Strategy for American Leadership in Advanced Manufacturing

Total Page:16

File Type:pdf, Size:1020Kb

Strategy for American Leadership in Advanced Manufacturing EMERGING TECHNOLOGY TO SUPPORT AN AGING POPULATION STRATEGY FOR AMERICAN LEADERSHIP IN ADVANCED MANUFACTURING A Report by the SUBCOMMITTEE ON ADVANCED MANUFACTURING COMMITTEE ON TECHNOLOGY of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL October 2018 STRATEGY FOR AMERICAN LEADERSHIP IN ADVANCED MANUFACTURING About the National Science and Technology Council The National Science and Technology Council (NSTC) is the principal means by which the Executive Branch coordinates science and technology policy across the diverse entities that make up the Federal research and development enterprise. A primary objective of the NSTC is to ensure science and technology policy decisions and programs are consistent with the President's stated goals. The NSTC prepares research and development strategies that are coordinated across Federal agencies aimed at accomplishing multiple national goals. The work of the NSTC is organized under committees that oversee subcommittees and working groups focused on different aspects of science and technology. More information is available at http://www.whitehouse.gov/ostp/nstc. About the Office of Science and Technology Policy The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology Policy, Organization, and Priorities Act of 1976 to provide the President and others within the Executive Office of the President with advice on the scientific, engineering, and technological aspects of the economy, national security, homeland security, health, foreign relations, the environment, and the technological recovery and use of resources, among other topics. OSTP leads interagency science and technology policy coordination efforts, assists the Office of Management and Budget with an annual review and analysis of Federal research and development in budgets, and serves as a source of scientific and technological analysis and judgment for the President with respect to major policies, plans, and programs of the Federal Government. More information is available at http://www.whitehouse.gov/ostp. About the Subcommittee on Advanced Manufacturing Under Section 102 of the America COMPETES Reauthorization Act of 2010 (42 U.S.C. 6622), as amended, the NSTC Committee on Technology is responsible for planning and coordinating Federal programs and activities in advanced manufacturing research and development, and developing and updating a quadrennial national strategic plan for advanced manufacturing. The Subcommittee on Advanced Manufacturing (SAM) addresses these responsibilities, and is the primary forum for information- sharing, coordination, and consensus-building among participating agencies regarding Federal policy, programs, and budget guidance for advanced manufacturing. About this Document This 2018 strategic plan for advanced manufacturing, developed by the SAM following extensive public outreach, is based on a vision for American leadership in advanced manufacturing across industrial sectors. This vision will be achieved by developing and transitioning new manufacturing technologies to market; educating, training, and connecting the manufacturing workforce; and expanding the capabilities of the domestic manufacturing supply chain. Strategic objectives are identified for each goal, along with technical and program priorities with specific actions and outcomes to be accomplished over the next four years. Copyright Information This document is a work of the United States Government and is in the public domain (see 17 U.S.C. §105). Subject to the stipulations below, it may be distributed and copied with acknowledgment to OSTP. Copyrights to graphics included in this document are reserved by the original copyright holders or their assignees and are used here under the government’s license and by permission. Requests to use any images must be made to the provider identified in the image credits or to OSTP if no provider is identified. Published in the United States of America, 2018. – ii – STRATEGY FOR AMERICAN LEADERSHIP IN ADVANCED MANUFACTURING NATIONAL SCIENCE & TECHNOLOGY COUNCIL Chair Staff Ted Wackler, Deputy Chief of Staff and Chloe Kontos, Executive Director, NSTC Assistant Director, OSTP COMMITTEE ON TECHNOLOGY Co-Chairs Staff Walter Copan, Under Secretary of Commerce Lloyd Whitman, Principal Assistant Director for for Standards and Technology and Director of Physical Sciences and Engineering, OSTP NIST, DOC Paul Dabbar, Under Secretary for Science, DOE Michael Kratsios, Deputy Assistant to the President, OSTP SUBCOMMITTEE ON ADVANCED MANUFACTURING Co-Chairs Executive Secretary Michael Molnar,* DOC/NIST Said Jahanmir, DOC/NIST Lloyd Whitman,* OSTP Abigail Slater,* NEC Members Toby Ahrens,* USDA Justin Jackson, NASA Gary Anderson, NSF Bruce Kramer,* NSF Michael Angelastro, HHS/BARDA Rosemary Lahasky,* DOL Michael Britt-Crane, DoD/Navy Valri Lightner, DOE/EERE Michael Clark,* OMB Steve Linder, DoD David Cranmer, DOC/NIST Christopher McNeal, SBA Tracy Frost,* DoD Jeffrey Randorf,* DHS Frank Gayle, DOC/NIST G. Nagesh Rao,* SBA Charles Geraci, HHS/NIOSH Kelley Rogers, DOC/NIST Gregory Henschel, DOEd John Vickers,* NASA Jean Hu-Primmer,* HHS/FDA Michael Wooten,* DOEd Robert Ivester,* DOE/EERE Bronte Wigen, DOL * Principal Representative – iii – STRATEGY FOR AMERICAN LEADERSHIP IN ADVANCED MANUFACTURING Table of Contents Abbreviations and Acronyms ............................................................................................... v Executive Summary ........................................................................................................... 