................12 Dry Bulb Temperature Degrees Fahrenheit ..................................................................... 15 Relative humidity - Percent of saturation ........................................................................ 15 Humidity Ratio - Grains of water vapor .......................................................................... 16 Vapor pressure - Inches of mercury ................................................................................. 17 Dew point temperature - Degrees Fahrenheit ................................................................ 18 Enthalpy - Btu’s per pound of air ..................................................................................... 18 Wet-bulb temperature - Degrees Fahrenheit .................................................................. 19 3. METHODS OF DEHUMIDIFICATION ..................................................22 Cooling-based Dehumidification.....................................................................24 Desiccant Dehumidifiers ..................................................................................29 Liquid spray-tower ............................................................................................................32 Solid packed tower ...........................................................................................................34 Rotating horizontal bed ................................................................................................... 36 Multiple vertical bed ........................................................................................................ 38 Rotating Honeycombe® .................................................................................................... 39 Comparing desiccant dehumidifiers ................................................................................ 40 Choosing between desiccant and cooling dehumidifiers................................................ 44 4. APPLICATIONS ...................................................................................46 Corrosion Prevention ......................................................................................48 Military storage ................................................................................................................ 49 Electronics protection .......................................................................................................49 Power plant layup............................................................................................................. 49 Lithium battery production ..............................................................................................49 Condensation Prevention ................................................................................50 Ice rinks .............................................................................................................................51 Water treatment plants ....................................................................................................51 Surface preparation & coating .........................................................................................51 Injection molding ............................................................................................................. 51 4. APPLICATIONS (CONTINUED) ................................................................. 46 Mold/Fungus Prevention .................................................................................52 Archival storage ................................................................................................................53 Seed storage ..................................................................................................................... 53 Cargo protection .............................................................................................................. 53 Breweries .......................................................................................................................... 53 Moisture Regain Prevention ............................................................................54 Candy packaging .............................................................................................................. 55 Semiconductor and pharmaceutical clean rooms ........................................................... 55 Safety glass laminating .....................................................................................................55 Composite manufacturing ............................................................................................... 55 Product Drying ................................................................................................56 Investment castings ..........................................................................................................57 Plastic resin drying ........................................................................................................... 57 Candy coating ...................................................................................................................57 Fish drying ........................................................................................................................ 57 Dry Cooling ......................................................................................................58 Supermarkets ....................................................................................................................59 Hotels and motels .............................................................................................................59 Sick buildings ....................................................................................................................59 Advanced HVAC systems .................................................................................................. 59 5. MOISTURE LOAD CALCULATIONS..................................................... 60 Selecting Design Conditions ...........................................................................62 Moisture Load Sources ....................................................................................64 Periodic vs. continuous loads ........................................................................................... 78 Fresh air moisture load .....................................................................................................78 Sample moisture load calculations ..................................................................81 Warehouse dehumidification ........................................................................................... 82 Glass lamination room ..................................................................................................... 86 6. DESICCANT DEHUMIDIFIER PERFORMANCE .................................... 92 Operating Variables .........................................................................................94 1. Process inlet moisture .................................................................................................
