Evaluation of Mechanical Defense Provided by Pericarps of Three Different Crotalaria Species to Their Seeds Against a Specialist

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Mechanical Defense Provided by Pericarps of Three Different Crotalaria Species to Their Seeds Against a Specialist BRANDON & SOURAKOV: Utetheisa vs. Crotalaria arms race TROP. LEPID. RES., 26(2): 85-92, 2016 85 Evaluation of mechanical defense provided by pericarps of three different Crotalaria species to their seeds against a specialist herbivore, Utetheisa ornatrix: a case for a possible host-herbivore evolutionary arms race Clara J. Brandon and Andrei Sourakov* McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA *Corresponding author: [email protected] Abstract: Past studies that explored the evolutionary arms race between toxic Crotalaria plants and their herbivores have mostly focused on chemical co-evolution. In this highly speciose genus of plants, we hypothesize that other defenses, such as mechanical protection of the seeds, which are exploited by specialist herbivores for their nutrients and alkaloids, have also been evolving, together with the herbivores’ ability to overcome them. To test this hypothesis, we assessed the cost of penetration imposed on a specialist herbivore, the larvae of the Ornate Bella Moth Utetheisa ornatrix, by the pericarps of three Crotalaria species. We tested the Florida native C. pumila, which has supposedly been in co-existence with U. ornatrix in the New World for thousands of years, the introduced species C. spectabilis that is native to Asia, and another introduced species, C. pallida, which is native to Africa, where multiple tiger moth species, including ones ancestral to the genus Utetheisa such as the genus Amphicallia, attack Crotalaria. Our evaluation was based on the ability of larvae to penetrate pods, their mortality, the rate of development of 4th through ultimate instar larvae when reared on open vs. closed pods as diet, and the wing span of resultant adult moths as a measurement of fitness. The cost associated with larval penetration of pericarps was greatest when feeding onC. pallida, followed by C. pumila, with the cost of penetration of C. spectabilis barely detectable in our study. We found that there are important structural and mechanical differences in the cellulose fibers forming the inner layer of the pericarps, which could help explain these differences in cost of penetration. Similar research on otherCrotalaria species and associated tiger moths is required to test the evolutionary arms race hypothesis. Key words: arthropod-plant interaction, herbivore-plant interaction, insect-plant co-evolution, New Associations Hypothesis, plant mechanical defense INTRODUCTION Plants use a variety of defense mechanisms to ward World, while some were introduced by humans in part because off herbivores. These defenses are divided into two broad of their ability to fixate nitrogen and improve soil quality categories: chemical and mechanical. Chemical defenses (Austin, 2004). These plants contain pyrrolizidine alkaloids include using toxic and indigestible substances (Wink & (PAs), which are toxic to many animals, including horses (e.g., Mohamed, 2003), and chemicals that simulate insect hormones LSUAgCenter, 2012), sheep (Maia et al., 2014) and humans and affect insect development (Fowler et al., 2001), act as (e.g. Williams & Molyneux, 1987; Diaz, 2014). Most insects glue that impairs feeding (Harvey et al., 2011), or signal to do not feed on Crotalaria because of the harmful PAs. There parasitoids (DeMoraes et al., 1998) and predators (Guimarães are several exceptions, however. The most notable among them et al., 2006). There are also various mechanical defenses, such in the New World is Utetheisa ornatrix (Ornate Bella Moth) as physical barriers that keep predators from consuming the (Erebiidae: Arctiinae). By consuming Crotalaria the larvae plant tissues, such as hairs, spikes, wax layers, and hard walls of this moth ingest alkaloids, which render them poisonous (Becerra et al., 2001). However, insects constantly evolve ways to many predators (e.g., Eisner & Eisner, 1991; Martins et al., to overcome this resistance and these arms races often lead to 2015) and provide them with precursors for sex pheromones reciprocal evolutionary change (e.g., Ehrlich & Raven, 1964). (e.g., Conner et al., 1981; Conner, 2008). Larvae actively seek Recently, Edger et al. (2015) discussed co-evolutionary, genetic the individual plants and tissues of the plants that contain the and molecular mechanisms of this arms race and concluded that highest concentration of PAs (Hoina et al., 2013), and Walsh the evolution of both plant defenses and resulting adaptations in and Iyengar (2015) showed that competition for the seeds, the herbivores are associated with changes in diversification rates. richest source of alkaloids in a plant, favors larger larvae, and Legumes in the genus Crotalaria (rattlebox plants) (Fabaceae) is affected by the relatedness of the larvae, with siblings more and the tiger moths that specialize in feeding on them is one of likely to maintain control of the resource over non-sibling the many putative examples of plant-herbivore co-evolution. competitors. Cogni et al. (2012) found that there is very little There are over 700 species in the genus Crotalaria, cost to U. ornatrix in the sequestration of PAs, and hence which are found primarily in tropical and subtropical regions larvae past third or fourth instar are attracted to seeds where PA of the world. Some Crotalaria species are native to the New concentration is highest, regardless of the Crotalaria species. 