The Ultimate Challenge For

Total Page:16

File Type:pdf, Size:1020Kb

The Ultimate Challenge For he ultimate challenge for any climber in Africa must surely Tbe to reach the summit of the highest mountain in Africa, and one of the world's highest free standing mountains, Mount Kilimanjaro (affectionately known as 'Kili'). Situated three degrees and some 330 km south of the equator in northern Tanzania, Mount Kilimanjaro, with it's highest point, Uhuru Peak, measured at 5895 m (19 340 ft) above sea level, holds a unique place in both the Western and African psyche. The mountain has featured in stories, films and even popular songs, including 'Africa' by the group Toto, and 'Kilimanjaro' by Juluka. I had the opportunity, in February this year, to climb Africa's highest mountain ­ Above. Kilimanjaro's glaciers. The Furtwangler Glacier (ca 5750 m) in the centre and the via the less popular, albeit more large Northern Icefield can be seen on the horizon. scenic, Machame Route (also known Facing page. Fire and ice. Sunset on Kibo, Mount Kilimanjaro. Photos: C.K. Willis. as the 'Whiskey' Route, as opposed to the more popular Marangu or corridors or rights of way through of the mountain, and snow falls at 'Coca-Cola' Route), a total distance the Kilimanjaro Forest Reserve the top of the mountain. The shorter of about 80 km, with an altitudinal which was established in 1921. In rainy period is from October to range of about 9500 m. To put the recognition of its beauty, cultural December. January and February are height of the mountain into and spiritual significance and size, usually dry, warm and clear with perspective, southern Africa's Mount Kilimanjaro was declared a brief rainshowers which make good highest point, Lesotho's, Thabana World Heritage Site in 1989. Mount climbing conditions. Ntlenyana, is a mere 3482 m. Kilimanjaro is composed of three Ninety six percent of the water Walking seven to eight hours per extinct volcanoes: Kibo (considered on Kilimanjaro originates in the day, single file on a well-worn path by some to be dormant, rather than forest zone, where it percolates as part of a group of eleven climbers extinct) at 5895 m in the centre, through the soil to emerge as does not allow much spare time for Mawenzi at 5149 m (16 893 ft) in springs lower down the mountain. botanizing. On days four and five, the eaft; and Shira at 3962 m Kilimanjaro's forests receive about we reached the summit of (13 000 ft) in the west. The three 2000 mm rainfall per annum on the Kilimanjaro and descended the peaks repr~s'ent three g~nerations of southern slopes, with the same same day, walking for twenty-three volcanic activity, Shira the oldest . forests receiving about 1000 mm on . hours, with two hours sleep and (and most eroded), and Kibo the the northern and western slopes. covering an altitudinal range of youngest. Whereas the older two Above 1500 m the rainfall decreases 4740 m (from Barranco Camp at have been largely destroyed by with altitude so that the alpine zone 3950 m via Barafu (4600 m) to the erosi.on, Kibo is a perfectly shaped receives between 250 and 125 mm, summit at 5895 m and back down to cone with a caldera, about 2 km resulting in an alpine desert in the Mweka Camp at 3100 m)! wide, in the centre of which is a upper reaches of the mountain. Despite its popularity small secondary eruption cone with At the summit, most of the (18 000 visitors each year which is its own crater. The majestic precipitation falls as snow, rather more than 300 per week), very little mountain, which ceased growing than as rain. popular literature is available on the 450 000 years ago, rises 4800 m flora of Mount Kilimanjaro and above the surrounding plains which Botanical exploration information remains scattered in average around 1000 m above sea Several plant collections were inaccessible scientific journals or level. The longest axes of Mount made on Mount Kilimanjaro regional field guides. It is hoped Kilimanjaro, running north-east to between 1861 and the early 1900s, that this account of the flora of south-west, are about 60 km long the most notable being those of Kili,manjaro will serve as useful and 40 km across. Von der Decken, Johnston, Meyer background information for anyone and Volkens. Many of the plants interested in plants and attempting Climate collected during the late 1800s on Kilimanjaro in the future. Mount Kilimanjaro is regarded as the mountain were described in the driest of the