Recommended publications
  • Preparing HVAC Systems Before Reoccupying a Building by JOHN MCCARTHY, SC.D., C.I.H., MEMBER ASHRAE; KEVIN COGHLAN, C.I.H
    TECHNICAL FEATURE This article was published in ASHRAE Journal, January 2021. Copyright 2020 ASHRAE. Posted at www.ashrae.org. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit www.ashrae.org. Preparing HVAC Systems Before Reoccupying A Building BY JOHN MCCARTHY, SC.D., C.I.H., MEMBER ASHRAE; KEVIN COGHLAN, C.I.H. As states across the U.S. roll out new phases of reopening and ease social distanc- ing restrictions instituted to “flatten the curve” of infection from SARS-CoV-2 (the virus that causes COVID-19), commercial building owners and facility manag- ers are seeking direction in preparing their spaces to a return to near-normal levels of occupancy. World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC) recommendations have focused on “de-densifying” spaces and disinfection of surfaces, while the ASHRAE Epidemic Task Force’s comprehen- sive Building Readiness guidance addresses strategies for preparing HVAC systems for buildings reopening after COVID-19 closures.1 Still, facility engineers have been wondering whether disinfecting their facility’s HVAC system is a further protective step to take to prepare for reopening—and about what else they should do. While no blanket answer exists to fit every scenario reduced loads or turned off as an energy-saving and every building type, the current science2 indicates measure. that, in general, disinfection of mechanical systems is not likely to be necessary. However, that doesn’t mean How SARS-CoV-2 Transmission Impacts Disinfection there isn’t work to be done—or risks to address before Recommendations reopening or expanding the number of occupants To understand why HVAC system disinfection may not in the space.
    [Show full text]
  • Position Document on Resiliency in the Built Environment
    ASHRAE and CIBSE Position Document on Resiliency in the Built Environment Approved by ASHRAE Board of Directors June 26, 2019 Approved by the CIBSE Board July 11, 2019 Expires June 26, 2022 © 2019 ASHRAE and CIBSE ASHRAE • 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 • 404-636-8400 • www.ashrae.org CIBSE • 222, Balham High Road • London SW12 9BS • 0208 675 5211 • www.cibse.org © 2019 ASHRAE and CIBSE. For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without copyright holders' prior written permission. COMMITTEE ROSTER The ASHRAE and CIBSE Position Document on Resiliency in the Built Environment was developed by ASHRAE’s Resiliency in the Built Environment Position Document Committee formed on October 10, 2017, with David Under- wood as its chair. David Underwood Andrew Persily Retired NIST Oakville, ON, Canada Gaithersburg, MD, USA Scott Campbell Thomas Phoenix National Ready Mixed Concrete Association Clark Patterson Lee Milwaukee, WI, USA Greensboro, NC, USA Hywel Davies CIBSE Paul Torcellini London, United Kingdom Eastford, CT, USA Bill McQuade Chandra Sekhar AHRI National University of Singapore Arlington, VA, USA Singapore, Singapore The CIBSE Technology Committee was responsible for oversight of the CIBSE contribution to this position docu- ment. Cognizant Committees The chairperson of ASHRAE Technical Committee 2.10, Resilience and Security, also served as an ex-officio member: Jason DeGraw Arvada, CO, USA ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. © 2019 ASHRAE and CIBSE. For personal use only.
    [Show full text]
  • ASHRAE Position Document on Filtration and Air Cleaning
    ASHRAE Position Document on Filtration and Air Cleaning Approved by ASHRAE Board of Directors January 29, 2015 Reaffirmed by Technology Council January 13, 2018 Expires January 23, 2021 ASHRAE 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 404-636-8400 • fax: 404-321-5478 • www.ashrae.org © 2015 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on Filtration and Air Cleaning was developed by the Society's Filtration and Air Cleaning Position Document Committee formed on January 6, 2012, with Pawel Wargocki as its chair. Pawel Wargocki, Chair Dean A. Saputa Technical University of Denmark UV Resources Kongens Lyngby, Denmark Santa Clarita, CA Thomas H. Kuehn William J. Fisk University of Minnesota Lawrence Berkeley National Laboratory Minneapolis, MN Berkeley, CA H.E. Barney Burroughs Jeffrey A. Siegel Building Wellness Consultancy, Inc. The University of Toronto Johns Creek, GA Toronto, ON, Canada Christopher O. Muller Mark C. Jackson Purafil Inc. The University of Texas at Austin Doraville, GA Austin, TX Ernest A. Conrad Alan Veeck BOMA International National Air Filtration Association Washington DC Virginia Beach, VA Other contributors: Dean Tompkins Madison, WI for his contribution on photocatalytic oxidizers Paul Francisco, Ex-Officio Cognizant Committee Chair Environmental Health Committee University of Illinois Champaign, IL ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. © 2015 ASHRAE (www.ashrae.org). For personal use only.
