Capturing Infinity Reed Mathematics Professor Thomas Wieting Explores the Hyperbolic Geometry of M.C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marlana Dugger
Dugger 1 East Texas Baptist University School of Humanities Department of English Infinite Perception: William Blake‟s Marriage of Heaven and Hell By Marlana K. Dugger Dugger 2 Introduction William Blake is often referred to as the first of the British Romantics. The Romantic period was relatively short (1785-1830) and was fueled in part by two of the most important movements for independence in history, the French and American revolutions. The self-assertion that provided the foundation for the Romantic period led to the questioning and eventual rejection of long-established social hierarchies, political institutions, and religious traditions and organizations. The Romantic artists, too, rejected the established literary forms and thematic concerns of their predecessors and sought new ways of expressing themselves. These artists emphasized the nobility and importance of common experiences and, to a certain extent, a common language accessible to all, not just the educated classes. By extension, they championed the imagination as the higher faculty and believed the natural world more moral, spiritual, and ordered than the world of men. William Blake was this movement‟s English pioneer. He was born in London, England in 1757 and was reared in a middle-class family. Blake did not receive a formal academic education although he did attend the royal Academy of Arts and made a fairly good living as an engraver. It is also important to note that from the age of four, Blake experienced visions, most of which were religious in nature. These visions inspired most, if not all, of Blake‟s literary and artistic pieces. -
Fictional Illustration Language with Reference to MC Escher and Istvan
New Trends and Issues Proceedings on Humanities and Social Sciences Volume 4, Issue 11, (2017) 156-163 ISSN : 2547-881 www.prosoc.eu Selected Paper of 6th World Conference on Design and Arts (WCDA 2017), 29 June – 01 July 2017, University of Zagreb, Zagreb – Croatia Fictional Illustration Language with Reference to M. C. Escher and Istvan Orosz Examples Banu Bulduk Turkmen a*, Faculty of Fine Arts, Department of Graphics, Hacettepe University, Ankara 06800, Turkey Suggested Citation: Turkmen, B. B. (2017). Fictional illustration language with reference to M. C. Escher and Istvan Orosz examples. New Trends and Issues Proceedings on Humanities and Social Sciences. [Online]. 4(11), 156-163. Available from: www.prosoc.eu Selection and peer review under responsibility of Prof. Dr. Ayse Cakır Ilhan, Ankara University, Turkey. ©2017 SciencePark Research, Organization & Counseling. All rights reserved. Abstract Alternative approaches in illustration language have constantly been developing in terms of material and technical aspects. Illustration languages also differ in terms of semantics and form. Differences in formal expressions for increasing the effect of the subject on the audience lead to diversity in the illustrations. M. C. Escher’s three-dimensional images to be perceived in a two-dimensional environment, together with mathematical and symmetry-oriented studies and the systematic formed by a numerical structure in its background, are associated with the notion of illustration in terms of fictional meaning. Istvan Orosz used the technique of anamorphosis and made it possible for people to see their perception abilities and visual perception sensitivities in different environments created by him. This study identifies new approaches and illustration languages based on the works of both artists, bringing an alternative proposition to illustration languages in terms of systematic sub-structure and fictional idea sketches. -
Escher and Coxeter Special Is That There Was a Genuine Exchange of Ideas
5 June 2017 Escher andEscher Coxeter – Aand Mathematical Coxeter Conversation - A Mathematical J Conversation Professor Sarah HarT P S H Introduction In the artist Maurits Escher met the mathematician Donald Coxeter at the International Congress of Mathemati- cians in Amsterdam. This meeting sparked a lifelong correspondence which would inuence the work of both men. In the talk, we will see examples of Escher’s work in the plane and on the sphere and discuss why the possibilities in these geometries are nite. We’ll look at how a diagram in an article by Coxeter opened up a new world of possibili- ties for Escher. Finally, we’ll give an indication about what it was in Escher’s work that Coxeter found mathematically fascinating. Escher before Coxeter Figure is a self-portrait by Dutch artist Maurits Cornelis Escher. It is a lithograph made in , when he was . Escher is well known for his intricate and beautiful designs that play with the ideas of geometry and perspective. Escher was born on th June in Leeuwarden, Holland, the youngest of ve brothers. The family moved to Arnhem when he was ve, and that is where he was brought up and educated. His father was a civil engineer, and all his older brothers became scientists. In he was admitted to the School for Architecture and Deco- rative Arts in Haarlem; this was where he produced his rst woodcuts. He had intended to study architecture but soon switched to graphic arts. He joked that it was only by a hair’s breadth that he escaped becoming a useful member of society. -