86 TROP. LEPID. RES., 26(2): 85-92, 2016 BRANDON & SOURAKOV: Utetheisa vs. Crotalaria arms race Paradigm to have evolved better defenses against them. The geographic Despite not being negatively affected by the toxins, larvae association of C. spectabilis with Crotalaria-feeding Utetheisa must nevertheless find a way to work through the pericarp to in Asia, where some members of Utetheisa feed on non- reach the seeds, and it has been proposed that the plants have Crotalaria hosts, is likely to be the most recent among the three evolved mechanical defenses in their pericarp to prevent larvae tested species, as might be implied from phylogenetic studies from reaching the seeds (Ferro et al., 2006; Sourakov, 2015). (DaCosta, 2010; Le Roux et al., 2013). A former study demonstrated the high cost in the form of The present study therefore compares the ability of larval mortality of penetration of C. pallida pericarps by young pericarps of three different species of Crotalaria that grow U. ornatrix larvae. It has also been proposed that not only naturally in Florida to protect their seeds from U. ornatrix mechanical defenses, but also the arrangement of seeds on a larvae. We tested the efficiency of U. ornatrix larvae from the plant, such as the number of seeds per pod and whether pods are fourth instar onwards in penetrating pericarps of the native C. single or clustered, might affect how efficiently larvae obtain pumila and the exotic C. spectabilis and C. pallida, and discuss nutrients and PAs from different Crotalaria species (Sourakov, reasons for the observed differences. 2015). In the present study, we compare these defenses in three Crotalaria species in Florida: one native and two exotics. MATERIALS AND METHODS Pericarps in two of the more common Florida native Crotalaria, C. pumila and C. rotundifolia, are quite hard, Host plants were available on the University of Florida resembling peanut shells in consistency, and enclose few seeds campus in Gainesville. Experiments were conducted in the fall that are more watery and less nutritious (including lower PAs) of 2014, during which time seeds were in an appropriate stage than those of the exotics (Sourakov, 2015). For example, at the of development. Younger larvae normally feed exclusively on same stage of development, C. pumila seeds are 89% water vs. leaves, hence in our experiments we used larvae of early fourth 79% in African C. pallida and 77% in Asian C. spectabilis; PAs instar and older. vary in different populations of C. pumila from 0.04% to 0.6%, Three separate experiments were conducted: while in C. spectabilis they can be as high as 3.81% (Sourakov, • Experiment 1 tested native Crotalaria pumila and 2015; Williams & Molyneux, 1987; Burkill, 1995; Hartmann exotic C. spectabilis simultaneously et al., 2004). A larva feeding on the native C. pumila and C. • Experiments 2 and 3 tested exotic C. pallida rotundifolia would presumably have to expend a significant For the purpose of reducing genetic variability within each amount of energy breaking into these pods in order to consume of our trials, we used a split-brood design in experiments 1 and the nutrients and PAs required to complete their development 2 (experiment 3 was conducted using a batch of field-collected (see for example Fig. 3 and a supplementary video at https:// larvae). For Experiments 1 and 2, the two parental moths youtu.be/uA0BuWzqxOc). (fem#1 and fem#2) were netted behind the Florida Museum of In nature, the task will be additionally complicated by Natural History, Gainesville, Florida (29°38.0' N, 82°22.2' W) the fact that these pods are scattered about the plant and each on 22 Oct 2014. That population is associated mostly with C. plant produces only a few of them, so seeking the pods out lanceolata, yet C. pumila, C. spectabilis and C. pallida are also would also require energy and be a risky endeavor, as it would available to that population, although in smaller numbers. The involve crawling on the ground. In contrast, seeds of the Asian moths were fed a sugar and water solution and were kept in C. spectabilis are surrounded by softer pericarps akin to green individual 2 oz. clear plastic cups, in which they laid their eggs. peas. This species’ high alkaloid content may be a response to The larvae were raised inside such cups on C. lanceolata leaves different types of herbivores, as the plant is clearly extremely that were changed three times a week. toxic to vertebrates (e.g., Yan & Huxtable, 1995). Finally, C. At the 21st day of their development, when offspring pallida and C.
