For Review Only Page 15 of 28 Molecular Ecology

Total Page:16

File Type:pdf, Size:1020Kb

For Review Only Page 15 of 28 Molecular Ecology Molecular Ecology MtDNA metagenomics rev eals large -scale invasion of belowground arthropod communities by introduced species Journal:For Molecular Review Ecology Only Manuscript ID MEC-16-1035.R1 Manuscript Type: From the Cover Date Submitted by the Author: n/a Complete List of Authors: Cicconardi, Francesco; Universitat Innsbruck, Institute of ecology Borges, Paulo Strasberg, Dominique; UMR PVBMT, Université de La Réunion, Oromí, Pedro López, Heriberto Pérez-Delgado, Antonio; IPNA-CSIC, Ecology and Evolution Casquet, Juliane Caujapé-Castells, Juli; Jardin Botanico Canario "Viera y Clavijo", Dept. of Molecular Biodiversity & DNA bank Fernández-Palacios, José María; Universidad de La Laguna, Island Ecology and Biogeography Research Group Thébaud, Christophe; Université Paul Sabatier, Emerson, Brent; IPNA-CSIC, Ecology and Evolution; Keywords: mesofauna, soil, island biogeography, Invasive Species, Invertebrates Page 1 of 28 Molecular Ecology 1 1 2 MtDNA metagenomics reveals large-scale invasion of belowground 3 arthropod communities by introduced species 4 5 6 Francesco Cicconardi 1, Paulo A. V. Borges 2 , Dominique Strasberg 3, Pedro Oromí 4, 7 Heriberto López 5, Antonio J. Pérez-Delgado 5, Juliane Casquet 6, Juli Caujapé-Castells 7, José 8 María Fernández-Palacios 8, Christophe Thébaud 6 & Brent C. Emerson 5,9 9 10 1Institute of Ecology, University of Innsbruck, Technikerstrasse 25, a-6020 Innsbruck, Austria. 11 2CE3C – Centre for Ecology,For Evolution Review and Environmental Only Changes / Azorean 12 Biodiversity Group and Universidade dos Açores –Departamento de Ciências Agrárias, 13 Rua Capitão João d’Ávila s/n, 9700-042, Angra do Heroísmo, Açores, Portugal. 14 3UMR PVBMT, Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, Université de La 15 Réunion, 15 avenue René Cassin, CS 93002, 97 744 Saint Denis, Cedex 9, Reunion Island, 16 France. 17 4Departamento de Biología Animal y Edafología y Geología, Universidad de La Laguna, C/ 18 Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife, Canary Islands, Spain. 19 5Island Ecology and Evolution Research Group, IPNA-CSIC, 38206 La Laguna, Tenerife, Canary 20 Islands, Spain. 21 6Laboratoire Evolution & Diversité Biologique, UMR 5174 CNRS-Université Paul Sabatier- 22 ENFA, 31062 Toulouse Cedex 9, France. 23 7Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico Canario 24 ‘Viera y Clavijo’ - Unidad Asociada CSIC, Cabildo de Gran Canaria, Camino del Palmeral 25 15 de Tafira Alta, 35017 Las Palmas de Gran Canaria, Spain. 26 8Island Ecology and Biogeography Research Group. Instituto de Enfermedades Tropicales 27 y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, Tenerife, Canary 28 Islands 38206, Spain. 29 9School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich 30 NR4 7TJ, UK. 31 32 33 34 Key words: mesofauna, soil, introduced species, island biogeography, invertebrate 35 36 Corresponding author: Brent Emerson, Island Ecology and Evolution Research Group, 37 Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), C/ Astrofísico Francisco 38 Sánchez 3, 38206 - La Laguna, Santa Cruz de Tenerife - Canary Islands, Spain. Ph: +34 39 922 256 847 (ext. 283). Fax: +34 922 260 135. Email: [email protected] 40 41 Short title: Soil mesofauna assembly by species introductions 42 43 44 Molecular Ecology Page 2 of 28 2 45 Abstract 46 47 Using a series of standardised sampling plots within forest ecosystems in remote 48 oceanic islands, we reveal fundamental differences between the structuring of 49 aboveground and belowground arthropod biodiversity that are likely due to large-scale 50 species introductions by humans. Species of beetle and spider were sampled almost 51 exclusively from single islands, while soil dwelling Collembola exhibited more than 52 tenfold higher species sharing