On the Total Variation of a Function

Total Page:16

File Type:pdf, Size:1020Kb

On the Total Variation of a Function Canad. Math. Bull. Vol. 24 (3), 1981 ON THE TOTAL VARIATION OF A FUNCTION BY B. S. THOMSON 1. Introduction. There are a number of theories which assign to a function defined on the real line a measure that reflects somehow the variation of that function. The most familiar of these is, of course, the Lebesgue-Stieltjes measure associated with any monotonie function. The problem in general is to provide a construction of a measure from a completely arbitrary function in such a way that the values of this measure provide information about the total variation of the function over sets of real numbers and from which useful inferences can be drawn. One standard strategy is to employ a construction of Carathéodory (known nowadays as "Munroe's method II" after Munroe [9]) which has been used to yield Lebesgue-Stieltjes and Hausdorff measures. One writes MX) = inf[l \f(K)-f(ak)\: U W, b^X, bk-ak<^ for each natural number n, and then ftf(X)=lim^(X). n—>oo Such a construction yields an outer measure with the property that every Borel set is measurable (i.e., a metric outer measure in the sense of Munroe [9]). If / has bounded variation on an interval [a, fo], then it can be checked that lif([a, b]) is exactly the variation of / on that interval; this would lead one to expect that (JLf(X) describes the variation of / on the set X in some sense and that the study of [if in general should have some import. In fact, though, the measure ju,f may vanish if the function / is too highly oscillatory: Ellis and Burry [5] have constructed an example of a continuous / that is not of bounded variation on [0,1] for which fif ([0,1]) = 0. Bruckner [2] has gone on to show that this behaviour is typical, namely that except for a first category subset of the space C[0,1] every such iif must vanish. Browne [1] uses essentially the same construction with some minor modifica­ tions. Bruneau [4] introduces many interesting ideas and can be considered a sourcebook on the subject; one of his main ideas is to construct the variation vf(K) for a function / on a compact set K by comparing / with functions of Received by the editors, July 26, 1979 and, in revised form, February 21, 1980. 331 332 B. S. THOMSON [September bounded variation and then extending vf to a measure on the Borel sets by familiar methods. There is really no unique or canonical way of assigning a variation measure to an arbitrary function and so the problem depends on the type of application one has in mind. Our main motivation rests in the study of the derivation properties of the function and within such a viewpoint there is a natural method of constructing some useful variation measures. In the study of the ordinary derivative certain concepts arise naturally: these are the notions of a Vitali cover of a set and related ideas. We can use such ideas to give variation measures that answer familiar problems in derivation theory. We present immediately the definitions that lead to the theory. DEFINITION 1. A family 3* of closed subintervals of [a, b] is said to be a full cover of Xç[a, b] if for every xeX there is a positive number 8(x) such that every interval of length less than 8(x) that has x as an endpoint necessarily belongs to 3F. Such a family 3 is said to be a fine cover of X if for every xeX and every positive number e there is an interval I e & with length less than e and that has x as an endpoint. DEFINITION 2. Let /be a real-valued function on [a, b] and & a family of closed subintervals of [a, b]; then we write V(/,^ = supX|/(M-/(ak)| where the supremum is with regard to all sequences {[ak, bk]}^ 3F with pairwise non-overlapping elements. (Write V(f, 0) = 0.) f DEFINITION 3. Let / be a real-valued function on [a, b], then \\ff and ip denote the set functions 4ff (X) = inf{ V(f, &):&& full cover of X} and <fc(X) = inf{V(f, &):&* fine cover of X}. f These set functions ij/f and i/* are metric outer measures for any real-valued function / on [a, b] and since they are constructed directly from concepts arising in derivation theory, it may be anticipated that they will reflect the derivation properties of the function /. We will investigate these measures within a more general framework that may obscure the simple constructions defined above. 