1 American Manufacturing and Competitiveness ..................................................................... 3 Factors That Impact Innovation and Competitiveness for Advanced Manufacturing ................. 4 Vision and Goals for Advanced Manufacturing .............................................................................. 7 Goal 1: Develop and Transition New Manufacturing Technologies ........................................... 8 Capture the Future of Intelligent Manufacturing Systems ............................................................ 8 Develop World-Leading Materials and Processing Technologies ............................................... 11 Assure Access to Medical Products through Domestic Manufacturing ....................................... 13 Maintain Leadership in Electronics Design and Fabrication ....................................................... 14 Strengthen Opportunities for Food and Agricultural Manufacturing ......................................... 16 Goal 2: Educate, Train, and Connect the Manufacturing Workforce ......................................... 18 Attract and Grow Tomorrow’s Manufacturing Workforce ........................................................... 19 Update and Expand Career and Technical Education Pathways ................................................ 20 Promote Apprenticeship and Access to Industry-Recognized Credentials ................................ 21 Match Skilled Workers with the Industries that Need Them ....................................................... 23 Goal 3: Expand the Capabilities of the Domestic Manufacturing Supply Chain .......................... 24 Increase the Role of Small and Medium-Sized Manufacturers in Advanced Manufacturing ..... 25 Encourage Ecosystems of Manufacturing Innovation ................................................................. 26 Strengthen the Defense Manufacturing Base .............................................................................. 28 Strengthen Advanced Manufacturing for Rural Communities .................................................... 30 Progress Made in Achieving the Objectives from the 2012 Strategic Plan ................................. 32 – iv – STRATEGY FOR AMERICAN LEADERSHIP IN ADVANCED MANUFACTURING Abbreviations and Acronyms 3D three-dimensional MEP Manufacturing Extension Partnership AM additive manufacturing NEC National Economic Council AI artificial intelligence NASA National Aeronautics and Space Administration BARDA Biomedical Advanced Research and Development Authority NIH National Institutes of Health CAP Cross-Agency Priority NIOSH National Institute for Occupational Safety and Health CM continuous manufacturing NIST National Institute of Standards and CMOS complementary metal oxide Technology semiconductor NSF National Science Foundation CTE career and technical education NSTC National Science and Technology DPA Defense Production Act Council DOC Department of Commerce OMB Office of Management and Budget DoD Department of Defense OSTP Office of Science and Technology DOEd Department of Education Policy DOE Department of Energy OT operational technology DHS Department of Homeland Security R&D research and development DOL Department of Labor SAM Subcommittee on Advanced EERE Office of Energy Efficiency and Manufacturing Renewable Energy SBA Small Business Administration FDA Food and Drug Administration SBIR Small Business Innovation Research FY fiscal year STTR Small Business Technology Transfer GDP gross domestic product STEM science, technology, engineering, HHS Department of Health and Human and mathematics Services U.S. United States IIoT industrial internet of things USDA United States Department of I-Corps Innovation Corps Agriculture IT information technology WIOA Workforce Innovation and Opportunity Act ITA International Trade Administration – v – STRATEGY FOR AMERICAN LEADERSHIP IN ADVANCED MANUFACTURING Executive Summary The United States
Recommended publications
  • Advanced Manufacturing Competency Model
    Advanced Manufacturing Competency Model Updated April 2010 Employment and Training Administration United States Department of Labor 1 www.doleta.gov Updated April 2010 Advanced Manufacturing Competency Model Table of Contents About the Model ............................................................................................................. 3 Tier One: Personal Effectiveness Competencies ....................................................... 4 Interpersonal Skills ............................................................................................. 4 Integrity ................................................................................................................ 4 Professionalism ................................................................................................... 4 Initiative ............................................................................................................... 4 Dependability & Reliability ............................................................................... 4 Lifelong Learning ................................................................................................ 4 Tier Two: Academic Competencies ............................................................................. 6 Science .................................................................................................................. 6 Basic Computer Skills ......................................................................................... 6 Mathematics ........................................................................................................