among islands. Comparison of Collembola mitochondrial 53 metagenomic dataFor to a database Review of more than 80,000 Only Collembola barcode sequences 54 revealed almost 30% of sampled island species are genetically identical, or near 55 identical, to individuals sampled from often very distant geographic regions of the 56 world. Patterns of mtDNA relatedness among Collembola implicate human-mediated 57 species introductions, with minimum estimates for the proportion of introduced species 58 on the sampled islands ranging from 45-88%. Our results call for more attention to soil 59 mesofauna to understand the global extent and ecological consequences of species 60 introductions. Page 3 of 28 Molecular Ecology 3 61 Introduction 62 63 To understand soil ecosystem functioning, with reference to phenomena that extend 64 beyond soil itself, such as potential cascading effects across trophic levels or the impact 65 of introduced and potentially invasive non-native species on ecosystem processes (e.g. 66 Ehrenfeld 2010; Wardle et al. 2004; Yang et al. 2009), advances are needed to bridge the 67 gap between belowground and aboveground terrestrial systems. However, such 68 advances are limited by the paucity of biodiversity data for soil, which has been referred 69 to as the “third bioticFor frontier”, Review along with tropical Onlyforest canopies and ocean abysses 70 (André et al. 1994). Forest soils are especially challenging, as a single square metre of 71 temperate forest soil may contain more than 1000 species of invertebrates, most of 72 which are less than 2mm in length (Schaefer & Schauermann 1990). Much of the 73 invertebrate species diversity of soil remains uncatalogued, meaning that there is 74 probably no soil where we are able to identify, or even quantify all resident 75 invertebrates (Decaëns 2010; Wall et al. 2005). This lack of primary data on species 76 identity complicates the study and measurement of soil invertebrate biodiversity, which 77 is critically needed as the taxonomic composition of an ecosystem determines the 78 diversity of forms and functions. This functional component of biodiversity, which acts 79 as a key driver of ecosystem functioning (Violle et al. 2015), and this is likely to be of 80 great importance in soil ecosystems (Bardgett & Van der Putten 2014; Dominati et al. 81 2010; Heemsbergen et al. 2004; Lavelle et al. 2006). 82 For more than a decade, it has been recognised that DNA sequence analysis can 83 provide some relief to the taxonomic impediment – the limitation to science imposed by 84 the difficulty in identifying living species, most of which remain undescribed (Gaston 85 1991; Lomolino et al. 2010). The original methods for DNA barcoding (Hebert et al. 86 2003) have been developed into powerful and effective metabarcoding protocols that 87 are particularly well-suited for analysing species-rich assemblages of taxa like 88 invertebrates (e.g. Ramírez-González et al. 2013; Yu et al. 2012). More recently, shotgun 89 metagenomic sequencing of mixed insect species templates, with a particular focus on 90 beetle phylogenetics, has yielded numerous reads corresponding to the mitochondrial 91 DNA (mtDNA) genome that can be assembled into full or partial mitogenomes (Andújar 92 et al. 2015; Crampton-Platt et al. 2015; Gillett et al. 2014; Gómez-Rodríguez et al. 2015; Molecular Ecology Page 4 of 28 4 93 Tang et al. 2014). It has been pointed out that, in addition to phylogenetic 94 reconstruction, such extensive mtDNA genome data also offer great potential for 95 understanding how community assembly and structure influence functioning in 96 ecosystems by providing a powerful way to reveal biodiversity that was previously 97 “invisible” (Andújar et al. 2015). 