tall East African Europe by Engler, and named after Kilimanjaro National Park and the mountains. Unlike Mount Kenya the individuals who collected 'Three Peaks' and the Ruwenzoris, both of which them. * Many plants, as could be A large})Qrtion of the mountain, the have several small lakes or tarns, expected, have the species name 756 km area above the 2700 m Kilimanjaro has only one permanent 'kilimandscharica' or 'kilimanjari', contour, is conserved within the tarn, located close to Mawenzi. Kilimanjaro National Park, managed Rainfall varies both with aspect and Kilimanjaro's vegetation by Tanzania National Parks. The altitude. Most rain falls between Mount Kilimanjaro has a rich and park was established in 1973 and March and June, and it is during diverse flora which includes over officially opened in 1977. It has six this period that rains fall at the base 1800 species of flowering plants Veld &' Flora December 2000 163 within 163 families and 760 genera, which was flowering prolifically and an unusually high species during our visit was Impatiens diversity among lower plants of kilimanjari subsp. kilimanjari with approximately 720 species of its brilliant red and yellow flowers bryophytes (596 known species) shining in the forest undergrowth. and lichens (120 species). An endemic 1. kilimanjari subsp. Five vegetation belts can be pocsii was described by Christopher recognized. Olov Hedberg, the Grey-Wilson from the upper renowned Swedish botanist who montane forest on the northern side described the vegetation belts of the of Mt Kilimanjaro as recently as East African mountains in 1951, 1997. The pink-flowered Impatiens defined a vegetation belt as an pseudoviola may also be seen here. 'altitudinal region' which can be Other shrubs and herbs include traced on all (or most) mountains of Mimulopsis kilimandscharica and sufficient height in a definite part Solanecio mannii. The forest zone of the world, as for instance the includes many lichens (Usnea), montane forest belt on the East mosses and ferns like Asplenium African mountains. Although actiniopteroides, A. volkensii and Hedberg only recognized three tree ferns, Cyathea (see photo on vegetation belts on Kilimanjaro p. 166). A unique community of (montane forest, ericaceous belt and bryophytes is known to develop on the alpine belt), Mwasaga in 1991 the stems of the tree fern Cyathea included two additional vegetation manniana. The giant Lobelia belts, namely the woodland and giberroa grows as scattered bushland belt, and the cultivated individuals along streams and moist belt. depressions in the montane forest The upper limit of the woodland zone from 1550 m to 3000 m. Above. The endemic Impatiens and bushland belt ranges between kiJjmanjari subsp. kiJjmanjari 900 m (southern slopes) and 1500 m (Balsaminaceae) growing in the montane (northern slopes). It is characterized forest belt on the southern slopes of Kilimanjaro. by a mosaic of Acacia bushland and CombretumlTerminalia woodland. The cultivated belt more or less encircles the mountain and reaches its highest point on the southern slope (1900 m), but in most areas extends no higher than 1700 m. Below. Carduus keniensis, a member of Crops cultivated il;l this zone . the Asteraceae family, growing in the include coffee, bananas, maize, 'r ericaceous belt on Kilimanjaro. This beans, millet, potatoes, cabbage, species belongs to the same genus as the carrots, beets, onions and tomatoes. common European thistles. The lower boundary of the montane forest belt is approxi­ mately 1700 m on the southern side and 2200 m on the northern side. The upper boundary reaches nearly 3000 m along the southern side and 2800 m on the western and northern sides. Trees characteristic of this belt include Xymalos monospora, Tabernaemontana ventricosa, Macaranga capensis var. kilimand­ scharica, Myrica saJicifolia, Maytenus undata, Prunus afdcana, Bernard Verdcourt of the Royal Botanic East African pencil cedar Juniperus Gardens, Kew, apparently first came across procera and the East African Helichrysum meyeri-johannis on reaching redwood Hagenia abyssinica. Other the top of Mount Kilimanjaro in the early 1970s. The story goes that the porters tree species, several of which are 'presented members of his team with bright also known from southern Africa, garlands made from the capitula of this include Ilex mitis, Podocarpus plant woven into a wreath of stems from a milanjianus, Ocatea usambarensis, species