    [Show full text]
  • Advanced Manufacturing Work-Based Learning Toolkit
    IOWA ADVANCED MANUFACTURING WORK-BASED LEARNING TOOLKIT Employer and Educator Resource Guide Iowa Advanced Manufacturing Work-Based Learning Toolkit An employer and educator resource guide for establishing high-quality advanced manufacturing work-based learning opportunities for high school students Prepared by: Iowa Department of Education Division of Community Colleges and Workforce Preparation Grimes State Office Building 400 E. 14th Street Des Moines, IA 50319-0146 Phone: 515-281-8260 Fax: 515-242-5988 www.educateiowa.gov COMMUNITY COLLEGES & WORKFORCE PREPARATION PROSPERITY THROUGH EDUCATION With support from the following organizations: Download this toolkit and additional resources at WorkBasedLearning.EducateIowa.gov and SectorPartnerships.EducateIowa.gov It is the policy of the Iowa Department of Education not to discriminate on the basis of race, creed, color, sexual orientation, gender identity, national origin, sex, disability, religion, age, political party affiliation, or actual or potential parental, family or marital status in its programs, activities, or employment practices as required by the Iowa Code sections 216.9 and 256.10(2), Titles VI and VII of the Civil Rights Act of 1964 (42 U.S.C. § 2000d and 2000e), the Equal Pay Act of 1973 (29 U.S.C. § 206, et seq.), Title IX (Educational Amendments, 20 U.S.C.§§ 1681 – 1688), Section 504 (Rehabilitation Act of 1973, 29 U.S.C. § 794), and the Americans with Disabilities Act (42 U.S.C. § 12101, et seq.). If you have questions or complaints related to compliance with this policy by the Iowa Department of Education, please contact the legal counsel for the Iowa Department of Education, Grimes State Office Building, 400 E.
    [Show full text]
  • Advanced Manufacturing in Missouri 2
    Advanced Manufacturing in Missouri 2 Advanced Manufacturing in Missouri Missouri is a center for advanced manufacturing excel- Automotive Manufacturing lence, supported by a cost competitive, pro-business and innovative environment, exceptional talent, exten- Across the state, Missouri talent drives automotive sive training programs, access to raw materials, and a manufacturing into the future with significant produc- globally connected infrastructure. tion from Ford and GM. Missouri’s automotive manu- facturing plants are strategically located on the North American Automotive Alley that stretches from Toronto Aerospace Manufacturing to Mexico City, and Missouri’s Kansas City area is the second largest automotive trade hub behind Detroit, The U.S. is the world’s largest aerospace producer, and according to Brookings. In 2019, Missouri produced Missouri has a rich history in aviation, especially mili- more than 770,000 vehicles at the Ford and GM plants. tary aviation. From Charles Lindbergh, to the Mercury space program, to the latest in aerospace innovation by Boeing, Missouri has led the way in every aspect of Missouri is a Global Leader aviation for nearly 100 years. Missouri exports more than $7.3 billion in advanced Today, more than 16,000 of Missouri’s highly trained manufacturing products to more than 210 countries workforce builds the F/A-18, EA-18, F-15, and T-7A fighter every year. The state is a world leader in aerospace jets and the MQ-25 unmanned refueler at Boeing’s and automotive manufacturing, and our expertise Defense, Space and Security facilities, along with com- extends to producing everything from egg carts to posite parts for the 777X and a huge array of military aluminum boats.