98 Here we employ mitochondrial metagenomics to compare soil-dwelling and 99 aboveground arthropod communities sampled across three remote oceanic 100 archipelagos, two of which are located in the northern Atlantic (Canary Islands and 101 Azores) and the thirdFor (Mascarene Review Islands) being locOnlyated in the southwestern Indian 102 Ocean. For soil-dwelling arthropods we focus on the ubiquitous and dominant soil 103 mesofaunal taxon Collembola. Species identification of Collembola is complicated by (i) 104 small adult size that can typically range between 0.2 - 2 mm (Decaëns 2010), (ii) 105 pervasive cryptic species (Emerson et al. 2011) that can result in underestimates of 106 morphologically-derived species richness by more than an order of magnitude 107 (Cicconardi et al. 2013; Cicconardi et al. 2010), and (iii) changes in adult morphology 108 attributable to ecomorphosis, epitoky and cyclomorphosis (Hopkin 1997). 109 Metabarcoding has previously been used to suggest that a substantial proportion 110 of the Collembola fauna of the Canary Island of Tenerife is of recent origin (Ramírez- 111 González et al. 2013). However, the limited mtDNA sequence length of 220bp obtained 112 by Ramírez-González et al. (2013) resulted in taxonomic uncertainty for many 113 sequences, rendering quantitative comparisons of taxonomic relatedness unreliable. We 114 address this limitation by using a mitochondrial metagenomic approach to first robustly 115 assign DNA sequences to the class Collembola by means of phylogenetic analysis, and 116 then evaluate their distribution limits beyond the island where they were sampled. We 117 sample soil Collembola communities from forest ecosystems on the islands of Tenerife 118 (Canary Islands), Terceira (Azores) and Réunion (Mascarene Islands). We first compare 119 sharing of Collembola species among islands, placing our results into context by also 120 sampling and comparing aboveground arthropod communities
Recommended publications
  • Why Are There So Many Exotic Springtails in Australia? a Review
    90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007).
    [Show full text]
  • Collembola Communities in Different Compost Types As Bioindicator of Substrate Quality
    Tekirdağ Ziraat Fakültesi Dergisi The Special Issue of 2nd International Balkan Agriculture Congress Journal of Tekirdag Agricultural Faculty May 16-18, 2017 Collembola Communities in Different Compost Types as Bioindicator of Substrate Quality Lilyana KOLEVA*, Milena YORDANOVA, Georgi DIMITROV University of Forestry, Sofia, Bulgaria *Corresponding author: [email protected] Geliş Tarihi (Received): 01.03.2017 Kabul Tarihi (Accepted): 15.04.2017 Collembolans are a good indicator of the degree of mineralization and humification of the soil. Their ecological characteristics, habitat and feeding type can help the analysis of composting processes and determining the quality of the resulting substrate. A particular interest is the potential antagonistic effect of compost on soil plant euedaphic life forms pathogens and phytophagous arthropods.The aim of this study was to establish the quality differences between the four types of mature compost by studying the structure of Collembola communities in them. The investigations were carried out with two substrates composed of forest wastes and two substrates composed of agricultural wastes. The difference between the compost types was the origin and size of the substrate particles. The results were obtained by field and laboratory studies. In the studied composts, the identified species were hemiedaphic, euedaphic and atmobiont. Hemiedaphic life forms dominated in the compost of agricultural wastes. The have the highest density into the compost of forest wastes. With regard to food sources the collembolans established species were divided into three ecological functional groups: herbivores, predators and detritivores. The groups of predators and herbivores were the smallest, and the most numerous were the detritivores. The detritivores population was established in high population density in the compost of forest wastes.
