Math Review: Sets, Functions, Permutations, Combinations, and Notation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1.5. Set Functions and Properties. Let Л Be Any Set of Subsets of E
1.5. Set functions and properties. Let A be any set of subsets of E containing the empty set ∅. A set function is a function µ : A → [0, ∞] with µ(∅)=0. Let µ be a set function. Say that µ is increasing if, for all A, B ∈ A with A ⊆ B, µ(A) ≤ µ(B). Say that µ is additive if, for all disjoint sets A, B ∈ A with A ∪ B ∈ A, µ(A ∪ B)= µ(A)+ µ(B). Say that µ is countably additive if, for all sequences of disjoint sets (An : n ∈ N) in A with n An ∈ A, S µ An = µ(An). n ! n [ X Say that µ is countably subadditive if, for all sequences (An : n ∈ N) in A with n An ∈ A, S µ An ≤ µ(An). n ! n [ X 1.6. Construction of measures. Let A be a set of subsets of E. Say that A is a ring on E if ∅ ∈ A and, for all A, B ∈ A, B \ A ∈ A, A ∪ B ∈ A. Say that A is an algebra on E if ∅ ∈ A and, for all A, B ∈ A, Ac ∈ A, A ∪ B ∈ A. Theorem 1.6.1 (Carath´eodory’s extension theorem). Let A be a ring of subsets of E and let µ : A → [0, ∞] be a countably additive set function. Then µ extends to a measure on the σ-algebra generated by A. Proof. For any B ⊆ E, define the outer measure ∗ µ (B) = inf µ(An) n X where the infimum is taken over all sequences (An : n ∈ N) in A such that B ⊆ n An and is taken to be ∞ if there is no such sequence. -
Algebra I Chapter 1. Basic Facts from Set Theory 1.1 Glossary of Abbreviations
Notes: c F.P. Greenleaf, 2000-2014 v43-s14sets.tex (version 1/1/2014) Algebra I Chapter 1. Basic Facts from Set Theory 1.1 Glossary of abbreviations. Below we list some standard math symbols that will be used as shorthand abbreviations throughout this course. means “for all; for every” • ∀ means “there exists (at least one)” • ∃ ! means “there exists exactly one” • ∃ s.t. means “such that” • = means “implies” • ⇒ means “if and only if” • ⇐⇒ x A means “the point x belongs to a set A;” x / A means “x is not in A” • ∈ ∈ N denotes the set of natural numbers (counting numbers) 1, 2, 3, • · · · Z denotes the set of all integers (positive, negative or zero) • Q denotes the set of rational numbers • R denotes the set of real numbers • C denotes the set of complex numbers • x A : P (x) If A is a set, this denotes the subset of elements x in A such that •statement { ∈ P (x)} is true. As examples of the last notation for specifying subsets: x R : x2 +1 2 = ( , 1] [1, ) { ∈ ≥ } −∞ − ∪ ∞ x R : x2 +1=0 = { ∈ } ∅ z C : z2 +1=0 = +i, i where i = √ 1 { ∈ } { − } − 1.2 Basic facts from set theory. Next we review the basic definitions and notations of set theory, which will be used throughout our discussions of algebra. denotes the empty set, the set with nothing in it • ∅ x A means that the point x belongs to a set A, or that x is an element of A. • ∈ A B means A is a subset of B – i.e. -
Certain Ideals Related to the Strong Measure Zero Ideal
数理解析研究所講究録 第 1595 巻 2008 年 37-46 37 Certain ideals related to the strong measure zero ideal 大阪府立大学理学系研究科 大須賀昇 (Noboru Osuga) Graduate school of Science, Osaka Prefecture University 1 Motivation and Basic Definition In 1919, Borel[l] introduced the new class of Lebesgue measure zero sets called strong measure zero sets today. The family of all strong measure zero sets become $\sigma$-ideal and is called the strong measure zero ideal. The four cardinal invariants (the additivity, covering number, uniformity and cofinal- ity) related to the strong measure zero ideal have been studied. In 2002, Yorioka[2] obtained the results about the cofinality of the strong measure zero ideal. In the process, he introduced the ideal $\mathcal{I}_{f}$ for each strictly increas- ing function $f$ on $\omega$ . The ideal $\mathcal{I}_{f}$ relates to the structure of the real line. We are interested in how the cardinal invariants of the ideal $\mathcal{I}_{f}$ behave. $Ma\dot{i}$ly, we te interested in the cardinal invariants of the ideals $\mathcal{I}_{f}$ . In this paper, we deal the consistency problems about the relationship between the cardi- nal invariants of the ideals $\mathcal{I}_{f}$ and the minimam and supremum of cardinal invariants of the ideals $\mathcal{I}_{g}$ for all $g$ . We explain some notation which we use in this paper. Our notation is quite standard. And we refer the reader to [3] and [4] for undefined notation. For sets X and $Y$, we denote by $xY$ the set of all functions $homX$ to Y. -