Recommended publications
  • Biology and Thermal Requirements of Utetheisa Ornatrix (L.) (Lepidoptera: Arctiidae) Reared on Artificial Diet
    647 Vol. 51, n. 4 : pp.647-653, July-Aug 2008 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Biology and Thermal Requirements of Utetheisa ornatrix (L.) (Lepidoptera: Arctiidae) Reared on Artificial Diet André Gustavo Corrêa Signoretti 1, Dori Edson Nava 2*, José Maurício Simões Bento 1 and José Roberto Postali Parra 1 1Departamento de Entomologia, Fitopatologia e Zoologia Agrícola; Escola Superior de Agricultura "Luiz de Queiroz"; Universidade de São Paulo; 13418-310; Piracicaba - SP - Brasil. 2Embrapa Clima Temperado; [email protected]; 96001-970; Pelotas - RS - Brasil ABSTRACT A study on the biology of Utetheisa ornatrix reared on the artificial diet, was conducted to determine the thermal requirements in each development stage. The aim was to find out the thermal regions in the São Paulo state where the pest could develop on Crotalaria spp. The insects were reared on an artificial diet based on the white beans and yeast. U. ornatrix thermal requirements were tested at 18, 20, 22, 25, 28, 30, and 32ºC 70±20% RH, and 14-h photophase. Lower threshold temperatures (TT) and thermal constants (K) for the egg, larval and pupal stages were 12.7ºC and 51.2 GDD, 13.5ºC and 290.9 GDD, 13.8ºC and 108.4 GDD, respectively; TT and K values for the biological cycle were 13.8ºC and 436.3 GDD. Key words: Crotalaria , Rattlebox moth, rearing technique INTRODUCTION In the past few years, the area planted to the crotalaria has increased significantly, reaching The Rattlebox moth, Utetheisa ornatrix (L., 1758) about 3,000 ha in Brazil (José Aparecido Donizete (Lepidoptera: Arctiidae), is considered to be the Cardoso, personal comunication).
    [Show full text]
  • An Evolutionary Arms Race Between Coronaviruses and Mammalian Species Reflected in Positive Selection of the ACE2 Receptor Among Many Species
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.096131. this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Red Queen’s Crown: an evolutionary arms race between coronaviruses and mammalian species reflected in positive selection of the ACE2 receptor among many species Mehrdad Hajibabaei1,2,* and Gregory A. C. Singer2 1 Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada 2 Centre for Environmental Genomics Applications, eDNAtec Inc, St. John’s, NL, Canada * Correspondence: Mehrdad Hajibabaei ([email protected]) "Nothing in biology makes sense except in the light of evolution" (Theodosius Dobzhansky) Abstract The world is going through a global viral pandemic with devastating effects on human life and socioeconomic activities. This pandemic is the result of a zoonotic coronavirus, Severe Acute Respirsatory Syndrom Coronavirus 2 (SARS-CoV-2) which is believed to have originated in bats and transferred to humans possibly through an intermediate host species (Zhou et al. 2020; Coronaviridae Study Group of the International Committee on Taxonomy of Viruses 2020). The virus attacks host cells by attaching to a cell membrane surface protein receptor called ACE2 (Ge et al. 2013; Zhou et al. 2020). Given the critical role of ACE2 as a binding receptor for a number of coronaviruses, we studied the molecular evolution of ACE2 in a diverse range of mammalian species. Using ACE2 as the target protein, we wanted to specifically test the Red Queen hypothesis (Dawkins and Krebs 1979) where the parasite and host engage in an evolutionary arms race which can result in positive selection of their traits associated to their fitness and survival.