ofLycopodium'. Verdcourt's Olea africana , Nuxia congesta, 'wreath' can still be found amongst the collections in the Sir Joseph Banks Museum Agauria salicifolia, the Cape for Economic Botany at Kew. This species, Chestnut Calodendrum capense and named after Hans Meyer, is common in Hypericum revolutum. The montane damp to dryish alpine grassland between forest belt receives about 2000 mm 2600 and 4250 m. Flowering at almost any time of the year, it has also been recorded of rainfall per annum on the on Mount Elgon, Cherangani Hills and southern slopes, and contains Mount Kenya. Drawing by Helen Haywood several endemic plants. One species (from Curtis's Botanical Magazine 12(1), February 1995). 164 Veld &- Flora December 2000 The forest zone on Kilimanjaro is recorded flowering plant on Kilimanjaro's giant senecios and less differentiated than on other Kilimanjaro has been Helichrysum lobelias. East African mountains and newii at 5670 m in Kibo's crater, An interesting process is contains neither a bamboo demonstrating an ability to survive associated with the alpine belt.
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • ITINERARY for CONQUER KILIMANJARO - LUXURY - 2020 Tanzania
    ITINERARY FOR CONQUER KILIMANJARO - LUXURY - 2020 Tanzania Let your imagination soar Journey overview Conquer Mount Kilimanjaro on this exceptional 9-day hiking adventure to the “Roof of Africa”. This once-in-a-lifetime journey, can be taken as a standalone tour or as an add-on to an East Africa safari. It will take you along the beautiful Machame Route to the summit of Kilimanjaro, where you will have the opportunity to rest at various campsites along the way. The hike is led by expert guides, with years of experience climbing this majestic mountain. You will also be assisted by a friendly crew of mountaineers to ensure your Kilimanjaro experience is truly unforgettable. The route winds through a spectacular array of landscapes, which include verdant afromontane forests, a heath zone of yellow helichrysum (also known as golden eternal flowers) and purple lobelia plants, alpine forests and glacial valleys, making for exceptional photographic opportunities. Highlights of this Itinerary The Machame Route is the most beautiful and scenic hike up Mount Kilimanjaro Reward yourself after conquering Kilimanjaro with a luxurious and relaxing stay on idyllic &Beyond Mnemba Island. Take in the incredible views from the Roof of Africa Make the most of your Adventure Discover the various stages of coffee production at a working plantation in Arusha Be sure to try Kilimanjaro Beer Don’t miss out on the opportunity to unwind on &Beyond Mnemba Island, one of the most romantic destinations in Africa. Add to your adventure with an incredible safari
    [Show full text]
  • Mountains of the Moon
    MOUNTAINS OF THE MOON Some names just resonate with mystery and one such place that does that for me is the Rwenzori or Mountains of the Moon, a spectacular equatorial range that straddles Uganda and the DRC. It has that ‘heart of Africa’ appeal, truly somewhere off the beaten path - and given the effort required to get there it’s no surprise so few tourists come here. Without doubt it is the domain of the serious trekker and climber, the trails penetrate dense mossy forests and climb steeply to breathless heights above the treeline, where the reward is some of the most remarkable alpine flora to be found anywhere. I undertook my own journey with a university friend. We walked first through sweaty sub-tropical forests where the striking orange tubes of Scadoxus cyrtanthiflorus stood out from the dense undergrowth. Heavy bamboo dominated above this and then it was into the subalpine zone where the otherworldly stuff began. Gorgeous broad corymbs of Helichrysum formosissimum appeared, with silvery phyllaries blushed pink - surely the ultimate everlasting daisy. Then we reached the alpine zone. Dendrosenecio adnivalis Interestingly, as with the Espletia of the Scadoxus cyrtanthiflorus northern Andes, the alpine equivalent here also belongs to Asteraceae. The dominant species in the Rwenzori (with similar species in other east African mountains) Dendrosenecio adnivalis, a magnificent plant that formed dense forests in places, clothing whole mountainsides. The most obvious difference between the two genera is Dendrosenecio branch and Espletia do not. I remember seeing a specimen of a Dendrosenecio at Kew, sitting beneath a strong sunlamp.