2. Derivation bases on the line. The constructions given above arise within the context of ordinary differentiation on the real line. There are many different ways of generalizing the ordinary derivative and to each such way 1981] TOTAL VARIATION 333 there would correspond a similar construction. For example, the symmetric derivative of a function / is defined to be /^(JCO) = lim [f(xo + h) - f(x0 - h)]/2h h->0 and a study of this derivative or the related extreme derivatives would involve notions similar to the full and fine covers of Definition 1 above but with obvious changes (instead of x as an endpoint we would require that x be the midpoint of the intervals in the cover). To unify these ideas and generalize them further we introduce the following definitions. DEFINITION 4. A derivation basis on the real line is any family SI of subsets of ixR where R is the real numbers and $ the collection of all closed intervals, with the property that whenever Sx and S2 belong to 2Ï there is an S3 e 2Ï with s3çs1ns2. DEFINITION 5. If S is any subset of $ xR and h is any real-valued function defined on ixR then we write V(fe,S) = sup X |M4*i)l where {(It, xt)} is a sequence of interval-point pairs from S with pairwise non-overlapping elements {It}. (Write V(h, 0) = 0.) If 21 is any non-empty family of subsets of 3 x R (not necessarily a derivation basis) then we write as well V(Ji,2l) = inf{V(/i,S):Se2i}. These concepts provide the needed generalizations. To return to the earlier versions of our outer measures we will write S[X] = {(I,x)eS:xeX} whenever Sç^xR and XçR, and 21[X] = {S[X]:SE21} whenever 2Ï is a family of subsets of 3 x R. Then the outer measures i/>f (X) and \\ff(X) can be realized as V(h, 2Ï[X]) where h is the function h([a, b], x) = f(b) — f(a) and where 21 can be chosen separately to yield either measure. This construction is essentially due to Ralph Henstock [7] and arises really from considerations of Riemann sums in general settings. The families 21 need not have many delicate properties in order to ensure that the set functions X —> V(h, 2l[X]) are outer measures. There are a number of properties that will appear in [11] and which can be found in the other literature of the subject. We cite only two of these properties. 334 B. S. THOMSON [September DEFINITION 6. A family SI of subsets of ixR will be said to be: .1 decomposable [respectively a-decomposable] if to every family {Xa : aeA} of subsets of R [respectively countable family] that is pairwise disjoint and corresponding family {Sa:aeA}ç?l there is an S eSI with S[Xa]çSa for every index a. .2 finer than the topology on R if to every open set GçR there is an S e SI so that every (I, x)eS[G] has I^G. These definitions give rise to the following theorem which provides the basic measure theory that arises from a general family St. THEOREM 1. Let h be an arbitrary real-valued function onixR and let SI be a a-decomposable family of subsets of ixR. Then the function h*(X) = V(h, Sl[X]) is an outer measure on R. If in additon SI is a derivation basis that is finer than the topology, h* is a metric outer measure. Proof. This is proved in [11] but is straightforward in any case. More results for the measures ft* can be obtained by varying the hypotheses on the family SI. For the remainder of the paper, however, our concern is with specific applications of the theory and we drop the general approach returning to concrete examples of measures that are generated by real-valued functions / of a real variable. 3. The Peano-Jordan "measures." The classical Peano-Jordan measure, or Jordan content as it is sometimes called, can be defined as an example of the theory of the previous section. In fact, the definition given by Stolz in 1884 (cf. [10, p. 30]) was essentially in terms of limits of Riemann sums and so fits into this framework. Here we give the construction of set functions mf correspond­ ing to any function / on R: if f(x) = x then mf is precisely this Peano-Jordan measure and accordingly we may consider these set functions as generalizations of this classical concept. DEFINITION 7. The family di is defined to be the collection of all subsets Sô of ixR where S8={(lx):IeJ,xeI,\I\<8} and 8 is an arbitrary positive number. For any function / on R write mf(X)=V(f,dt[X]) (XçR). (Here / is considered to be defined on 3 x R by the device f([a.