A Bayesian Level Set Method for Geometric Inverse Problems
Interfaces and Free Boundaries 18 (2016), 181–217 DOI 10.4171/IFB/362 A Bayesian level set method for geometric inverse problems MARCO A. IGLESIAS School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK E-mail: [email protected] YULONG LU Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK E-mail: [email protected] ANDREW M. STUART Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK E-mail: [email protected] [Received 3 April 2015 and in revised form 10 February 2016] We introduce a level set based approach to Bayesian geometric inverse problems. In these problems the interface between different domains is the key unknown, and is realized as the level set of a function. This function itself becomes the object of the inference. Whilst the level set methodology has been widely used for the solution of geometric inverse problems, the Bayesian formulation that we develop here contains two significant advances: firstly it leads to a well-posed inverse problem in which the posterior distribution is Lipschitz with respect to the observed data, and may be used to not only estimate interface locations, but quantify uncertainty in them; and secondly it leads to computationally expedient algorithms in which the level set itself is updated implicitly via the MCMC methodology applied to the level set function – no explicit velocity field is required for the level set interface. Applications are numerous and include medical imaging, modelling of subsurface formations and the inverse source problem; our theory is illustrated with computational results involving the last two applications. -
Domain and Range of a Function
4.1 Domain and Range of a Function How can you fi nd the domain and range of STATES a function? STANDARDS MA.8.A.1.1 MA.8.A.1.5 1 ACTIVITY: The Domain and Range of a Function Work with a partner. The table shows the number of adult and child tickets sold for a school concert. Input Number of Adult Tickets, x 01234 Output Number of Child Tickets, y 86420 The variables x and y are related by the linear equation 4x + 2y = 16. a. Write the equation in function form by solving for y. b. The domain of a function is the set of all input values. Find the domain of the function. Domain = Why is x = 5 not in the domain of the function? 1 Why is x = — not in the domain of the function? 2 c. The range of a function is the set of all output values. Find the range of the function. Range = d. Functions can be described in many ways. ● by an equation ● by an input-output table y 9 ● in words 8 ● by a graph 7 6 ● as a set of ordered pairs 5 4 Use the graph to write the function 3 as a set of ordered pairs. 2 1 , , ( , ) ( , ) 0 09321 45 876 x ( , ) , ( , ) , ( , ) 148 Chapter 4 Functions 2 ACTIVITY: Finding Domains and Ranges Work with a partner. ● Copy and complete each input-output table. ● Find the domain and range of the function represented by the table. 1 a. y = −3x + 4 b. y = — x − 6 2 x −2 −10 1 2 x 01234 y y c. -
COVERING PROPERTIES of IDEALS 1. Introduction We Will Discuss The
COVERING PROPERTIES OF IDEALS MAREK BALCERZAK, BARNABAS´ FARKAS, AND SZYMON GLA¸B Abstract. M. Elekes proved that any infinite-fold cover of a σ-finite measure space by a sequence of measurable sets has a subsequence with the same property such that the set of indices of this subsequence has density zero. Applying this theorem he gave a new proof for the random-indestructibility of the density zero ideal. He asked about other variants of this theorem concerning I-almost everywhere infinite-fold covers of Polish spaces where I is a σ-ideal on the space and the set of indices of the required subsequence should be in a fixed ideal J on !. We introduce the notion of the J-covering property of a pair (A;I) where A is a σ- algebra on a set X and I ⊆ P(X) is an ideal. We present some counterexamples, discuss the category case and the Fubini product of the null ideal N and the meager ideal M. We investigate connections between this property and forcing-indestructibility of ideals. We show that the family of all Borel ideals J on ! such that M has the J- covering property consists exactly of non weak Q-ideals. We also study the existence of smallest elements, with respect to Katˇetov-Blass order, in the family of those ideals J on ! such that N or M has the J-covering property. Furthermore, we prove a general result about the cases when the covering property \strongly" fails. 1. Introduction We will discuss the following result due to Elekes [8]. -