The Family of “Circle Limit III” Escher Patterns
The Family of “Circle Limit III” Escher Patterns Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-2496, USA E-mail: [email protected] Web Site: http://www.d.umn.edu/˜ddunham/ Keywords: Hyperbolic geometry, M.C. Escher, Circle Limit III Abstract The Dutch artist M.C. Escher created his four “Circle Limit” patterns which used the Poincare´ model of hyperbolic geometry. Many people consider the third one of this sequence, Circle Limit III — a pattern of fish, to be the most beautiful. In this woodcut, four fish meet at right fin tips, three fish meet at left fin tips, and three fish meet at their noses. The backbones of the fish are aligned along white circular arcs. Fish on one arc are the same color, and all fish are colored according to the map-coloring principal: adjacent fish must have different colors. We generalize Escher’s Circle Limit III pattern to an entire family of fish patterns. A pattern of fish in this family will have p fish meeting at right fins, q fish meeting at left fins, and r fish meeting at their noses meet. The number r must be odd so that the fish swim head to tail along backbone arcs. We denote such a pattern by the triple (p,q,r). Circle Limit III would be labeled (4,3,3) in this system. The pattern will be hyperbolic or Euclidean depending on whether 1/p + 1/q + 1/r is less than or equal to 1. Escher himself created a Euclidean pattern in this family — Notebook drawing 123, which we denote (3,3,3). -
The George-Anne Student Media
Georgia Southern University Digital Commons@Georgia Southern The George-Anne Student Media 10-27-2003 The George-Anne Georgia Southern University Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/george-anne Part of the Higher Education Commons Recommended Citation Georgia Southern University, "The George-Anne" (2003). The George-Anne. 3032. https://digitalcommons.georgiasouthern.edu/george-anne/3032 This newspaper is brought to you for free and open access by the Student Media at Digital Commons@Georgia Southern. It has been accepted for inclusion in The George-Anne by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. ^^H ■■■^^■■i ^^^mm HB^^BHHH 1 •.siannsnc Covering the campus like a swarm of gnats I he (Mficial Student Newspaper of Georgi iniversit Volleyball wins trio of matches to stay perfect at home SPORTS ^ Page 6 NEWS More on the events www.stp.georgiasouthern.edu that shaped Homecoming 2003 Page 9 or * or et THE END 11- 4 ■ J OF AN ERA By Eli Boorstein [email protected] Iff s the old adage says, "All good things must come I to an end." 7 The only problem is, that phrase is not supposed > » i to apply to Georgia Southern. The No. 19 Eagle football team, after storming back to take the lead, saw The Citadel respond late to win 28-24, spoiling Homecoming festivities at Paul- son Stadium Saturday afternoon. :ss With the loss, their fourth of the season, the Ea- • gles' streak of six straight postseason berths will likely :ss be coming to an end. -
Some Common Themes in Visual Mathematical Art
BRIDGES Mathematical Connections in Art, Music, and Science Some Common Themes in Visual Mathematical Art Robert W. Fathauer Tessellations Company Tempe, AZ 85281, USA E-mail: [email protected] Abstract Mathematics and art are two seemingly disparate fields according to contemporary views, but there are a number of visual artists who make mathematics a focus of their work. There are several themes that have been widely used by mathematical artists. These include polyhedra, tessellations, impossible figures, MObius bands, distorted or unusual perspective systems, and fractals. Descriptions and examples are provided in this paper, which is intended to some degree as an fntroduction to the Exhibit of Visual Mathematical Art held as part of Bridges 2001. 1. Introduction Historically, mathematics has played an important role in visual art, particularly in perspective drawing; i.e., the means by which a three-dimensional scene is rendered convincingly on a flat canvas or piece of paper. Mathematics and art are two seemingly disparate fields according to contemporary views, the first often considered analytical and the second emotional. Mathematics does not play an overt role in most contemporary art, and in fact, many artists seldom or never employ even -perspective drawing. However, there are a number of contemporary visual artists who make mathematics a focus of their work. Several notable figures in history paved the way for these individuals. There are obviously no rules or limits on themes and ideas in mathematical art. However, there are a number of themes that have been widely used by mathematical artists. Some of these are described here, with examples. -
Collection Volume I