    [Show full text]
  • Utetheisa Ornatrix)
    Female choice increases offspring fitness in an arctiid moth (Utetheisa ornatrix) Vikram K. Iyengar and Thomas Eisner* Department of Neurobiology and Behavior, W347 Mudd Hall, Cornell University, Ithaca, NY 14853 Contributed by Thomas Eisner, November 5, 1999 In Utetheisa ornatrix (Lepidoptera, Arctiidae), the female mates direct phenotypic benefits (from the nuptial gifts) and indirect preferentially with larger males. Having a larger father results in genetic benefits (from the expression of largeness in sons and the eggs being more richly endowed with defensive pyrrolizidine daughters). We postulated that these benefits should be mea- alkaloid (which the female receives from the male with the sperm surable and found that the offspring of preferred males do package, in quantity proportional to the male’s body mass, and indeed fare better than the offspring of nonpreferred males. passes on to the eggs); having a larger father also results in the Specifically, we showed that (i) eggs sired by preferred males are sons and daughters themselves being larger (body mass is herita- less vulnerable to predation; (ii) sons of preferred males are ble in Utetheisa). We provide evidence herein that these conse- more successful in courtship; and (iii) daughters of preferred quences enhance the fitness of the offspring. Eggs sired by larger males are more fecund. males are less vulnerable to predation (presumably because of Our basic protocol was as follows: (i) we confined a female their higher alkaloid content), whereas sons and daughters, by with two males (one large, one small) until she chose to mate virtue of being larger, are, respectively, more successful in court- with one of them (preferred male, primary mating); (ii)we ship and more fecund.
    [Show full text]
  • Paternal Inheritance of a Female Moth's Mating Preference
    letters to nature 11. Reznick, D. N., Shaw, F. H., Rodd, F. H. & Shaw, R. G. Evaluation of the rate of evolution in natural birds promote the evolution of exaggerated male traits through populations of guppies (Poecilia reticulata). Science 275, 1934–1936 (1997). 12. Majerus, M. E. N. Melanism: Evolution in Action (Oxford Univ. Press, Oxford, 1998). sexual selection. Specifically, the theory predicts that, because 13. Hendry, A. P.Adaptive divergence and the evolution of reproductive isolation in the wild: an empirical female preference alleles arising on the Z chromosome are demonstration using introduced sockeye salmon. Genetica 112, 515–534 (2001). transmitted to all sons that have the father’s attractive trait rather 14. Grant, P.R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, than to only a fraction of the sons, such alleles will experience 707–711 (2002). 15. Baker, A. J. Genetic and morphometric divergence in ancestral European and descendent New Zeland stronger positive selection and be less vulnerable to chance loss populations of chaffinches (Fringilla coelebs). Evolution 46, 1784–1800 (1992). than would autosomal alleles. 16. Merila¨, J. & Crnokrak, P. Comparison of genetic differentiation at marker loci and quantitative traits. The benefits accrued by female Utetheisa as a result of mating J. Evol. Biol. 14, 892–903 (2001). 17. Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951). preferentially with larger males have been characterized. The pheno- 18. Haugen, T. O. & Vøllestad, L. A. A century of life-history evolution in grayling. Genetica 112, 475–491 typic benefits take the form of nutrient and pyrrolizidine alkaloid (2001).