    [Show full text]
  • Additive Manufacturing Pioneering Affordable Aerospace Manufacturing
    Materials and Manufacturing National Aeronautics and Space Administration Additive Manufacturing Pioneering Affordable Aerospace Manufacturing Rapidly evolving digital tools, such as additive systems design and other aerospace materials manufacturing, are the leading edge of a revo- to meet NASA mission and industry needs. At-A-Glance lution in the design and manufacture of space Marshall is helping establish the standards Propulsion system development requires systems that enables rapid prototyping and and qualifications “from art to part” for the new, more affordable manufacturing tech- reduces production times. Marshall has unique use of these advanced techniques and the niques and technologies in a constrained expertise in leveraging new digital tools, 3D parts produced using them in aerospace or budget environment, while future in-space printing, and other advanced manufacturing elsewhere in the U.S. industrial base. applications will require in-space manu- technologies and applying them to propulsion facturing and assembly of parts and systems. Marshall is advancing cutting- edge commercial capabilities in additive and digital manufacturing and applying them to aerospace challenges. The Center is developing the standards by which new manufacturing processes and parts will be tested and qualified. Selective laser melting enables faster and cheaper component development. NASA Marshall Space Flight Center | Core Capabilities and Services Accelerating Design and Development Additive Manufacturing technology for plastics includes: for Plastics and Metals • Stereo-lithography: often used for flow cell models and cold flow testing, as the parts are water resistant and can be made see-through As designers harness the capabilities of Additive Manufacturing, the way to channels inside: they think is changing.
    [Show full text]
  • High Efficiency Modular Chemical Processes (HEMCP)
    ADVANCED MANUFACTURING OFFICE High Efficiency Modular Chemical Dickson Ozokwelu, Technology Manager Processes (HEMCP) Advanced Manufacturing Office September 27, 2014 Modular Process Intensification - Framework for R&D Targets 1 | Advanced Manufacturing Office Presentation Outline 1. What is Process Intensification? 2. DOE’s !pproach to Process Intensification 3. Opportunity for Cross-Cutting High-Impact Research 4. Goals of the Process Intensification Institute 5. Addressing the 5 EERE Core Questions 2 | Advanced Manufacturing Office What is Process Intensification (PI)? Rethinking existing operation schemes into ones that are both more precise and more efficient than existing operations Resulting in… • Smaller equipment, reduced number of process steps • Reduced plant size and complexity • Modularity may replace scale up • Reduced feedstock consumption – getting more from less • Reduced pollution, energy use, capital and operating costs 3 | Advanced Manufacturing Office Vision of the Process Intensification Institute This institute will bring together US corporations, national laboratories and universities to collaborate in development of next generation, innovative, simple, modular, ultra energy efficient manufacturing technologies to enhance US global competitiveness, and positively affect the economy and job creation “This institute will provide the shared assets to Create the foundation to continue PI development and help companies, most importantly small PI equipment manufacturing in the U.S. and support manufacturers, access the
    [Show full text]
  • Advanced Manufacturing: Innovation Institutes Have Demonstrated Initial
    United States Government Accountability Office Report to Congressional Committees May 2019 ADVANCED MANUFACTURING Innovation Institutes Have Demonstrated Initial Accomplishments, but Challenges Remain in Measuring Performance and Ensuring Sustainability GAO-19-409 May 2019 ADVANCED MANUFACTURING Innovation Institutes Have Demonstrated Initial Accomplishments, but Challenges Remain in Highlights of GAO-19-409, a report to Measuring Performance and Ensuring Sustainability congressional committees Why GAO Did This Study What GAO Found Manufacturing USA is a national Since December 2016, the Manufacturing USA network has grown from 11 to 14 network of manufacturing innovation manufacturing innovation institutes that are implementing a wide array of institutes. Commerce, DOD, and DOE activities aimed at developing manufacturing capabilities in promising new have together provided $1 billion to advanced technologies, as shown in the figure. As of March 2019, most institutes establish the network’s institutes and to were operating under an initial 5- to 7-year period of federal financial assistance. promote research, development, and commercialization of advanced Additive manufacturing (or 3D printing), an example of advanced manufacturing. manufacturing technologies. The Revitalize American Manufacturing and Innovation Act of 2014 includes a provision for GAO to assess the Manufacturing USA program. This is GAO’s second report in response to the provision. Among other objectives, this report (1) describes the status of the Manufacturing USA network; (2) evaluates actions taken by Commerce, DOD, and DOE to assess progress of The Department of Commerce, through a national program office, along with the the Manufacturing USA program; and Departments of Defense (DOD) and Energy (DOE) have developed long-term (3) examines planning for institute goals for the Manufacturing USA program, such as increasing the sustainability beyond the initial 5 to 7 competitiveness of U.S manufacturing, but have not developed measurable years of federal financial assistance.