Collection volume I PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 29 Jul 2010 21:47:23 UTC Contents Articles Abstraction 1 Analogy 6 Bricolage 15 Categorization 19 Computational creativity 21 Data mining 30 Deskilling 41 Digital morphogenesis 42 Heuristic 44 Hidden curriculum 49 Information continuum 53 Knowhow 53 Knowledge representation and reasoning 55 Lateral thinking 60 Linnaean taxonomy 62 List of uniform tilings 67 Machine learning 71 Mathematical morphology 76 Mental model 83 Montessori sensorial materials 88 Packing problem 93 Prior knowledge for pattern recognition 100 Quasi-empirical method 102 Semantic similarity 103 Serendipity 104 Similarity (geometry) 113 Simulacrum 117 Squaring the square 120 Structural information theory 123 Task analysis 126 Techne 128 Tessellation 129 Totem 137 Trial and error 140 Unknown unknown 143 References Article Sources and Contributors 146 Image Sources, Licenses and Contributors 149 Article Licenses License 151 Abstraction 1 Abstraction Abstraction is a conceptual process by which higher, more abstract concepts are derived from the usage and classification of literal, "real," or "concrete" concepts. An "abstraction" (noun) is a concept that acts as super-categorical noun for all subordinate concepts, and connects any related concepts as a group, field, or category. Abstractions may be formed by reducing the information content of a concept or an observable phenomenon, typically to retain only information which is relevant for a particular purpose. For example, abstracting a leather soccer ball to the more general idea of a ball retains only the information on general ball attributes and behavior, eliminating the characteristics of that particular ball. -
Estimular El Crecimiento De Bacterias Para Mejorar Los
BIOLOGÍA Los investigadores vieron el cambio de contar con los dedos Los hallazgos permiten un soporte empírico más fuerte para la en el momento de empezar a basarse en la memoria cuando existencia de teorías sobre el desarrollo de las matemáticas, en repitieron el experimento un año después con los niños. En palabras de Jessica Cantlon, neurocientífica cognitiva en la esta segunda vez, los niños contaban menos con los dedos y Universidad de Rochester, en Nueva York. Pero añade que: “no APRENDIENDO A SUMAR hacían menos movimientos labiales (como contando en voz sabemos qué información es la que pasa entre el hipocampo alta) que la primera vez. Para poder saber qué pasa realmen- y el neocórtex”. Una manera de demostrar esta cuestión sería DE CABEZA: ¿QUÉ OCURRE te en el cerebro mientras se efectúa una tarea así, se recurrió extender el estudio a niños con el hipocampo dañado o con a la imagen por resonancia magnética funcional (FMRI, por alguna discapacidad en el aprendizaje de las matemáticas. EN EL CEREBRO? sus siglas en inglés). Básicamente, con esta técnica se puede Por Cristóbal Rodero ver qué zonas del cerebro se utilizan más en un determinado Menon sugiere que la maduración del hipocampo y sus conexio- momento en función de la cantidad de sangre que llegue, y nes esconden probablemente no solo el desarrollo de habilida- Recuerdo que en el colegio, para sumar primero me enseñaron en el caso del experimento que estamos comentando, el ele- des matemáticas basadas en la memoria, sino también algún otro con objetos físicos, de ahí a escribir palitos en el papel, lue- gido fue el hipocampo. -
Bibliography and Index
References [1] Lars V. Ahlfors. Complex Analysis. McGraw-Hill, New York, 1979. [2] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland Publishing Co., Amsterdam, 1960. [3] John B. Conway. Functions of One Complex Variable. Springer- Verlag, New York, second edition, 1973. [4] H. S. M. Coxeter. Introduction to Geometry. John Wiley and Sons, New York, second edition, 1961. [5] H. S. M. Coxeter. The Non-Euclidean Symmetry of Escher’s Picture Circle Limit III. Leonardo, 12:19–25, 1979. [6] H. S. M. Coxeter. Non-Euclidean Geometry. The Mathematical Association of America, Washington, D.C., sixth edition, 1998. [7] William Dunham. Journey Through Genius. Penguin Books, New York, 1991. [8] Richard L. Faber. Foundations of Euclidean and Non-Euclidean Geometry. Marcel-Dekker, Inc., New York, 1983. [9] W. T. Fishback. Projective and Euclidean Geometry. John Wiley and Sons, Inc., New York, 1969. [10] G. H. Hardy. A Mathematician’s Apology. Cambridge University Press, London, 2012 (reissue). [11] Robin Hartshorne. Geometry: Euclid and Beyond. Springer-Verlag, New York, 2000. [12] Robin Hartshorne. Foundations of Projective Geometry. Ishi Press International, Bronx, NY, 2009. [13] David Hilbert. Foundations of Geometry. Open Court Press, LaSalle, Illinois, 1971. 253 254 REFERENCES [14] David Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea Publishing Co., New York, 1952. [15] Einar Hille. Analytic Function Theory, Volume I. Blaisedell Pub- lishing, New York, 1959. [16] Edmund Landau. Foundations of Analysis. AMS Chelsea Publish- ing Co., Providence, Rhode Island, 2001. [17] Norman Levinson and Raymond M. Redheffer. Complex Variables. Holden-Day, San Francisco, 1970. [18] Eric W. -
Hyperbolization of Euclidean Ornaments