    [Show full text]
  • Mathematical Reference
    TRNSYS 16 a TRaNsient SYstem S imulation program Volume 5 Mathematical Reference Solar Energy Laboratory, Univ. of Wisconsin-Madison http://sel.me.wisc.edu/trnsys TRANSSOLAR Energietechnik GmbH http://www.transsolar.com CSTB – Centre Scientifique et Technique du Bâtiment http://software.cstb.fr TESS – Thermal Energy Systems Specialists http://www.tess-inc.com TRNSYS 16 – Mathematical Reference About This Manual The information presented in this manual is intended to provide a detailed mathematical reference for the Standard Component Library in TRNSYS 16. This manual is not intended to provide detailed reference information about the TRNSYS simulation software and its utility programs. More details can be found in other parts of the TRNSYS documentation set. The latest version of this manual is always available for registered users on the TRNSYS website (see here below). Revision history • 2004-09 For TRNSYS 16.00.0000 • 2005-02 For TRNSYS 16.00.0037 • 2006-03 For TRNSYS 16.01.0000 • 2007-03 For TRNSYS 16.01.0003 Where to find more information Further information about the program and its availability can be obtained from the TRNSYS website or from the TRNSYS coordinator at the Solar Energy Lab: TRNSYS Coordinator Email: [email protected] Solar Energy Laboratory, University of Wisconsin-Madison Phone: +1 (608) 263 1586 1500 Engineering Drive, 1303 Engineering Research Building Fax: +1 (608) 262 8464 Madison, WI 53706 – U.S.A. TRNSYS website: http://sel.me.wisc.edu/trnsys Notice This report was prepared as an account of work partially
    [Show full text]
  • Psychrometrics Outline
    Psychrometrics Outline • What is psychrometrics? • Psychrometrics in daily life and food industry • Psychrometric chart – Dry bulb temperature, wet bulb temperature, absolute humidity, relative humidity, specific volume, enthalpy – Dew point temperature • Mixing two streams of air • Heating of air and using it to dry a product 2 Psychrometrics • Psychrometrics is the study of properties of mixtures of air and water vapor • Water vapor – Superheated steam (unsaturated steam) at low pressure – Superheated steam tables are on page 817 of textbook – Properties of dry air are on page 818 of textbook – Psychrometric charts are on page 819 & 820 of textbook • What are these properties of interest and why do we need to know these properties? 3 Psychrometrics in Daily Life • Sea breeze and land breeze – When and why do we get them? • How do thunderstorms, hurricanes, and tornadoes form? • What are dew, fog, mist, and frost and when do they form? • When and why does the windshield of a car fog up? – How do you de-fog it? Is it better to blow hot air or cold air? Why? • Why do you feel dry in a heated room? – Is the moisture content of hot air lower than that of cold air? • How does a fan provide relief from sweating? • How does an air conditioner provide relief from sweating? • When does a soda can “sweat”? • When and why do we “see” our breath? • Do sailboats perform better at high or low relative humidity? Key factors: Temperature, Pressure, and Moisture Content of Air 4 Do Sailboats Perform Better at low or High RH? • Does dry air or moist air provide more thrust against the sail? • Which is denser – humid air or dry air? – Avogadro’s law: At the same temperature and pressure, the no.