    [Show full text]
  • How to Win an Evolutionary Arms Race
    Secure Systems Editor: S.W. Smith, [email protected] How to Win an Evolutionary Arms Race ust about every computer user today is engaged in an McAfee makes a mistake with a virus signature, it could disable or even evolutionary arms race with virus writers, spam dis- delete legitimate users’ applications (legitimate applications have already tributors, organized criminals, and other individuals been disabled by virus scanners; see http://news.com.com/2100-7350 attempting to co-opt the Internet for their own pur- -5361660.html). If Microsoft makes J a mistake, numerous machines poses. These adversaries are numerous, adaptable, persistent, and might no longer even boot. The time between vulnerability disclo- ANIL SOMAYAJI unscrupulous. They’re creating in- able way to communicate and col- sure and exploit distribution is some- Carleton dependent agents—mobile pro- laborate, we must adopt another, times only a few days. If software de- University grams—that, once released, take on perhaps radically different, model for velopers haven’t been previously lives of their own. Their attacks are securing our computers. notified, there’s little chance that becoming more sophisticated every To better understand this conclu- they can release a well-tested fix in day, and the situation will likely be- sion, we should first re-examine why this time frame. Further, with fast- come much worse unless we, as de- developers and users are embracing propagating worms and viruses, fenders, take drastic steps. automated update systems. antivirus developers must play catch- We can’t hope to completely de- up: Malware can infect thousands of feat all our attackers.
    [Show full text]
  • Micro-Evolutionary Change and Population Dynamics of a Brood Parasite and Its Primary Host: the Intermittent Arms Race Hypothesis
    Oecologia (1998) 117:381±390 Ó Springer-Verlag 1998 Manuel Soler á Juan J. Soler á Juan G. Martinez Toma sPe rez-Contreras á Anders P. Mùller Micro-evolutionary change and population dynamics of a brood parasite and its primary host: the intermittent arms race hypothesis Received: 7 May 1998 / Accepted: 24 August 1998 Abstract A long-term study of the interactions between Key words Brood parasitism á Clamator glandarius á a brood parasite, the great spotted cuckoo Clamator Coevolution á Parasite counter-defences á Pica pica glandarius, and its primary host the magpie Pica pica, demonstrated local changes in the distribution of both magpies and cuckoos and a rapid increase of rejection of Introduction both mimetic and non-mimetic model eggs by the host. In rich areas, magpies improved three of their defensive Avian brood parasites exploit hosts by laying eggs in mechanisms: nest density and breeding synchrony in- their nests, and parental care for parasitic ospring is creased dramatically and rejection rate of cuckoo eggs subsequently provided by the host. Parasitism has a increased more slowly. A stepwise multiple regression strongly adverse eect on the ®tness of hosts, given that analysis showed that parasitism rate decreased as host the young parasite ejects all host ospring or outcom- density increased and cuckoo density decreased. A lo- petes them during the nestling period (Payne 1977; gistic regression analysis indicated that the probability Rothstein 1990). Thus, there is strong selection acting on of changes in magpie nest density in the study plots was hosts to evolve defensive mechanisms against a brood signi®cantly aected by the density of magpie nests parasite which, in turn, will develop adaptive counter- during the previous year (positively) and the rejection defences.
    [Show full text]
  • Chemical Defence of the Warningly Coloured Caterpillars of Methona Themisto (Lepidoptera: Nymphalidae: Ithomiinae)
    Eur. J. Entomol. 106: 253–259, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1449 ISSN 1210-5759 (print), 1802-8829 (online) Chemical defence of the warningly coloured caterpillars of Methona themisto (Lepidoptera: Nymphalidae: Ithomiinae) KAMILA F. MASSUDA and JOSÉ R. TRIGO* Laboratório de Ecologia Química, Departamento de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970 Campinas, SP, Brazil Key words. Aposematism, Brunfelsia uniflora, Camponotus crassus, Gallus gallus domesticus, learning, Lycosa erythrognatha, predation, Solanaceae, unpalatability Abstract. The caterpillars of the butterfly Methona themisto (Nymphalidae: Ithomiinae) are conspicuously coloured and feed exclu- sively on Brunfelsia uniflora (Solanaceae), a plant that is rich in secondary plant substances, which suggests the caterpillars are chemically protected against predators. Results of experiments indicate that predators determine the survival of Methona themisto caterpillars in the field and laboratory bioassays that this organism is eaten by ants and spiders but not chicks. Both the conspicuous orange and black striped colouration and chemical compounds of Methona themisto caterpillars seem to be related to protection against predation by visually hunting predators. Chicks ate proportionally more of the cryptically coloured 1st instar caterpillars than of the conspicuously coloured later instar caterpillars. That Methona themisto caterpillars are chemically defended is supported by the activity of the dichloromethanic extract of 5th instars in preventing predation by chicks. Caterpillars of Methona themisto are apo- sematic as they are both (1) unpalatable, and (2) their warning signal is easily recognized by potential predators. Chicks learned to avoid the aposematic 3rd or 5th instar caterpillars after one encounter. Mealworms painted to look like caterpillars were also rejected by chicks that had previously encountered Methona caterpillars.