    [Show full text]
  • Advanced Manufacturing & Automation Technology Cluster
    Advanced Manufacturing & Automation Technology Cluster Value Proposition “We Accelerate Growth” About the Advanced Manufacturing & Automation Technology Cluster Covers technologies that enable clean, lean and flexible manufacturing Definition Technologies that impact semiconductor, automotive, aerospace & defense, industrial and medical device manufacturing TI’s Technology and Innovation research spans technology domains such as wireless monitoring & tracking solutions, communications, software solutions, laser technology, sensor technology, 3D printing, 4D printing, multimaterial joining technology, composites manufacturing, atomic layer deposition Coverage Multi-Material Joining Technologies Non-Destructive Wireless Monitoring Testing & 3D & Surveillance Machine Vision Direct Digital Roll-to-roll Manufacturing Technologies/ Manufacturing (Rapid Prototyping) platforms covered Atomic Layer Collaborative Robots Deposition Composite Advanced Laser Micro-Manufacturing Technologies Manufacturing Technologies 0000-00 2 Advanced Manufacturing & Automation – Key Trends Efficient product lifecycle management and design for manufacturing Improve product traceabililty, energy efficiency & environmental footprint, and ability to integrate product design and manufacturing for rapid new product development Improve quality control & reduce defects Reduction of cost and complexity Improve product design and decrease time to market Reduction Elimination of plant downtime Need for production of miniaturized intelligent sensors drives the need for
    [Show full text]
  • Vi. Tennessee's Auto Industry Future
    DRIVE! MOVING TENNESSEE’S AUTOMOTIVE SECTOR UP THE VALUE CHAIN BROOKINGS ADVANCED INDUSTRIES SERIES Mark Muro, Scott Andes, Kenan Fikri, Martha Ross, Jessica Lee, Neil Ruiz, and Nick Marchio THE BROOKINGS INSTITUTION | METROPOLITAN POLICY PROGRAM | 2013 THE BROOKINGS INSTITUTION | DRIVE! MOVING TENNESSEE’S AUTOMOTIVE SECTOR UP THE VALUE CHAIN TABLE OF CONTENTS Executive Summary ......................................................................................... i I. Introduction ............................................................................................ 1 II. Tennessee Shifts Into Drive ............................................................... 3 III. Measuring Tennessee’s Automotive Economy ............................. 6 IV. Opportunities and Threats: Key Forces at Work in the Global Auto Industry ....................................................................................... 21 V. Analyzing Strengths and Weaknesses: Tennessee’s Competitive Position ......................................................................... 30 VI. Tennessee’s Auto Industry Future: A Vision and Strategies for Getting There ...................................................................................... 50 VII. The Private Sector: Securing Advantage Through Productivity, Skills, and Innovation ........................................................................ 54 VIII. The Public Sector: Catalyzing Advances in Productivity, Skills Development, and Innovation ........................................................
    [Show full text]
  • Strengthening the Innovation Ecosystem for Advanced
    Strengthening the Innovation Ecosystem for Advanced Manufacturing PATHWAYS & OPPORTUNITIES for MASSACHUSETTS Strengthening the Innovation Ecosystem for Advanced Manufacturing PATHWAYS & OPPORTUNITIES for MASSACHUSETTS MIT Industrial Performance Center May 2015 This research was supported by a grant from MassDevelopment. The IPC is grateful to MassDevelopment for its commitment to and support of this work. We also wish to thank the many people we interviewed in the course of the research who were generous with their time and insights. Research Team and Advisory Board Members MIT Team Elisabeth Reynolds Executive Director of the Industrial Performance Center (IPC) and Lecturer, Department of Urban Studies and Planning at MIT Yilmaz Uygun Postdoctoral Research Fellow at the Industrial Performance Center Richard K. Lester Founder and Faculty Co-Chair of the IPC and Japan Steel Industry Professor and Head Department of Nuclear Science and Engineering at MIT Michael Piore Emeritus, David W. Skinner Professor of Political Economy, Departments of Economics and Political Science at MIT Nicholas Martin Graduate Student, Department of Political Science at MIT Arnaud Pincet Visiting Graduate Student, ETH Zurich Advisory Board Eric Hagopian President of Massachusetts Center for Advanced Design and Manufacturing Karen Mills Senior Fellow at Harvard Business School and Kennedy School of Government, former Administrator of U.S. Small Business Administration Jim Newman Vice President of Operations, Nucleus Scientific Willy Shih Robert and Jane Cizik Professor of Management Practice in Business Administration, Harvard Business School Mitch Tyson Former CEO, PRI Automation and Advanced Electron Beams, Co-Chair, MA Advanced Manufacturing Collaborative Industrial Performance Center 2 Executive Summary Recent years have brought a renewed focus on the importance of manufacturing to the health and future growth of the U.S.