Recommended publications
  • 1.5. Set Functions and Properties. Let Л Be Any Set of Subsets of E
    1.5. Set functions and properties. Let A be any set of subsets of E containing the empty set ∅. A set function is a function µ : A → [0, ∞] with µ(∅)=0. Let µ be a set function. Say that µ is increasing if, for all A, B ∈ A with A ⊆ B, µ(A) ≤ µ(B). Say that µ is additive if, for all disjoint sets A, B ∈ A with A ∪ B ∈ A, µ(A ∪ B)= µ(A)+ µ(B). Say that µ is countably additive if, for all sequences of disjoint sets (An : n ∈ N) in A with n An ∈ A, S µ An = µ(An). n ! n [ X Say that µ is countably subadditive if, for all sequences (An : n ∈ N) in A with n An ∈ A, S µ An ≤ µ(An). n ! n [ X 1.6. Construction of measures. Let A be a set of subsets of E. Say that A is a ring on E if ∅ ∈ A and, for all A, B ∈ A, B \ A ∈ A, A ∪ B ∈ A. Say that A is an algebra on E if ∅ ∈ A and, for all A, B ∈ A, Ac ∈ A, A ∪ B ∈ A. Theorem 1.6.1 (Carath´eodory’s extension theorem). Let A be a ring of subsets of E and let µ : A → [0, ∞] be a countably additive set function. Then µ extends to a measure on the σ-algebra generated by A. Proof. For any B ⊆ E, define the outer measure ∗ µ (B) = inf µ(An) n X where the infimum is taken over all sequences (An : n ∈ N) in A such that B ⊆ n An and is taken to be ∞ if there is no such sequence.
    [Show full text]
  • A Bayesian Level Set Method for Geometric Inverse Problems
    Interfaces and Free Boundaries 18 (2016), 181–217 DOI 10.4171/IFB/362 A Bayesian level set method for geometric inverse problems MARCO A. IGLESIAS School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK E-mail: [email protected] YULONG LU Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK E-mail: [email protected] ANDREW M. STUART Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK E-mail: [email protected] [Received 3 April 2015 and in revised form 10 February 2016] We introduce a level set based approach to Bayesian geometric inverse problems. In these problems the interface between different domains is the key unknown, and is realized as the level set of a function. This function itself becomes the object of the inference. Whilst the level set methodology has been widely used for the solution of geometric inverse problems, the Bayesian formulation that we develop here contains two significant advances: firstly it leads to a well-posed inverse problem in which the posterior distribution is Lipschitz with respect to the observed data, and may be used to not only estimate interface locations, but quantify uncertainty in them; and secondly it leads to computationally expedient algorithms in which the level set itself is updated implicitly via the MCMC methodology applied to the level set function – no explicit velocity field is required for the level set interface. Applications are numerous and include medical imaging, modelling of subsurface formations and the inverse source problem; our theory is illustrated with computational results involving the last two applications.
    [Show full text]
  • Generalized Stochastic Processes with Independent Values
    GENERALIZED STOCHASTIC PROCESSES WITH INDEPENDENT VALUES K. URBANIK UNIVERSITY OF WROCFAW AND MATHEMATICAL INSTITUTE POLISH ACADEMY OF SCIENCES Let O denote the space of all infinitely differentiable real-valued functions defined on the real line and vanishing outside a compact set. The support of a function so E X, that is, the closure of the set {x: s(x) F 0} will be denoted by s(,o). We shall consider 3D as a topological space with the topology introduced by Schwartz (section 1, chapter 3 in [9]). Any continuous linear functional on this space is a Schwartz distribution, a generalized function. Let us consider the space O of all real-valued random variables defined on the same sample space. The distance between two random variables X and Y will be the Frechet distance p(X, Y) = E[X - Yl/(l + IX - YI), that is, the distance induced by the convergence in probability. Any C-valued continuous linear functional defined on a is called a generalized stochastic process. Every ordinary stochastic process X(t) for which almost all realizations are locally integrable may be considered as a generalized stochastic process. In fact, we make the generalized process T((p) = f X(t),p(t) dt, with sp E 1, correspond to the process X(t). Further, every generalized stochastic process is differentiable. The derivative is given by the formula T'(w) = - T(p'). The theory of generalized stochastic processes was developed by Gelfand [4] and It6 [6]. The method of representation of generalized stochastic processes by means of sequences of ordinary processes was considered in [10].