    [Show full text]
  • Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A
    Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou To cite this version: Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou. Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses, MDPI, 2018, 10 (7), pp.366. 10.3390/v10070366. hal-02140538 HAL Id: hal-02140538 https://hal.archives-ouvertes.fr/hal-02140538 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Article Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé 1,2, Carlos Lopez-Vaamonde 1,3 ID , Jenny S. Cory 4 and Elisabeth A. Herniou 1,* ID 1 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, 37200 Tours, France; [email protected] (J.T.); [email protected]
    [Show full text]
  • Snail Susceptibility to Crab Predation: a Case Study of Co-Evolution from Lake Tanganyika, East Africa
    Snail susceptibility to crab predation: A case study of co-evolution from Lake Tanganyika, East Africa Student: Ava B. Rosales Mentors: Ellinor Michel & Saskia Marijnissen Introduction Co-evolution has been invoked as an explanation for Lake Tanganyika’s unusual endemic fauna. The crabs Platytelphusa armata and Potamonautes platynotus are molluscivores, found in the same habitats as the gastropods Lavigeria coronata, L. grandis, and L. nassa (West & Cohen 1994). As these are the largest gastropods in the Lavigeria species flock, and often the most exposed, we are determining whether shell size and sculpture provides protection from predation. We are also attempting to reveal the effectiveness of chela morphology among crab predators. The fine details of the predator-prey relationships will link the ecological processes with their potential evolutionary patterns. Methods Specimen collection was performed at two sites: Jakobsen’s Bay (4º 54.64’ S, 29º 35.92’ E) and Hilltop (4º 53.20’ S, 29º 36.75’ E), in the vicinity of Kigoma Bay, Tanzania. Snails were collected from the rocky littoral zone on the coast south of Jakobsen’s Beach by snorkel from 1-6 m. Crab traps baited with raw fish were used to catch crabs between 2-10 m depth from Jakobsen’s Bay as well as Hilltop. Snails and crabs were kept in aerated tanks filled with water collected from 1km off shore in Kigoma Bay. Crabs were acclimated and starved for 24-48 hours to increase their motivation to feed. Before the trials snail shells were scrubbed clean of algae to reveal scars and
    [Show full text]
  • Rattlebox Crotalaria Spp. Fabaceae (Legume Family)
    Rattlebox Crotalaria spp. Fabaceae (Legume family) Habitat Some species of Crotolaria were introduced as a soil-building cover crop for the sandy soils in the southeastern United States and have since become established in disturbed soils along fences and roadsides in Florida and Georgia. An indigenous species, C. sagit- talis is common along river bottomland. Description Crotalaria are erect, herbaceous, variably hairy plants, and may be annual or perenni- al. The leaves are simple, alternate, lanceolate to obovate, with a finely haired under surface (Figure 4-8A). The flowers are yellow, with the leguminous calyx longer than the corolla (Figure 4-8B). The fruit is a leguminous pod, inflated, hairless, becoming black with maturity, and contains 10 to 20 glossy black, heart-shaped seeds, which often detach and rattle with the pod. Several species of Crotalaria have been associat- ed with livestock poisoning including C. sagittalis, C. spectabilis, and C. retusa. Principal Toxin The principal toxins in Crotalaria spp. are the pyrrolizidine alkaloids (PA), the most notable of which is monocrotalamine. The alkaloid is present in greatest quantity in the seeds, with lesser amounts in the leaves and stems. All livestock, including domestic fowl are susceptible to poisoning. Although acute deaths will occur from eating large quantities of the crotolaria seeds or plant, more typically animals will develop signs of liver disease and photosensitization from a few days up to 6 months later. Monocrotaline also causes severe pulmonary changes, and horses have been reported to die after developing an acute fibrosing alveolitis from eating a feed con- taining 40 percent crotolaria seeds.63,64 Figure 4-8B Rattlebox flower and seed pods (Crotolaria spectabilis).