    [Show full text]
  • Today, My Favorite Azalea Companion Plant of an Herbaceous Perennial Type Is
    Today, My Favorite Azalea Companion Plant of an Herbaceous Perennial Type Is.... By William C. Miller III—Bethesda, Maryland This is the third in a series of “favorite” articles. The natural distribution, however, extends into The azaleas ‘Ambrosia’ and ‘Opal’ were previ- Canada and Mexico and private gardens across the ously identified as my favorite Glenn Dale and US where it is a very popular element in water and Linwood Hardy Hybrids respectively.1 It occurred rain gardens and might not be represented on the to me that it would be useful to expand my focus government map. It was introduced into Europe in to the rest of the plant kingdom, since very few the mid-1620s and has become naturalized. Since people have gardens that are limited to azaleas. it isn’t overly competitive, it is technically consid- Companion plants, often overlooked in the ered non-native rather than “invasive.” homeowner garden planning process, comprise a surprisingly significant feature in every garden. Lobelia, the Genus There is the canopy and the understory trees, above the azaleas, represented by the taller trees The genus was named after Matthias de l’Obel, (e.g., oak, beech, pine, maple) and the smaller a Flemish physician and botanist (1538-1616) by Charles Plumier, a French priest, botanist, and trees (e.g., dogwood, maple, redbud, and stewar- 2,3 tia). There are plants that share the profile level New World plant explorer (1646-1704). They with the azaleas (e.g., holly, viburnum, hydrangea, both were significant influences on Linnaeus who and other rhododendrons). Finally, there are the is often called the father of taxonomy.
    [Show full text]
  • Chromosome Numbers of the East African Giant Senecios and Giant Lobelias and Their Evolutionary Significancei
    American Journal of Botany 80(7): 847-853. 1993. CHROMOSOME NUMBERS OF THE EAST AFRICAN GIANT SENECIOS AND GIANT LOBELIAS AND THEIR EVOLUTIONARY SIGNIFICANCEI ERIC B. KNox2 AND ROBERT R, KOWAL Herbarium and Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048; and Department of Botany, University of Wisconsin, Madison, Wisconsin 53706-1981 The gametophytic chromosome number for the giant senecios (Asteraceae, Senecioneae, Dendrosenecio) is n = 50, and for the giant lobelias (Lobeliaceae, Lobelia subgenus Tupa section Rhynchopetalumi it is n = 14. Previous sporophytic counts are generally verified, but earlier reports for the giant senecios of2n = 20 and ca. 80, the bases for claims ofintraspecific polyploidy, are unsubstantiated. The 14 new counts for the giant senecios and the ten new counts for the giant lobelias are the first garnetophytic records for these plants and include the first reports for six and four taxa, respectively, for the two groups. Only five of the II species of giant senecio and three of the 21 species of giant lobelia from eastern Africa remain uncounted. Although both groups are polyploid, the former presumably decaploid and the latter more certainly tetraploid, their adaptive radiations involved no further change in chromosome number. The cytological uniformity within each group, while providing circumstantial evidence ofmonophyly and simplifying interpretations ofcladistic analyses, provides neither positive nor negative support for a possible role of polyploidy in evolving the giant-rosette growth-form. Since their discovery last century, the giant senecios MATERIALS AND METHODS (Dendrosenecio; Nordenstam, 1978) and giant lobelias (Lobelia subgenus Tupa section Rhynchopetalum; Mab­ Excised anthers or very young flower buds of Lobelia berley, 1974b) of eastern Africa have attracted consid­ and immature heads of Dendrosenecio were fixed in the erable attention from taxonomists and evolutionary bi­ field in Carnoy's solution (3 chloroform: 2 absolute eth­ ologists (cf.