    [Show full text]
  • (Collembola) in Meadows, Pastures and Road Verges in Central Finland
    © Entomologica Fennica. 29 August 2017 Springtails (Collembola) in meadows, pastures and road verges in Central Finland Atte Komonen* & Saana Kataja-aho Komonen, A. & Kataja-aho, S. 2017: Springtails (Collembola) in meadows, pas- tures and road verges in Central Finland. — Entomol. Fennica 28: 157–163. Understanding of species distribution, abundance and habitat affinities is crucial for red-list assessment, conservation and habitat management. In Central Fin- land, we studied Collembola in three habitat types, namely non-grazed meadows, pastures and road verges using pitfall traps. Altogether, 9,630 Collembola indi- viduals were recorded. These belonged to 12 families, 34 genera and 60 species. The number of specimens was clearly higher in meadows than in pastures or road verges. The number of species, however, was higher in meadows and road verges (40 and 39 species, respectively) than in pastures (33 species). The overall spe- cies number is comparable to other large-scale sampling schemes in similar habi- tats. We recorded a few abundant species (Spatulosminthurus flaviceps, Smin- thurus viridis and Sminthurus nigromaculatus) that have been previously re- corded from very different biotopes. In conclusion, biodiversity inventories of soil fauna, as well as other biota, should also include marginal habitats, which of- ten host peculiar communities. A. Komonen, University of Jyväskylä, Department of Biological and Environ- mental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; *Cor- responding author’s e-mail: [email protected] S. Kataja-aho, University of Jyväskylä, Natural History Museum, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; E-mail: [email protected] Received 15 November 2016, accepted 22 December 2016 1.
    [Show full text]
  • An Annotated Checklist of the Springtail Fauna of Hungary (Hexapoda: Collembola)
    Opusc. Zool. Budapest, (2007) 2008, 38: 3–82. An annotated checklist of the springtail fauna of Hungary (Hexapoda: Collembola) 1 2 L. DÁNYI and GY. TRASER Abstract. A checklist of the species of springtails (Hexapoda: Collembola) hitherto recorded from Hungary is presented. Each entry is accompanied by complete references, and remarks where appropriate. The present list contains 414 species. he Collembola fauna of several countries in critical review of the literature data of Collembola T the world was already overwied in the recent referring to Hungary. past (e.g. Babenko & Fjellberg 2006, Culik & Zeppelini Filho 2003, Skidmore 1995, Waltz & HISTORY Hart 1996, Zhao et al. 1997). The importance of such catalogues was stressed by several authors The first records of Collembola referring to (e.g. Csuzdi et al, 2006: 2) and their topicality is Hungary are some notes on the mass occurrence indicated also by the fact that several cheklists of certain species (Frenzel 1673, Mollerus 1673, referring even to European states were published Steltzner 1881), which however, are without any most recently (e.g. Fiera (2007) on Romania, taxonomical or faunistical value, as it has already Juceviča (2003) on Latvia, Kaprus et al. (2004) on been pointed out by Stach (1922, 1929). The next the Ukrain, Skarzynskiet al. (2002) on Poland). In springtail reference to Hungary is to be found in spite of these facts, the last comprehensive article the zoological book of János Földy (1801), which on the Hungarian springtail fauna was published was the first time the group was mentioned in about 80 years ago (Stach 1929), eventhough such Hungarian language in the scientific literature, critical reviews have a special importance in the eventhough this work doesn’t contain relevant case of this country because of the large changes faunistical records of the taxon.
    [Show full text]
  • Les Jardins, Réservoirs De Biodiversité Taxonomique Et Fonctionnelle
    AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Université de Lorraine Ecole doctorale Ressources, Procédés, Produits et Environnement Laboratoire Sols et Environnement UL-INRA UMR 1120 Thèse présentée en vue de l’obtention du titre de Docteur de l’Université de Lorraine Spécialité : Sciences Agronomiques Biodiversité et caractéristiques physicochimiques des sols de jardins associatifs urbains français par Sophie JOIMEL Soutenue publiquement le 9 mars 2015 Composition du jury : Jérôme CORTET, Maître de Conférences, Université de Montpellier III Co-Directeur Philippe CLERGEAU, Professeur, Muséum National d’Histoire Naturelle, Paris Examinateur Thibaud DECAENS, Professeur, Université de Montpellier II Rapporteur Camille DUMAT, Professeur, ENSAT, Toulouse Rapporteur Thierry DUTOIT, Directeur de Recherche, CNRS, Avignon Examinateur Jean Louis MOREL, Professeur, Université de Lorraine, Nancy Examinateur Johanne NAHMANI, Chargée de recherche, CNRS, Montpellier Examinateur Christophe SCHWARTZ, Professeur, Université de Lorraine, Nancy Co-Directeur Remerciements « On ne se souvient pas des jours, on se souvient des instants. » Cesare Pavese Et voilà venu le moment de porter la touche finale à ce manuscrit : les remerciements.