Hyperbolization of Euclidean Ornaments Martin von Gagern & J¨urgen Richter-Gebert Lehrstuhl f¨ur Geometrie und Visualisierung Zentrum Mathematik, Technische Universit¨at M¨unchen, Germany [email protected], [email protected] Submitted: Oct 30, 2008; Accepted: May 5, 2009; Published: May 22, 2009 Mathematics Subject Classification: Primary 51M09, 52C26; Secondary 51F15, 53A30, 53A35 Abstract In this article we outline a method that automatically transforms an Euclidean ornament into a hyperbolic one. The necessary steps are pattern recognition, sym- metry detection, extraction of a Euclidean fundamental region, conformal deforma- tion to a hyperbolic fundamental region and tessellation of the hyperbolic plane with this patch. Each of these steps has its own mathematical subtleties that are discussed in this article. In particular, it is discussed which hyperbolic symmetry groups are suitable generalizations of Euclidean wallpaper groups. Furthermore it is shown how one can take advantage of methods from discrete differential geometry in order to perform the conformal deformation of the fundamental region. Finally it is demonstrated how a reverse pixel lookup strategy can be used to obtain hyperbolic images with optimal resolution. 1 Introduction Ornaments and regular tiling patterns have a long tradition in human culture. Their ori- gins reach back to ancient cultures like China, Egypt, Greece and the Islam. Each of these cultures has its own specific way to create symmetric decorative patterns. Mathemati- cally the underlying structures are well understood. Taking only the pattern into account (and neglecting possible color symmetries) there are just 24 sporadic groups and 2 infi- nite classes of groups governing the symmetry structure of plane images. -
The Mathematician and the Artist 1
Running head: THE MATHEMATICIAN AND THE ARTIST 1 The Mathematician and the Artist Rita Di Ciancia St. Philomena’s Catholic High School for Girls “The universe (which others call the Library) is composed of an indefinite, perhaps infinite number of hexagonal galleries.[...] The Library is unlimited but periodic. If an eternal traveler should journey in any direction, he would find after untold centuries that the same volumes are repeated in the same disorder - which, repeated, becomes order: Order. My solitude is cheered by that elegant hope.” - Jorge Luis Borges, The Library of Babel THE MATHEMATICIAN AND THE ARTIST 2 A painter, a composer and a mathematician share a creativity that allows them to illustrate their perception of the universe. It is important to notice that even though their understanding of the universe and the medium they choose to use to depict it may differ, the order and structure of their idea may be perceived by some to possess a chaotic beauty. Thus, the disordered nature of the impressions made by a mathematician on a page can be compared to the strokes of paint on a canvas, or the embellishment of quavers, crotchets and minims on a musical score. G.H. Hardy was one who recognised the resemblance of the thinking of the mathematician and the artist which is evident in his autobiographical account, ‘A Mathematician’s Apology’ (1940). Throughout his book, Hardy suggests that real mathematics is “almost wholly useless” (Hardy, 1940), but its significance in areas such as applied science, art, music and poetry, highlights the inevitability of its beauty. -
Constructing Hyperbolic Polygon Tessellations & the Fundamental
Constructing Hyperbolic Polygon Tessellations & The Fundamental Group of Their Surfaces How wallpapers and donuts are (kinda) the same thing. Damon Motz-Storey Haverford College, Department of Mathematics Advisor: Professor Joshua M. Sabloff 29 April 2016 Figure 1: M. C. Escher's Circle Limit III [4]. A hyperbolic tessellation of oc- tagons, three of which meet at every vertex, is a natural overlay to the image. Abstract Tessellations of the Euclidean and hyperbolic planes are a useful tool for bringing together topology, geometry, and group theory. Surfaces can be created by identifying together edges of polygons. Under specific cir- cumstances, there exist isometry groups which act on those polygons to create tessellations of the plane that are isomorphic to the fundamental group of their corresponding surfaces. In hyperbolic space, regular poly- gons of any number of sides can tessellate the space. We will prove the Poincar´ePolygon Theorem to show which types of regular polygons create a tessellation in hyperbolic space. Then we will determine which polygon tessellations have isometry groups that are isomorphic to their polygon's corresponding surface fundamental group. We will also investigate meth- ods of teaching selections of these topics to a 9th grade geometry class. 1 Contents 1 Introduction 2 2 Background Information & Definitions 3 2.1 Hyperbolic Geometry . .3 2.2 Covering Spaces & The Fundamental Group . .6 3 Tessellations of the Hyperbolic Disc 7 3.1 Definition of a Tessellation . .7 3.2 Fuchsian Groups & Fundamental Domains . .9 4 Constructing Tessellations of the Hyperbolic Disc: The Poincar´e Polygon Theorem 13 5 Deck Transformations 22 5.1 Deck Transformations .