    [Show full text]
  • Estudio De La Composición Del Aceite Esencial De Un Frailejón Híbrido
    Articulo original Estudio de la composición del aceite esencial de un frailejón híbrido entre Espeletia schultzii y Coespeletia moritziana (Espeletiinae) Composition of the essential oil from a hybrid frailejon between Espeletia schultzii and Coespeletia moritziana (Espeletiinae) Ibáñez Jimena1 y Usubillaga Alfredo 2* 1 Postgrado Interdisciplinario de Química Aplicada, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela. 2 Instituto de Investigaciones, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela Recibido octubre 2008 - Aceptado febrero 2009 RESUMEN Aguila, was analyzed by gas chromatography (FID) and GC-MS. It was possible to identify 21 compounds El aceite esencial de una especie híbrida entre in the oil from the leaves, which made up 94.3% of Espeletia schultzii y Coespeletia moritziana, dos the oil and 18 compounds in the oil from the flowering especies de frailejón (Espeletiinae) que crecen stems which made up 93.5% of the oil. The most en el páramo Pico El Águila, se analizó mediante abundant constituent in the oil from the leaves was cromatografía de gases (FID) y cromatografía de α-pinene (30.4%). In the flowering stems α-pinene gases-masas. Se logró identificar 21 compuestos en el was also the most abundant compound (33.4%). aceite obtenido de las hojas que representan un 94,3 Other abundant components were α-phellandrene % y 18 compuestos en el aceite proveniente de los (21.4% and 14.4%), p-cymene (9.7% and 11.0%), tallos florales que constituyen el 93,5%. Tanto en el and β-pinene (9.0% and 10.9%). Monoterpenes aceite de las hojas como en el de los tallos florales, were 84.4% (leaves) and 80.0% (flowering stems) of el componente más abundante fue el α-pineno the hybrid´s oil.
    [Show full text]
  • A New Species of Oidaematophorus (Lepidoptera: Pterophoridae) from Chingaza National Natural Park in Colombia
    TENNENT ET AL.: New species of Epimastidia and Paraduba HERNÁNDEZ ET AL.: New species of Oidaematophorus TROP. LEPID. RES., 24(1): 15-21, 2014 15 A NEW SPECIES OF OIDAEMATOPHORUS (LEPIDOPTERA: PTEROPHORIDAE) FROM CHINGAZA NATIONAL NATURAL PARK IN COLOMBIA Linda C. Hernández1, Luz Stella Fuentes2a, Gonzalo E. Fajardo2b, and Deborah L. Matthews3 1Departamento de Entomología, Centro de Bio-Sistemas Universidad Jorge Tadeo Lozano., Bogotá, Colombia, [email protected]; 2Facultad de Ciencias Biológicas e Ingeniería, Universidad Jorge Tadeo Lozano., Bogotá, Colombia, [email protected], [email protected]; 3McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, [email protected] Abstract - Oidaematophorus espeletiae, sp. nov., is described from the Chingaza páramo in Colombia. The life history, external characters of the adult, male and female genitalia, final instar larva, and pupa are described and illustrated. This moth species is widely distributed in the páramo. Larvae cause damage in meristem leaves of frailejones (Espeletia spp., Asteraceae). Identification and continuing studies of this moth are important to determine its potential role in the reported death of numerous frailejones in the area. The hosts, Espeletia grandiflora and E. uribei are some of the keystone species of the páramo ecosytem. Resumen - Se describe Oidaematophorus espeletiae, sp. nov del páramo de Chingaza, Colombia. Se describen e ilustran la historia de vida, caracteres externos del adulto, genitalia de macho y hembra, último instar larval, y pupa. Esta polilla se encuentra ampliamente distribuida en el páramo. Las larvas ocasionan daños en las hojas del meristemo de los frailejones (Espeletia spp., Asteraceae).