    [Show full text]
  • Old Notes from Warwick, Part 1
    Measure Theory, MA 359 Handout 1 Valeriy Slastikov Autumn, 2005 1 Measure theory 1.1 General construction of Lebesgue measure In this section we will do the general construction of σ-additive complete measure by extending initial σ-additive measure on a semi-ring to a measure on σ-algebra generated by this semi-ring and then completing this measure by adding to the σ-algebra all the null sets. This section provides you with the essentials of the construction and make some parallels with the construction on the plane. Throughout these section we will deal with some collection of sets whose elements are subsets of some fixed abstract set X. It is not necessary to assume any topology on X but for simplicity you may imagine X = Rn. We start with some important definitions: Definition 1.1 A nonempty collection of sets S is a semi-ring if 1. Empty set ? 2 S; 2. If A 2 S; B 2 S then A \ B 2 S; n 3. If A 2 S; A ⊃ A1 2 S then A = [k=1Ak, where Ak 2 S for all 1 ≤ k ≤ n and Ak are disjoint sets. If the set X 2 S then S is called semi-algebra, the set X is called a unit of the collection of sets S. Example 1.1 The collection S of intervals [a; b) for all a; b 2 R form a semi-ring since 1. empty set ? = [a; a) 2 S; 2. if A 2 S and B 2 S then A = [a; b) and B = [c; d).
    [Show full text]
  • Set Notation and Concepts
    Appendix Set Notation and Concepts “In mathematics you don’t understand things. You just get used to them.” John von Neumann (1903–1957) This appendix is primarily a brief run-through of basic concepts from set theory, but it also in Sect. A.4 mentions set equations, which are not always covered when introducing set theory. A.1 Basic Concepts and Notation A set is a collection of items. You can write a set by listing its elements (the items it contains) inside curly braces. For example, the set that contains the numbers 1, 2 and 3 can be written as {1, 2, 3}. The order of elements do not matter in a set, so the same set can be written as {2, 1, 3}, {2, 3, 1} or using any permutation of the elements. The number of occurrences also does not matter, so we could also write the set as {2, 1, 2, 3, 1, 1} or in an infinity of other ways. All of these describe the same set. We will normally write sets without repetition, but the fact that repetitions do not matter is important to understand the operations on sets. We will typically use uppercase letters to denote sets and lowercase letters to denote elements in a set, so we could write M ={2, 1, 3} and x = 2 as an element of M. The empty set can be written either as an empty list of elements ({})orusing the special symbol ∅. The latter is more common in mathematical texts. A.1.1 Operations and Predicates We will often need to check if an element belongs to a set or select an element from a set.
    [Show full text]
  • 6.436J / 15.085J Fundamentals of Probability, Lecture 4: Random
    MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2018 Lecture 4 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete random variables 4. Continuous random variables A. Continuity B. The Cantor set, an unusual random variable, and a singular measure 1 RANDOM VARIABLES AND MEASURABLE FUNCTIONS Loosely speaking a random variable provides us with a numerical value, depend- ing on the outcome of an experiment. More precisely, a random variable can be viewed as a function from the sample space to the real numbers, and we will use the notation X(!) to denote the numerical value of a random variable X, when the outcome of the experiment is some particular !. We may be interested in the probability that the outcome of the experiment is such that X is no larger than some c, i.e., that the outcome belongs to the set ! X(!) c . Of course, in { | ≤ } order to have a probability assigned to that set, we need to make sure that it is -measurable. This motivates Definition 1 below. F Example 1. Consider a sequence of five consecutive coin tosses. An appropriate sample space is Ω = 0, 1 n , where “1” stands for heads and “0” for tails. Let be the col- { } F lection of all subsets of Ω , and suppose that a probability measure P has been assigned to ( Ω, ). We are interested in the number of heads obtained in this experiment. This F quantity can be described by the function X : Ω R, defined by → X(!1,...,! ) = !1 + + ! . n ··· n 1 With this definition, the set ! X(!) < 4 is just the event that there were fewer than { | } 4 heads overall, belongs to the ˙-field , and therefore has a well-defined probability.