    [Show full text]
  • Comparative Morphology of the Male Genitalia in Lepidoptera
    COMPARATIVE MORPHOLOGY OF THE MALE GENITALIA IN LEPIDOPTERA. By DEV RAJ MEHTA, M. Sc.~ Ph. D. (Canta.b.), 'Univefsity Scholar of the Government of the Punjab, India (Department of Zoology, University of Oambridge). CONTENTS. PAGE. Introduction 197 Historical Review 199 Technique. 201 N ontenclature 201 Function • 205 Comparative Morphology 206 Conclusions in Phylogeny 257 Summary 261 Literature 1 262 INTRODUCTION. In the domains of both Morphology and Taxonomy the study' of Insect genitalia has evoked considerable interest during the past half century. Zander (1900, 1901, 1903) suggested a common structural plan for the genitalia in various orders of insects. This work stimulated further research and his conclusions were amplified by Crampton (1920) who homologized the different parts in the genitalia of Hymenoptera, Mecoptera, Neuroptera, Diptera, Trichoptera Lepidoptera, Hemiptera and Strepsiptera with those of more generalized insects like the Ephe­ meroptera and Thysanura. During this time the use of genitalic charac­ ters for taxonomic purposes was also realized particularly in cases where the other imaginal characters had failed to serve. In this con­ nection may be mentioned the work of Buchanan White (1876), Gosse (1883), Bethune Baker (1914), Pierce (1909, 1914, 1922) and others. Also, a comparative account of the genitalia, as a basis for the phylo­ genetic study of different insect orders, was employed by Walker (1919), Sharp and Muir (1912), Singh-Pruthi (1925) and Cole (1927), in Orthop­ tera, Coleoptera, Hemiptera and the Diptera respectively. It is sur­ prising, work of this nature having been found so useful in these groups, that an important order like the Lepidoptera should have escaped careful analysis at the hands of the morphologists.
    [Show full text]
  • Native Versus Exotic Crotalaria Species (Fabaceae) As Host Plants of the Ornate Bella Moth, Utetheisa Ornatrix (Lepidoptera: Erebidae: Arctiinae) Andrei Sourakov*
    Journal of Natural History, 2015 Vol. 49, Nos. 39–40, 2397–2415, http://dx.doi.org/10.1080/00222933.2015.1006700 You are what you eat: native versus exotic Crotalaria species (Fabaceae) as host plants of the Ornate Bella Moth, Utetheisa ornatrix (Lepidoptera: Erebidae: Arctiinae) Andrei Sourakov* McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA (Received 9 April 2014; accepted 2 January 2015; first published online 3 March 2015) Crotalaria plants and Utetheisa ornatrix are closely linked to each other: the larvae destroy the seeds, while the moth depends on hostplants for alkaloids. To better understand the ongoing co-evolution, the present study examines how native hos- tplants compare to exotic ones. Leaf-feeding on Crotalaria pumila, C. rotundifolia,and C. incana,nativetothemoth’s range, led to faster larval development than on the exotic C. lanceolata, C. spectabilis,andC. pallida. Seed-feeding on all species of Crotalaria led to accelerated larval development and a resultant larger adult moth, and correlates with a higher nitrogen content in the plant tissues. These results add a novel dimension to the previous studies of reproductive biology of this model organ- ism. In controlled settings, mature larvae showed preference for leaves of C. spectabilis over those of other species, perhaps due to the higher alkaloid content. Differences in morphology and phenology of Crotalaria determine the ecology of U. ornatrix popu- lations in Florida. The introduction of novel hostplants, on which U. ornatrix can have a significant negative effect and which are of concern to humans as invasive toxic weeds, has greatly expanded the niche occupied by this moth.
    [Show full text]