Supersymmetry: Theory
SLAC-PUB-7125 March, 1996 Supersymmetry: Theory MICHAEL E. PESKI$ Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 USA ABSTRACT If supersymmetric particles are discovered at high-energy col- liders, what can we hope to learn about them? In principle, the properties of supersymmetric particles can give a window into the physics of grand unification, or of other aspects of interactions at very short distances. In this article, I sketch out a systematic pro- gram for the experimental study of supersymmetric particles and point out the essential role that e + e - linear colliders will play in this investigation. to appear in the proceedings of the International Workshop on Physics and Experiments with Linear Colliders Morioka, Iwate-ken, Japan, September 8-12, 1995 aWork supportedby the Department of Energy, contract DE-AC03-76SF00515. SUPERSYMMETRY: THEORY MICHAEL E. PESKIN Stanford Linear Accelerator Center, Stanford University Stanford, California 94309 USA If supersymmetric particles are discovered at high-energy colliders, what can we hope to learn about them? In principle, the properties of supersymmetric particles can give a window into the physics of grand unification, or of other aspects of interactions at very short distances. In this article, I sketch out a systematic program for the experimental study of supersymmetric particles and point out the essential role that e+e- linear colliders will play in this investigation. 1 Introduction When we think about the motivation for a future accelerator project, it is easy enough to work out its ability to continue ongoing experimental programs or to test with greater stringency well-understood theoretical models.
[Show full text]