    [Show full text]
  • Collembola: Entomobryidae) with Description of a New Species from Sardinia (Italy)
    Zootaxa 3273: 51–62 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Definition of the European Lepidocyrtus curvicollis group (Collembola: Entomobryidae) with description of a new species from Sardinia (Italy) EDUARDO MATEOS1 & HENNING PETERSEN2 1Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, 08028 Barcelona (Spain). E-mail: [email protected] 2Natural History Museum, Mols Laboratory, Strandkaervej 6-8, Femmøller, DK8400 Ebeltoft (Denmark). E-mail: [email protected] Abstract The genus Lepidocyrtus was up to now represented by two species in Sardinia. However, recent molecular data suggest the existence of several other species in the region. The study of a Lepidocyrtus population from the peninsula of Capo Caccia (NW Sardinia) has allowed the description of the species Lepidocyrtus apicalis sp. nov. Along with seven other European species, the new species constitute the “Lepidocyrtus curvicollis group”, characterized by the presence of scales on the antenna, legs and dorsal side of manubrium, by having the mesothorax more or less protruded, labial seta M1 shorter than M2, presence of seta s on abd.IV, and by the dorsal macrochaetae formula R0R1sR1So/00/0101+3. An identification key has been developed for differentiating all species of this group. With the new species the number of Lepidocyrtus spe- cies present in Sardinia increases to three and the number of total European Lepidocyrtus species to 30. Key words: taxonomy, chaetotaxy, species key Resumen El género Lepidocyrtus está representado en Cerdeña por dos especies, aunque recientes datos moleculares sugieren la existencia de varias especies más en la región.
    [Show full text]
  • Download Full Article in PDF Format
    DIRECTEUR DE LA PUBLICATION : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Laure Desutter-Grandcolas ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Anne Mabille ([email protected]), Emmanuel Côtez MISE EN PAGE / PAGE LAYOUT : Anne Mabille COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : James Carpenter (AMNH, New York, États-Unis) Maria Marta Cigliano (Museo de La Plata, La Plata, Argentine) Henrik Enghoff (NHMD, Copenhague, Danemark) Rafael Marquez (CSIC, Madrid, Espagne) Peter Ng (University of Singapore) Gustav Peters (ZFMK, Bonn, Allemagne) Norman I. Platnick (AMNH, New York, États-Unis) Jean-Yves Rasplus (INRA, Montferrier-sur-Lez, France) Jean-François Silvain (IRD, Gif-sur-Yvette, France) Wanda M. Weiner (Polish Academy of Sciences, Cracovie, Pologne) John Wenzel (The Ohio State University, Columbus, États-Unis) COUVERTURE / COVER : Ptenothrix italica Dallai, 1973. Body size: 1.4 mm, immature. Zoosystema est indexé dans / Zoosystema is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Agriculture, Biology, and Environmental Sciences® – Scopus® Zoosystema est distribué en version électronique par / Zoosystema is distributed electronically by: – BioOne® (http://www.bioone.org) Les articles ainsi que les nouveautés nomenclaturales publiés dans Zoosystema sont référencés par / Articles and nomenclatural novelties published in Zoosystema are referenced by: – ZooBank® (http://zoobank.org) Zoosystema est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris / Zoosystema is a fast track journal published by the Museum Science Press, Paris Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish: Adansonia, Anthropozoologica, European Journal of Taxonomy, Geodiversitas, Naturae. Diffusion – Publications scientifiques Muséum national d’Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél.