    [Show full text]
  • Performance of Rotary Enthalpy Exchangers
    PERFORMANCE OF ROTARY ENTHALPY EXCHANGERS by GUNNAR STIESCH A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE (Mechanical Engineering) at the UNIVERSITY OF WISCONSIN-MADISON 1994 ABSTRACT Rotary regenerative heat and mass exchangers allow energy savings in the heating and cooling of ventilated buildings by recovering energy from the exhaust air and transferring it to the supply air stream. In this study the adsorption isotherms and the specific heat capacity of a desiccant used in a commercially available enthalpy exchanger are investigated experimentally, and the measured property data are used to simulate the regenerator performance and to analyze the device in terms of both energy recovery and economic profitability. Based on numerical solutions for the mechanism of combined heat and mass transfer obtained with the computer program MOSHMX for various operating conditions, a computationally simple model is developed that estimates the performance of the particular enthalpy exchanger and also of a comparable sensible heat exchanger as a function of the air inlet conditions and the matrix rotation speed. The model is built into the transient simulation program TRNSYS, and annual regenerator performance simulations are executed. The integrated energy savings over this period are determined for the case of a ventilation system for a 200 people office building (approx. 2 m3/s) for three different locations in the United States, each representing a different climate. Life cycle savings that take into account the initial cost of the space-conditioning system as well as the operating savings achieved by the regenerator are evaluated for both the enthalpy exchanger and the sensible heat exchanger over a system life time of 15 years.
    [Show full text]
  • Indoor Air Quality Products Offering Healthy Home Solutions
    Indoor Air Quality Products Offering Healthy Home Solutions Carrier clears the air for enhanced indoor comfort What You Can Expect From Carrier Innovation, efficiency, quality: Our Carrier® Healthy Home Solutions offers superior control over the quality of your indoor air and as a result, improved comfort. From air purification and filtration to humidity control, ventilation and more, these products represent the Carrier quality, environmental stewardship and lasting durability that have endured for more than a century. In 1902, that’s the year a humble but determined engineer solved one of mankind’s most elusive challenges – controlling indoor comfort. A leading engineer of his day, Dr. Willis Carrier would file more than 80 patents over the course of his career. His genius would enable incredible advancements in health care, manufacturing processes, food preservations, art and historical conservation, indoor comfort and much more. Carrier’s foresight changed the world forever and paved the way for over a century of once-impossible innovations. Designed with Your Comfort in Mind Carrier® Healthy Home Solutions represents years of design, development and testing with one goal in mind – maximizing your family’s comfort. Along the way, we have taken the lead with new technologies that deliver the superior performance you demand while staying ahead of industry trends and global initiatives. With innovations like Captures & Kills™ technology and superior humidity and airflow control, whatever your need, Carrier has a solution that’s perfectly tailored for you. 2 Ready to Clear the Air? The EPA has found that indoor levels of many air pollutants are often higher than outdoor levels.
    [Show full text]
  • Teaching Psychrometry to Undergraduates
    AC 2007-195: TEACHING PSYCHROMETRY TO UNDERGRADUATES Michael Maixner, U.S. Air Force Academy James Baughn, University of California-Davis Michael Rex Maixner graduated with distinction from the U. S. Naval Academy, and served as a commissioned officer in the USN for 25 years; his first 12 years were spent as a shipboard officer, while his remaining service was spent strictly in engineering assignments. He received his Ocean Engineer and SMME degrees from MIT, and his Ph.D. in mechanical engineering from the Naval Postgraduate School. He served as an Instructor at the Naval Postgraduate School and as a Professor of Engineering at Maine Maritime Academy; he is currently a member of the Department of Engineering Mechanics at the U.S. Air Force Academy. James W. Baughn is a graduate of the University of California, Berkeley (B.S.) and of Stanford University (M.S. and PhD) in Mechanical Engineering. He spent eight years in the Aerospace Industry and served as a faculty member at the University of California, Davis from 1973 until his retirement in 2006. He is a Fellow of the American Society of Mechanical Engineering, a recipient of the UCDavis Academic Senate Distinguished Teaching Award and the author of numerous publications. He recently completed an assignment to the USAF Academy in Colorado Springs as the Distinguished Visiting Professor of Aeronautics for the 2004-2005 and 2005-2006 academic years. Page 12.1369.1 Page © American Society for Engineering Education, 2007 Teaching Psychrometry to Undergraduates by Michael R. Maixner United States Air Force Academy and James W. Baughn University of California at Davis Abstract A mutli-faceted approach (lecture, spreadsheet and laboratory) used to teach introductory psychrometric concepts and processes is reviewed.