    [Show full text]
  • Set-Valued Measures
    transactions of the american mathematical society Volume 165, March 1972 SET-VALUED MEASURES BY ZVI ARTSTEIN Abstract. A set-valued measure is a u-additive set-function which takes on values in the nonempty subsets of a euclidean space. It is shown that a bounded and non- atomic set-valued measure has convex values. Also the existence of selectors (vector- valued measures) is investigated. The Radon-Nikodym derivative of a set-valued measure is a set-valued function. A general theorem on the existence of R.-N. derivatives is established. The techniques require investigations of measurable set- valued functions and their support functions. 1. Introduction. Let (F, 3~) be a measurable space, and S be a finite-dimensional real vector space. A set-valued measure O on (F, 3~) is a function from T to the nonempty subsets of S, which is countably additive, i.e. 0(Uî°=i £/)Œ2f-i ®(Ei) for every sequence Eu F2,..., of mutually disjoint elements of 3~. Here the sum 2™=i Aj of the subsets Au A2,..., of S, consists of all the vectors a = 2y°=i ßy> where the series is absolutely convergent, and a, e A¡ for every7= 1,2,.... The calculus of set-valued functions has recently been developed by several authors. (See Aumann [1], Banks and Jacobs [3], Bridgland [4], Debreu [7], Hermes [11], Hukuhara [15], and Jacobs [16].) The ideas and techniques have many interesting applications in mathematical economics, [2], [7], [13]; in control theory, [11], [12], [16]; and in other mathematical fields (see [3] and [4] for exten- sive lists of references).
    [Show full text]
  • Chapter 8 General Countably Additive Set Functions
    Chapter 8 General Countably Additive Set Functions In Theorem 5.2.2 the reader saw that if f : X R is integrable on the → measure space (X, A,µ) then we can define a countably additive set function ν on A by the formula ν(A)= f dµ (8.1) ZA and we see that it can take both positive and negative values. In this chapter we will study general countably additive set functions that can take both positive and negative values. Such set functions are known also as signed measures. In the Radon-Nikodym theorem we will characterize all those countably additive set functions that arise from integrals as in Equation 8.1 as being absolutely continuous with respect to the measure µ. And in the Lebesgue Decomposition theorem we will learn how to decompose any signed measure into its absolutely continuous and singular parts. These concepts for signed measures will be defined as part of the work of this chapter. 8.1 Hahn Decomposition Theorem Definition 8.1.1. Given a σ-algebra A of subsets of X, a function µ : A R → is called a countably additive set function (or a signed measure1) provided 1Some authors allow a signed measure to be extended real-valued. In that case it is necessary to require that µ take only one of the two values in order to ensure that µ is well-defined on A. ±∞ 131 that for every sequence of mutually disjoint sets A A we have n ∈ ˙ µ An = µ(An). n N ∈ n N [ X∈ We prove first the following theorem.
    [Show full text]
  • Math Review: Sets, Functions, Permutations, Combinations, and Notation
    Math Review: Sets, Functions, Permutations, Combinations, and Notation A.l Introduction A.2 Definitions, Axioms, Theorems, Corollaries, and Lemmas A.3 Elements of Set Theory AA Relations, Point Functions, and Set Functions . A.S Combinations and Permutations A.6 Summation, Integration and Matrix Differentiation Notation A.l Introduction In this appendix we review basic results concerning set theory, relations and functions, combinations and permutations, and summa­ tion and integration notation. We also review the meaning of the terms defini­ tion, axiom, theorem, corollary, and lemma, which are labels that are affixed to a myriad of statements and results that constitute the theory of probability and mathematical statistics. The topics reviewed in this appendix constitute basic foundational material on which our study of mathematical statistics will be based. Additional mathematical results, often of a more advanced nature, are introduced throughout the text as the need arises. A.2 Definitions, Axioms, Theorems, Corollaries, and Lemmas The development of the theory of probability and mathematical statistics in­ volves a considerable number of statements consisting of definitions, axioms, theorems, corollaries, and lemmas. These terms will be used for organizing the various statements and results we will examine into these categories: 1. descriptions of meaning; 2. statements that are acceptable as true without proof; 678 Appendix A Math Review: Sets, Functions, Permutations, Combinations, and Notation 3. formulas or statements that require proof of validity; 4. formulas or statements whose validity follows immediately from other true formulas or statements; and 5. results, generally from other branches of mathematics, whose primary pur­ pose is to facilitate the proof of validity of formulas or statements in math­ ematical statistics.