    [Show full text]
  • Collembola: Onychiuridae)
    Unusually low genetic divergence at COI barcode locus between two species of intertidal Thalassaphorura (Collembola: Onychiuridae) Xin Sun1,2, Anne Bedos3 and Louis Deharveng3 1 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China 2 J.F. Blumenbach Institute of Zoology and Anthropology, University of Go¨ttingen, Go¨ttingen, Germany 3 Institut de Syste´matique, Evolution, Biodiversite´, ISYEB—UMR 7205—CNRS, MNHN, UPMC, EPHE, Sorbonne Universite´s, Museum national d’Histoire naturelle, Paris, France ABSTRACT Species classification is challenging when taxa display limited morphological differences. In this paper, we combined morphology and DNA barcode data to investigate the complicated taxonomy of two Onychiurid Collembolan species. Thalassaphorura thalassophila and Thalassaphorura debilis are among the most common arthropod species in intertidal ecosystems and are often considered to be synonymous. Based on morphological and barcode analyses of fresh material collected in their type localities, we redescribed and compared the two species. However, their morphological distinctiveness was supported by a molecular divergence much smaller than previously reported at the interspecific level among Collembola. This divergence was even smaller than inter-population divergences recognized in the related edaphic species T. zschokkei, as well as those known between MOTUs within many Collembolan species. Our results may indicate a link between low genetic interspecific
    [Show full text]
  • Non-Commercial Use Only
    Entomologia 2014; volume 2:190 SYSTEMATICS AND PHYLOGENY The mitochondrial genome of the antarctic springtail Folsomotoma octooculata (Hexapoda; Collembola), and an update on the phylogeny of collembolan lineages based on mitogenomic data A. Carapelli,1 P. Convey,2 F. Nardi,1 F. Frati1 1Department of Life Sciences, University of Siena, Italy; 2British Antarctic Survey, Natural Environment Research Council, Cambridge, UK analysis of nucleotide and amino acid sequences. The complete set of Abstract available mitochondrial DNA sequences for ten species of the group is also analyzed for the presence of lineage-specific gene order of the 37 This study provides the description of the complete mitochondrial encoded genes. The results of the phylogenetic analysis are compared genome of the Antarctic collembola Folsomotoma octooculata. Since with previous morphological and molecular analyses, showing some mitogenomic data are extensively used for phylogenetic reconstruc- intriguing outcomes, such as the paraphyly of Entomobryomorpha, the tion, we also provide a phylogenetic reconstruction of the internal rela- derived position of Podura aquatica within Poduromorpha, and the sis- tionships of some collembola taxa using the complete mitochondrial ter group relationships betweenonly the single Symphypleona species DNA data available at present for this group. The complete mitochon- available for comparison and the entomobryid Orchesella villosa. The drial genome sequence of F. octooculata has been obtained using stan- F. octooculata mitochondrial genome generally conforms with those dard amplification and sequencing methods for long DNA templates. observed in other basal hexapod species and displays the plesiomor- Sequence data are analyzed using bayesian methods based on the phic gene order useobserved for Pancrustacea.
    [Show full text]
  • Systematic Composition and Distribution of Australian Cave
    Helictite, (2002) 38(1): pp. 11-15 Systematic composition and distribution of Australian cave collembolan faunas with notes on exotic taxa Penelope Greenslade Division of Botany and Zoology, Australian National University, GPO Box, ACT 0200, Australia Abstract Collembola (springtails) have been collected from caves in Tasmania, northwestern Western Australia, Victoria, New South Wales and Queensland more intensively in recent years than in the past. A sharp boundary in the composition of faunas of southern and northern Australia was found with the highest diversity of troglobitic forms in southeastern Australia and Tasmania. No extreme examples of troglobitic genera have yet been found in Western Australia. A single record of Cyphoderopsis was made from Christmas Island in the Indian Ocean, a common genus in caves in Sumatra. The Jenolan cave system has been most completely sampled with nearly 100 samples from fourteen caves. This system contains over twenty species of which three genera, Adelphoderia, Oncopodura and a new genus near Kenyura, are exclusively troglobitic with locally endemic species of conservation and phylogenetic interest. Compared with some Tasmanian caves, the Jenolan fauna appears to harbour more species that are likely to have been introduced. Keywords: Collembola; caves; Australia; distribution. INTRODUCTION Australia has extensive cave-containing karst areas in carbonate rocks in all states. However, few karst areas have been systematically sampled for Collembola, Tasmania and eastern New South Wales being exceptions. Jenolan, in New South Wales, is currently the most intensively sampled cave system (Greenslade 1989) but Collembola have also been collected more widely from caves in New South Wales by Eberhard (1993a) Eberhard & Spate (1995) and from Tasmania by Eberhard et al.