    [Show full text]
  • Understanding Psychrometrics, Third Edition It’S Really a Mine of Information
    Gatley The Comprehensive Guide to Psychrometrics Understanding Psychrometrics serves as a lifetime reference manual and basic refresher course for those who use psychrometrics on a recurring basis and provides a four- to six-hour psychrometrics learning module to students; air- conditioning designers; agricultural, food process, and industrial process engineers; Understanding Psychrometrics meteorologists and others. Understanding Psychrometrics Third Edition New in the Third Edition • Revised chapters for wet-bulb temperature and relative humidity and a revised Appendix V that includes a summary of ASHRAE Research Project RP-1485. • New constants for the universal gas constant based on CODATA and a revised molar mass of dry air to account for the increase of CO2 in Earth’s atmosphere. • New IAPWS models for the calculation of water properties above and below freezing. • New tables based on the ASHRAE RP-1485 real moist-air numerical model using the ASHRAE LibHuAirProp add-ins for Excel®, MATLAB®, Mathcad®, and EES®. Includes Access to Bonus Materials and Sample Software • PDF files of 13 ultra-high-pressure and 12 existing ASHRAE psychrometric charts plus three new 0ºC to 400ºC charts. • A limited demonstration version of the ASHRAE LibHuAirProp add-in that allows users to duplicate portions of the real moist-air psychrometric tables in the ASHRAE Handbook—Fundamentals for both standard sea level atmospheric pressure and pressures from 5 to 10,000 kPa. • The hw.exe program from the second edition, included to enable users to compare the 2009 ASHRAE numerical model real moist-air psychrometric properties with the 1983 ASHRAE-Hyland-Wexler properties. Praise for Understanding Psychrometrics, Third Edition It’s really a mine of information.
    [Show full text]
  • Model 1830, 1850 & 1850W Dehumidifier Owner's Manual
    Model 1830, 1850 & 1850W Dehumidifier Owner’s Manual PLEASE LEAVE THIS MANUAL WITH THE HOMEOWNER Installed by: _________________________________ Installer Phone: _______________________ Date Installed: _______________ ON/OFF button Up/Down Dehumidifer Control Outlet used to turn buttons used to dehumidifier on change humidity and off setting MODE button used for optional ventilation feature Inlet Filter Access Drain Power Door Switch 90-1874 WHOLE HOME Dehumidification The Aprilaire® Dehumidifier controls the humidity level in your entire home. A powerful blower inside the dehumidifier draws air into the cabinet, filters the air and removes moisture, then discharges the dry air into the HVAC system or dedicated area of the home. Inside the cabinet, a sealed refrigeration system removes moisture by moving the air through a series of tubes and fins that are kept colder than the dew point of the incoming air. The dew point is the temperature at which moisture in the air will condense, much like what occurs on the outside of a cold glass on a hot summer day. The condensed moisture drips into the dehumidifier drain pan to a drain tube routed to the nearest floor drain or condensate pump. After the moisture is removed, the air moves through a second coil where it is reheated before being sent back into the home. The air leaving the dehumidifier will be warmer and drier than the air entering the dehumidifier. SETTING THE DESIRED HUMIDITY LEVEL The dehumidifier on-board control will display the humidity setting when not running, and ENERGY SavinGS TIPS displays the measured humidity when running. Energy Savings Tip #1: Adjust the humidity setting to be as high as is comfortable to reduce dehumidifier run time.