    [Show full text]
  • Chromosome Numbers in Compositae, XII: Heliantheae
    SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII.
    [Show full text]
  • Ficha Catalográfica Online
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA – IB SUZANA MARIA DOS SANTOS COSTA SYSTEMATIC STUDIES IN CRYPTANGIEAE (CYPERACEAE) ESTUDOS FILOGENÉTICOS E SISTEMÁTICOS EM CRYPTANGIEAE CAMPINAS, SÃO PAULO 2018 SUZANA MARIA DOS SANTOS COSTA SYSTEMATIC STUDIES IN CRYPTANGIEAE (CYPERACEAE) ESTUDOS FILOGENÉTICOS E SISTEMÁTICOS EM CRYPTANGIEAE Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of PhD in Plant Biology Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Doutora em Biologia Vegetal ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA Suzana Maria dos Santos Costa E ORIENTADA PELA Profa. Maria do Carmo Estanislau do Amaral (UNICAMP) E CO- ORIENTADA pelo Prof. William Wayt Thomas (NYBG). Orientadora: Maria do Carmo Estanislau do Amaral Co-Orientador: William Wayt Thomas CAMPINAS, SÃO PAULO 2018 Agência(s) de fomento e nº(s) de processo(s): CNPq, 142322/2015-6; CAPES Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Costa, Suzana Maria dos Santos, 1987- C823s CosSystematic studies in Cryptangieae (Cyperaceae) / Suzana Maria dos Santos Costa. – Campinas, SP : [s.n.], 2018. CosOrientador: Maria do Carmo Estanislau do Amaral. CosCoorientador: William Wayt Thomas. CosTese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. Cos1. Savanas. 2. Campinarana. 3. Campos rupestres. 4. Filogenia - Aspectos moleculares. 5. Cyperaceae. I. Amaral, Maria do Carmo Estanislau do, 1958-. II. Thomas, William Wayt, 1951-. III. Universidade Estadual de Campinas. Instituto de Biologia. IV. Título.
    [Show full text]
  • History and Evolution of the Afroalpine Flora
    Alpine Botany https://doi.org/10.1007/s00035-021-00256-9 REVIEW History and evolution of the afroalpine fora: in the footsteps of Olov Hedberg Christian Brochmann1 · Abel Gizaw1 · Desalegn Chala1 · Martha Kandziora2 · Gerald Eilu3 · Magnus Popp1 · Michael D. Pirie4 · Berit Gehrke4 Received: 27 February 2021 / Accepted: 10 May 2021 © The Author(s) 2021 Abstract The monumental work of Olov Hedberg provided deep insights into the spectacular and fragmented tropical alpine fora of the African sky islands. Here we review recent molecular and niche modelling studies and re-examine Hedberg’s hypotheses and conclusions. Colonisation started when mountain uplift established the harsh diurnal climate with nightly frosts, acceler- ated throughout the last 5 Myr (Plio-Pleistocene), and resulted in a fora rich in local endemics. Recruitment was dominated by long-distance dispersals (LDDs) from seasonally cold, remote areas, mainly in Eurasia. Colonisation was only rarely followed by substantial diversifcation. Instead, most of the larger genera and even species colonised the afroalpine habitat multiple times independently. Conspicuous parallel evolution occurred among mountains, e.g., of gigantism in Lobelia and Dendrosenecio and dwarf shrubs in Alchemilla. Although the alpine habitat was ~ 8 times larger and the treeline was ~ 1000 m lower than today during the Last Glacial Maximum, genetic data suggest that the fora was shaped by strong intermountain isolation interrupted by rare LDDs rather than ecological connectivity. The new evidence points to a much younger and more dynamic island scenario than envisioned by Hedberg: the afroalpine fora is unsaturated and fragile, it was repeatedly disrupted by the Pleistocene climate oscillations, and it harbours taxonomic and genetic diversity that is unique but severely depauperated by frequent bottlenecks and cycles of colonisation, extinction, and recolonisation.