    [Show full text]
  • Standardised Arthropod (Arthropoda) Inventory Across Natural and Anthropogenic Impacted Habitats in the Azores Archipelago
    Biodiversity Data Journal 9: e62157 doi: 10.3897/BDJ.9.e62157 Data Paper Standardised arthropod (Arthropoda) inventory across natural and anthropogenic impacted habitats in the Azores archipelago José Marcelino‡, Paulo A. V. Borges§,|, Isabel Borges ‡, Enésima Pereira§‡, Vasco Santos , António Onofre Soares‡ ‡ cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Madre de Deus, 9500, Ponta Delgada, Portugal § cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroismo, Portugal | IUCN SSC Mid-Atlantic Islands Specialist Group, Angra do Heroísmo, Portugal Corresponding author: Paulo A. V. Borges ([email protected]) Academic editor: Pedro Cardoso Received: 17 Dec 2020 | Accepted: 15 Feb 2021 | Published: 10 Mar 2021 Citation: Marcelino J, Borges PAV, Borges I, Pereira E, Santos V, Soares AO (2021) Standardised arthropod (Arthropoda) inventory across natural and anthropogenic impacted habitats in the Azores archipelago. Biodiversity Data Journal 9: e62157. https://doi.org/10.3897/BDJ.9.e62157 Abstract Background In this paper, we present an extensive checklist of selected arthropods and their distribution in five Islands of the Azores (Santa Maria. São Miguel, Terceira, Flores and Pico). Habitat surveys included five herbaceous and four arboreal habitat types, scaling up from native to anthropogenic managed habitats. We aimed to contribute
    [Show full text]
  • Competition and Predation in Soil Fungivorous Microarthropods Using Stable Isotope Ratio Mass Spectrometry
    fmicb-10-01274 June 6, 2019 Time: 20:12 # 1 ORIGINAL RESEARCH published: 07 June 2019 doi: 10.3389/fmicb.2019.01274 Competition and Predation in Soil Fungivorous Microarthropods Using Stable Isotope Ratio Mass Spectrometry Felicity V. Crotty† and Sina M. Adl* Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada The soil food web is often described as having three main energy channels: root, bacterial and fungal. Here we provide quantitative data using a sensitive stable Edited by: isotope ratio mass spectrometry procedure with microcosms on species interactions Stefan Geisen, in the fungal pathway. We measured 15N and 13C enrichment in microarthropods Netherlands Institute of Ecology (NIOO-KNAW), Netherlands through grazing rare isotope enriched fungal mycelia. Experimental treatments were Reviewed by: various combinations of 1, 2, 3, 4 microarthropods species. We used three fungivores Mark Maraun, (the collembolan Lepidocyrtus curvicollis, the Astigmata Tyrophagus putrescentiae, University of Göttingen, Germany Kerstin Heidemann, the Oribatida Oribatula tibialis), and the Mesostigmata predator Hypoaspis acquilifer. University of Göttingen, Germany We collected individuals of each species separately, as well as their feces, and *Correspondence: molt where available. All three fungivorous microarthropods consumed significantly Sina M. Adl more than their own body weight per day. The three fungivores differed in their [email protected] consumption of the mycelium as it was not equally palatable to each. The Mesostigmata
    [Show full text]