    [Show full text]
  • Real Analysis a Comprehensive Course in Analysis, Part 1
    Real Analysis A Comprehensive Course in Analysis, Part 1 Barry Simon Real Analysis A Comprehensive Course in Analysis, Part 1 http://dx.doi.org/10.1090/simon/001 Real Analysis A Comprehensive Course in Analysis, Part 1 Barry Simon Providence, Rhode Island 2010 Mathematics Subject Classification. Primary 26-01, 28-01, 42-01, 46-01; Secondary 33-01, 35-01, 41-01, 52-01, 54-01, 60-01. For additional information and updates on this book, visit www.ams.org/bookpages/simon Library of Congress Cataloging-in-Publication Data Simon, Barry, 1946– Real analysis / Barry Simon. pages cm. — (A comprehensive course in analysis ; part 1) Includes bibliographical references and indexes. ISBN 978-1-4704-1099-5 (alk. paper) 1. Mathematical analysis—Textbooks. I. Title. QA300.S53 2015 515.8—dc23 2014047381 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright.
    [Show full text]
  • The American Mathematical Society
    THE AMERICAN MATHEMATICAL SOCIETY Edited by John W. Green and Gordon L. Walker CONTENTS MEETINGS Calendar of Meetings . • . • . • . • . • • • . • . 168 PRELIMINARY ANNOUNCEMENT OF MEETING...................... 169 DOCTORATES CONFERRED IN 1961 ••••••••••••••••••••••••••••.•• 173 NEWS ITEMS AND ANNOUNCEMENTS • • • • • • • • • • • • • • • • • • • 189, 194, 195, 202 PERSONAL ITEMS •••••••••••••••••••••••••••••••.••••••••••• 191 NEW AMS PUBLICATIONS •••••••••••••••••••••••••••••••••••.•• 195 LETTERS TO THE EDITOR •.•.•.•••••••••.•••••.••••••••••••••• 196 MEMORANDA TO MEMBERS The Employment Register . • . • . • . • • . • . • • . • . • . • 198 Dues of Reciprocity Members of the Mathematical Society of Japan • . • . • . 198 SUPPLEMENTARY PROGRAM -No. 11 ••••••••••••••••••••••••••••• 199 ABSTRACTS OF CONTRIBUTED PAPERS •.•••••••••••.••••••••••••• 203 ERRATA •••••••••••••••••••••••••••••••••••••••••••••••.• 231 INDEX TO ADVERTISERS • • • • • • • • • • • • • . • . • • • • • • • • • • • . • • • • • • • • • • 243 RESERVATION FORM •••.•.•••••••••••.•••••••••••.••••••••••• 243 MEETINGS CALENDAR OF MEETINGS NOTE: This Calendar lists all of the meetings which have been approved by the Council up to the date a~ch this issue of the NOTICES was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change. This is particularly true of the meetings to which no numbers have yet been assigned. Meet-
    [Show full text]
  • Set Theory, Relations, and Functions (II)
    LING 106. Knowledge of Meaning Lecture 2-2 Yimei Xiang Feb 1, 2017 Set theory, relations, and functions (II) Review: set theory – Principle of Extensionality – Special sets: singleton set, empty set – Ways to define a set: list notation, predicate notation, recursive rules – Relations of sets: identity, subset, powerset – Operations on sets: union, intersection, difference, complement – Venn diagram – Applications in natural language semantics: (i) categories denoting sets of individuals: common nouns, predicative ADJ, VPs, IV; (ii) quantificational determiners denote relations of sets 1 Relations 1.1 Ordered pairs and Cartesian products • The elements of a set are not ordered. To describe functions and relations we will need the notion of an ordered pair, written as xa; by, where a is the first element of the pair and b is the second. Compare: If a ‰ b, then ... ta; bu “ tb; au, but xa; by ‰ xb; ay ta; au “ ta; a; au, but xa; ay ‰ xa; a; ay • The Cartesian product of two sets A and B (written as A ˆ B) is the set of ordered pairs which take an element of A as the first member and an element of B as the second member. (1) A ˆ B “ txx; yy | x P A and y P Bu E.g. Let A “ t1; 2u, B “ ta; bu, then A ˆ B “ tx1; ay; x1; by; x2; ay; x2; byu, B ˆ A “ txa; 1y; xa; 2y; xb; 1y; xb; 2yu 1.2 Relations, domain, and range •A relation is a set of ordered pairs. For example: – Relations in math: =, ¡, ‰, ... – Relations in natural languages: the instructor of, the capital city of, ..
    [Show full text]