Generalized Stochastic Processes with Independent Values
GENERALIZED STOCHASTIC PROCESSES WITH INDEPENDENT VALUES K. URBANIK UNIVERSITY OF WROCFAW AND MATHEMATICAL INSTITUTE POLISH ACADEMY OF SCIENCES Let O denote the space of all infinitely differentiable real-valued functions defined on the real line and vanishing outside a compact set. The support of a function so E X, that is, the closure of the set {x: s(x) F 0} will be denoted by s(,o). We shall consider 3D as a topological space with the topology introduced by Schwartz (section 1, chapter 3 in [9]). Any continuous linear functional on this space is a Schwartz distribution, a generalized function. Let us consider the space O of all real-valued random variables defined on the same sample space. The distance between two random variables X and Y will be the Frechet distance p(X, Y) = E[X - Yl/(l + IX - YI), that is, the distance induced by the convergence in probability. Any C-valued continuous linear functional defined on a is called a generalized stochastic process. Every ordinary stochastic process X(t) for which almost all realizations are locally integrable may be considered as a generalized stochastic process. In fact, we make the generalized process T((p) = f X(t),p(t) dt, with sp E 1, correspond to the process X(t). Further, every generalized stochastic process is differentiable. The derivative is given by the formula T'(w) = - T(p'). The theory of generalized stochastic processes was developed by Gelfand [4] and It6 [6]. The method of representation of generalized stochastic processes by means of sequences of ordinary processes was considered in [10]. -
Ergodicity and Metric Transitivity
Chapter 25 Ergodicity and Metric Transitivity Section 25.1 explains the ideas of ergodicity (roughly, there is only one invariant set of positive measure) and metric transivity (roughly, the system has a positive probability of going from any- where to anywhere), and why they are (almost) the same. Section 25.2 gives some examples of ergodic systems. Section 25.3 deduces some consequences of ergodicity, most im- portantly that time averages have deterministic limits ( 25.3.1), and an asymptotic approach to independence between even§ts at widely separated times ( 25.3.2), admittedly in a very weak sense. § 25.1 Metric Transitivity Definition 341 (Ergodic Systems, Processes, Measures and Transfor- mations) A dynamical system Ξ, , µ, T is ergodic, or an ergodic system or an ergodic process when µ(C) = 0 orXµ(C) = 1 for every T -invariant set C. µ is called a T -ergodic measure, and T is called a µ-ergodic transformation, or just an ergodic measure and ergodic transformation, respectively. Remark: Most authorities require a µ-ergodic transformation to also be measure-preserving for µ. But (Corollary 54) measure-preserving transforma- tions are necessarily stationary, and we want to minimize our stationarity as- sumptions. So what most books call “ergodic”, we have to qualify as “stationary and ergodic”. (Conversely, when other people talk about processes being “sta- tionary and ergodic”, they mean “stationary with only one ergodic component”; but of that, more later. Definition 342 (Metric Transitivity) A dynamical system is metrically tran- sitive, metrically indecomposable, or irreducible when, for any two sets A, B n ∈ , if µ(A), µ(B) > 0, there exists an n such that µ(T − A B) > 0. -
POINT-COFINITE COVERS in the LAVER MODEL 1. Background Let
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 9, September 2010, Pages 3313–3321 S 0002-9939(10)10407-9 Article electronically published on April 30, 2010 POINT-COFINITE COVERS IN THE LAVER MODEL ARNOLD W. MILLER AND BOAZ TSABAN (Communicated by Julia Knight) Abstract. Let S1(Γ, Γ) be the statement: For each sequence of point-cofinite open covers, one can pick one element from each cover and obtain a point- cofinite cover. b is the minimal cardinality of a set of reals not satisfying S1(Γ, Γ). We prove the following assertions: (1) If there is an unbounded tower, then there are sets of reals of cardinality b satisfying S1(Γ, Γ). (2) It is consistent that all sets of reals satisfying S1(Γ, Γ) have cardinality smaller than b. These results can also be formulated as dealing with Arhangel’ski˘ı’s property α2 for spaces of continuous real-valued functions. The main technical result is that in Laver’s model, each set of reals of cardinality b has an unbounded Borel image in the Baire space ωω. 1. Background Let P be a nontrivial property of sets of reals. The critical cardinality of P , denoted non(P ), is the minimal cardinality of a set of reals not satisfying P .A natural question is whether there is a set of reals of cardinality at least non(P ), which satisfies P , i.e., a nontrivial example. We consider the following property. Let X be a set of reals. U is a point-cofinite cover of X if U is infinite, and for each x ∈ X, {U ∈U: x ∈ U} is a cofinite subset of U.1 Having X fixed in the background, let Γ be the family of all point- cofinite open covers of X. -