    [Show full text]
  • DEHUMIDIFIER with BUILT-IN PUMP
    DEHUMIDIFIER with BUILT-IN PUMP MODELS: SD-52PE / SD-72PE INSTRUCTION MANUAL Please read these instructions thoroughly and keep it in a safe place for future reference. CONTENTS SAFETY PRECAUTUIONS…...……………………………………………………………2 ELECTRICAL INFORMATION .……………………………………………………………3 CONTROL PANEL ….………………………………………………………………………4 FEATURES ………….……………………………………………………………………….5 IDENTIFICATION OF PARTS …………………………….……………………………….6 OPERATING THE UNIT ………..………………………….……………………………….7 WATER DRAINAGE ……….………..…………………………………………………….8 CARE AND MAINTENANCE ………..………………………………………………….10 TECHNICAL SPECIFICATIONS ……………………….………………………………11 TROUBLE SHOOTING …………………………………………………………………..11 SOCIABLE REMARK DISPOSAL: Do not dispose this product as unsorted municipal waste. Collection of such waste separately for special treatment is necessary. It is prohibited to dispose of this appliance in domestic household waste. For disposal, there are several possibilities: A) The municipality has established collection systems, where electronic waste can be disposed of at free of charge to the user. B) The manufacturer will take back the old appliance for disposal at free of charge to the user. C) As old products contain valuable resources, they may be sold to scrap metal dealers. Wild disposal of waste in forest and landscapes endangers your health when hazardous substances leak into the ground-water and find their way into the food chain. 1 BEFORE YOU USE YOUR DEHUMIDIFIER , PLEASE READ THIS INSTRUCTION MANUAL CAREFULLY. SAFETY PRECAUTIONS To prevent injury and property damage, the following instructions must be followed. Incorrect operation due to ignoring of instructions may cause harm or damages. The seriousness is classified by the following indications: WARNING: This symbol indicates the possibility of death or serious injury. CAUTION: This symbol indicates the possibility of injury or damage to property. ------------------------------------------ WARNING --------------------------------------------------- 1. Do not exceed the rating of the power outlet or connection device.
    [Show full text]
  • ANSI/ASHRAE/ACCA Standard 180-2018
    ANSI/ASHRAE/ACCA Standard 180-2018 (Supersedes ANSI/ASHRAE/ACCA Standard 180-2012) Standard Practice for Inspection and Maintenance of Commercial Building HVAC Systems Approved by ASHRAE on June 11, 2018; by the Air Conditioning Contractors of America on May 13, 2018; and by the American National Standards Institute on June 11, 2018. ASHRAE® Standards are scheduled to be updated on a five-year cycle; the date following the Standard number is the year of ASHRAE approval. The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: [email protected]. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide) or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions. © 2018 ASHRAE and ACCA® ISSN 1041-2336 ASHRAE Standard Project Committee 180 Lead Cognizant TC: 7.3, Operation and Maintenance Management Co-Cognizant TCs: 2.4, Particulate Air Contaminants and Particulate Contaminant Removal Equipment; and TC 9.8, Large Building Air-Conditioning Applications SPLS Liaison: R. Lee Millies, Jr. Thomas L. Paxson*, Chair Kristin H. Heinemeier* Heather L. Platt* Donald R. Langston*, Vice-Chair Donald C. Herrmann Donald Prather* Richard A. Danks*, Secretary Peter C. Jacobs* Gregg A. Ray* Hywel Davies Michael J. Lawing* George Rodriguez* Bill R. Benito* Benjamin E. Lipscomb Dale T. Rossi* Michael Blazey Phil London* Robert J. Roth Glenn Friedman* Phil Maybee* Jeff O. Sturgeon* Michael W. Gallagher Marc Newman* John Warfield * Denotes members of voting status when the document was approved for publication ACCA–EI Standards Task Team 2018–2019 Phil Forner, Chair Warren Lupson Matt Todd Dave Galbreath, Vice-Chair Raymond Granderson Brent Ursenbach Danny Halel, Secretary Timothy Offord Tom Jackson Joe Pacella ASHRAE STANDARDS COMMITTEE 2017–2018 Steven J.
    [Show full text]