    [Show full text]
  • Géologie Et Biodiversité Végétale Quelques Rappels
    Géologie et Biodiversité végétale Quelques rappels Modifications climatiques Isolement géographique génèrent de la biodiversité Rift Est-Africain : Longueur : 6000 km Ecartement : 1 cm/an Début : il y a 20 MA Sommets : Volcans sauf Rwenzori Ages : 2 à 3 Ma Kili : activité récente Meru : encore actif Petite parenthèse Cette région est considérée comme le berceau de l’humanité Théorie développée par Yves Coppens… Mais… Mais revenons à la botanique… avec les Seneçons géants Du genre Dendrosenecio Dendrosenecio adnivalis 11 espèces. erici-rosenii elgonensis Initialement comprises dans le genre Senecio cheranganensis Se rencontrent entre 2500 m et 4600 m sur brassiciformis les montagnes d’Afrique de l’Est. battiscombei keniodendron keniensis kilimandjari Senecio ovatus (Seneçon de Fuchs) johnstonii meruensis Dendrosenecio adnivalis Rwenzori erici-rosenii elgonensis Elgon cheranganensis Cherangani brassiciformis battiscombei Aderb . keniodendron Kenya keniensis kilimandjari Kilimandjaro johnstonii meruensis Meru Dendrosenecio adnivalis Rwenzori erici-rosenii elgonensis Elgon cheranganensis Cherangani brassiciformis battiscombei Aderb . keniodendron Kenya keniensis kilimandjari Kilimandjaro johnstonii meruensis Meru Mt Stanley 5109 m Rwenzori Lobelia 3500 m 3800 m Lobelia deckenii Dendrosenecio keniensis 4500 m Lobelia telekiii 4300 m Dendrosenecio keniodendron Kilimandjaro 4000 m Dendrosenecio kilimandjari Lien de parenté avec les genres proches: Euryops brownei Cineraria deltoidea Dendrosenecio Le genre Dendrosenecio est très isolé, les genres
    [Show full text]
  • Alpine Plant Communities of Mt. Elgon. - an Altitutdinal Transect Along the Koitoboss Route
    JOURNAL OF THE EAST AFRICA NATURAL HISTORY SOCIETY AND NATIONAL MUSEUMS December 1987 VOLUME 76, No. 190 ALPINE PLANT COMMUNITIES OF MT. ELGON. - AN ALTITUTDINAL TRANSECT ALONG THE KOITOBOSS ROUTE E. Beckl, H. Rehder2, E.D. Schulze3 and J.O. Kokwar04 ABSTRACT The afroalpine vegetation of Mt. Elgon was studied along an altitudinal transect ranging from the montane forest up to the summit of koitoboss (13,880 ft.).• Since, due to recurrent fires, the boundary between the lower Ericaceous and the alpine belt is an interlocking one, both vegetation girdles were encompassed in the studies. The Ericaceous belt can be divided into a woodland and bush storey. The former, with respect to the species encountered represents a transition zone from the montane forest to the microphyllous bush vegetation. The latter was designated as Ericaceous bush and exhibits various indications of former fires, thus rather reflecting different stages of regeneration than a climax vegetation. Within the alpine belt tussock grassland and two types of Carex bog form a lower storey. The vegetation of the upper zone is characterized by a field layer of predominantly Alchemi/la elgonensis and thus could be address as Alchemilla scrub. However, according to the accompanying species several types ofthis crub were distinguished: a Hel;chrysum scrub which was found on shallow soil covering volcanic rock slabs; an Euryops bush, bordering the so-called Dendrosenecio woodland vegetation. The latter was divided into a Dendrosenecio elgonensis-Community on moist soil and a Dendrosenecio barbatipes-Community covering the well-drained steeper slopes of the caldera rim. INTRODUCTION Mt. Elgon (14, 178ft.) is one ofthe seven East African high mountains exhibiting alpine vegetation.
    [Show full text]