Product Specifications and Ordering Information CMS 2019 R2 Condition Monitoring Software
Product specifications and ordering information CMS 2019 R2 Condition Monitoring Software Overview SETPOINT® CMS Condition Monitoring Software provides a powerful, flexible, and comprehensive solution for collection, storage, and visualization of vibration and condition data from VIBROCONTROL 8000 (VC-8000) Machinery Protection System (MPS) racks, allowing trending, diagnostics, and predictive maintenance of monitored machinery. The software can be implemented in three different configurations: 1. CMSPI (PI System) This implementation streams data continuously from all VC-8000 racks into a connected PI Server infrastructure. It consumes on average 12-15 PI tags per connected vibration transducer (refer to 3. manual S1176125). Customers can use their CMSHD/SD (Hard Drive) This implementation is used existing PI ecosystem, or for those without PI, a when a network is not available stand-alone PI server can be deployed as a self- between VC-8000 racks and a contained condition monitoring solution. server, and the embedded flight It provides the most functionality (see Tables 1 recorder in each VC-8000 rack and 2) of the three possible configurations by will be used instead. The flight recorder is a offering full integration with process data, solid-state hard drive local to each VC-8000 rack integrated aero/thermal performance monitoring, that can store anywhere from 1 – 12 months of integrated decision support functionality, nested data*. The data is identical to that which would machine train diagrams and nearly unlimited be streamed to an external server, but remains in visualization capabilities via PI Vision or PI the VC-8000 rack until manually retrieved via ProcessBook, and all of the power of the OSIsoft removable SDHC card media, or by connecting a PI System and its ecosystem of complementary laptop to the rack’s Ethernet CMS port and technologies. -
A TEXTBOOK of TOPOLOGY Lltld
SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1. -
The Hardness of the Hidden Subset Sum Problem and Its Cryptographic Implications
The Hardness of the Hidden Subset Sum Problem and Its Cryptographic Implications Phong Nguyen and Jacques Stern Ecole´ Normale Sup´erieure Laboratoire d’Informatique 45 rue d’Ulm, 75230 Paris Cedex 05 France fPhong.Nguyen,[email protected] http://www.dmi.ens.fr/~fpnguyen,sterng/ Abstract. At Eurocrypt’98, Boyko, Peinado and Venkatesan presented simple and very fast methods for generating randomly distributed pairs of the form (x; gx mod p) using precomputation. The security of these methods relied on the potential hardness of a new problem, the so-called hidden subset sum problem. Surprisingly, apart from exhaustive search, no algorithm to solve this problem was known. In this paper, we exhibit a security criterion for the hidden subset sum problem, and discuss its implications on the practicability of the precomputation schemes. Our results are twofold. On the one hand, we present an efficient lattice-based attack which is expected to succeed if and only if the parameters satisfy a particular condition that we make explicit. Experiments have validated the theoretical analysis, and show the limitations of the precomputa- tion methods. For instance, any realistic smart-card implementation of Schnorr’s identification scheme using these precomputations methods is either vulnerable to the attack, or less efficient than with traditional pre- computation methods. On the other hand, we show that, when another condition is satisfied, the pseudo-random generator based on the hidden subset sum problem is strong in some precise sense which includes at- tacks via lattice reduction. Namely, using the discrete Fourier transform, we prove that the distribution of the generator’s output is indistinguish- able from the uniform distribution.