    [Show full text]
  • Tennessee Industry and Occupational Employment Projections 2012 – 2022
    Tennessee Industry and Occupational Employment Projections 2012 – 2022 Tennessee Department of Labor and Workforce Development Employment Security Division Labor Market Information Section Occupational Employment Projections Unit 220 French Landing Drive Nashville, Tennessee 37243 (615) 741-2284 Tennessee Industry and Occupational Employment Projections 2012 – 2022 Contents: I. Introduction........................................................................................................................ 2 II. Industry Employment Analysis a. Overview................................................................................................................ 2 b. Fastest Growing and Declining Industries............................................................. 6 III. Occupational Employment Analysis a. Overview................................................................................................................ 7 b. Fastest Growing and Declining Occupations......................................................... 8 c. Job Requirements Projections................................................................................10 IV. U.S. Projections Analysis................................................................................................. 14 2 Introduction Tennessee’s total employment is expected to grow to more than 3.1 million by 2022. (See table 1.) This represents a return to employment levels not achieved since 2007, when employment peaked at 2.8 million, at the beginning of the Great Recession. The
    [Show full text]
  • Preparing Students for the Advanced Manufacturing Environment Through Robotics, Mechatronics and Automation Training
    Paper ID #12784 Preparing Students for the Advanced Manufacturing Environment through Robotics, Mechatronics and Automation Training Dr. Ana M. Djuric, Wayne State University Dr. Ana Djuric received Dipl.-Ing. degree in mechanical engineering from the University of Belgrade, Serbia, focusing in Control Systems, the M.A.Sc. degree in Industrial and Manufacturing Systems En- gineering from University of Windsor, Canada in the area of Industrial Robotics, and a Ph.D. degree in Mechanical Engineering from University of Windsor, Canada in the area of Reconfigurable Robotics. Prior to her arrival at WSU, Dr. Djuric worked in the industry for 5 years. She worked as a machine and tool designer first and then as a Robotics software Analyst. Dr. Djuric worked as an Instructor for 4 years at the Mechanical, Automotive and Materials Engineering, and Industrial and Manufacturing and Systems Engineering departments at the University of Windsor. Since Fall 2011 she is an Assistant Professor of Engineering Technology in the College of Engineering at Wayne State University. Dr. Djuric is work- ing on undergraduate and graduate research and she is a member of Council on Undergraduate Research (CUR). Dr. Djuric research areas are Industrial robots, kinematics, dynamics, control, and advanced manufacturing systems. She published over 30 journal and conference papers. Dr. Vukica M. Jovanovic, Old Dominion University Dr. Jovanovic received her dipl.ing and M.Sc. in Industrial Engineering from University of Novi Sad, Ser- bia. She received a PhD in Technology at Purdue University, while working as a PhD student in Center for Advanced Manufacturing, Product Lifecycle Management Center of Excellence.
    [Show full text]
  • Disruptive Manufacturing: the Effects of 3D Printing
    Disruptive manufacturing The effects of 3D printing Headline Content A 3D printing primer ................................................................................................1 Understanding 3D printing ...........................................................................................1 History of 3D printing ...................................................................................................2 Applications of 3D printing ...........................................................................................4 Industry growth ............................................................................................................5 Embracing 3D printing: A new medium for innovation ............................................6 Benefits and challenges of traditional manufacturing ....................................................6 Benefits and challenges of 3D printing ......................................................................7 Cost of using 3D printing to produce a product ............................................................9 Unforeseen disruption: A case of rapid innovation ......................................................10 Establishing a 3D printing initiative: Creating value through innovation ................11 Adopting a 3D printing framework .............................................................................11 Future implications of 3D printing: Industry outlook moving forward ....................12 Appendices Appendix A – Case study: Digital dentistry ...................................................................13
    [Show full text]