Effects of the Total Replacement of Fish-Based Diet with Plant-Based Diet on the Hepatic Transcriptome of Two European Sea Bass
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Identification of Genetic Determinants of Methanol
Journal of Fungi Article The Identification of Genetic Determinants of Methanol Tolerance in Yeast Suggests Differences in Methanol and Ethanol Toxicity Mechanisms and Candidates for Improved Methanol Tolerance Engineering Marta N. Mota 1,2, Luís C. Martins 1,2 and Isabel Sá-Correia 1,2,* 1 iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; [email protected] (M.N.M.); [email protected] (L.C.M.) 2 Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal * Correspondence: [email protected] Abstract: Methanol is a promising feedstock for metabolically competent yeast strains-based biore- fineries. However, methanol toxicity can limit the productivity of these bioprocesses. Therefore, the identification of genes whose expression is required for maximum methanol tolerance is important for mechanistic insights and rational genomic manipulation to obtain more robust methylotrophic yeast strains. The present chemogenomic analysis was performed with this objective based on the screening of the Euroscarf Saccharomyces cerevisiae haploid deletion mutant collection to search for susceptibility ◦ phenotypes in YPD medium supplemented with 8% (v/v) methanol, at 35 C, compared with an equivalent ethanol concentration (5.5% (v/v)). Around 400 methanol tolerance determinants were Citation: Mota, M.N.; Martins, L.C.; identified, 81 showing a marked phenotype. The clustering of the identified tolerance genes indicates Sá-Correia, I. The Identification of an enrichment of functional categories in the methanol dataset not enriched in the ethanol dataset, Genetic Determinants of Methanol Tolerance in Yeast Suggests such as chromatin remodeling, DNA repair and fatty acid biosynthesis. -
Prostaglandin E2 Deficiency Uncovers a Dominant Role for Thromboxane A2
Prostaglandin E2 deficiency uncovers a dominant role for thromboxane A2 in house dust mite-induced allergic pulmonary inflammation Tao Liua,b, Tanya M. Laidlawa,b,c, Chunli Fenga,b, Wei Xinga,b, Shiliang Shena,b, Ginger L. Milned, and Joshua A. Boycea,b,c,1 Departments of aMedicine and cPediatrics, Harvard Medical School, Boston, MA 02115; bDivision of Rheumatology, Immunology, and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital, Boston, MA 02115; and dDepartment of Pharmacology, Vanderbilt University, Nashville, TN 37232 Edited* by K. Frank Austen, Brigham and Women’s Hospital, Boston, MA, and approved June 20, 2012 (received for review May 10, 2012) fl – Prostaglandin E2 (PGE2) is an abundant lipid in ammatory media- PGE2 production (16 19) and reduced expression of the EP2 re- tor with potent but incompletely understood anti-inflammatory ceptor (20, 21), as well as marked tissue eosinophilia and bron- actions in the lung. Deficient PGE2 generation in the lung predis- choconstrictive responses to the administration of nonselective poses to airway hyperresponsiveness and aspirin intolerance in COX inhibitors. These findings suggest potential therapeutic fi −/− asthmatic individuals. PGE2-de cient ptges mice develop exag- applications of PGE2 in asthma and AERD if the mechanisms gerated pulmonary eosinophilia and pulmonary arteriolar smooth- responsible for the homeostatic functions of PGE2 in asthma can fi muscle hyperplasia compared with PGE2-suf cient controls when be fully defined. challenged intranasally with a house dust mite extract. We now An extract (Df) of the house dust mite Dermatophagoides demonstrate that both pulmonary eosinophilia and vascular farinae contains clinically relevant protease allergens, as well as fi remodeling in the setting of PGE2 de ciency depend on thrombox- adjuvants (glycans, endotoxin) that elicit sensitization through ane A2 and signaling through the T prostanoid (TP) receptor. -
Analysis of Gene Expression Data for Gene Ontology
ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins. -
Allele-Specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish
Allele-specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish by Ailu Chen A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 1, 2015 Keywords: catfish, interspecific hybrids, allele-specific expression, ribosomal protein Copyright 2015 by Ailu Chen Approved by Zhanjiang Liu, Chair, Professor, School of Fisheries, Aquaculture and Aquatic Sciences Nannan Liu, Professor, Entomology and Plant Pathology Eric Peatman, Associate Professor, School of Fisheries, Aquaculture and Aquatic Sciences Aaron M. Rashotte, Associate Professor, Biological Sciences Abstract Interspecific hybridization results in a vast reservoir of allelic variations, which may potentially contribute to phenotypical enhancement in the hybrids. Whether the allelic variations are related to the downstream phenotypic differences of interspecific hybrid is still an open question. The recently developed genome-wide allele-specific approaches that harness high- throughput sequencing technology allow direct quantification of allelic variations and gene expression patterns. In this work, I investigated allele-specific expression (ASE) pattern using RNA-Seq datasets generated from interspecific catfish hybrids. The objective of the study is to determine the ASE genes and pathways in which they are involved. Specifically, my study investigated ASE-SNPs, ASE-genes, parent-of-origins of ASE allele and how ASE would possibly contribute to heterosis. My data showed that ASE was operating in the interspecific catfish system. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5,420 (8.2%) and 13,390 (7.5%) SNPs were identified as significant ASE-SNPs, respectively. -
Coexpression of Microsomal Prostaglandin E Synthase With
Coexpression of Microsomal Prostaglandin E Synthase with Cyclooxygenase-2 in Human Rheumatoid Synovial Cells FUMIAKI KOJIMA, HIROAKI NARABA, YASUHARU SASAKI, RENZO OKAMOTO, TOMIHISA KOSHINO, and SHINICHI KAWAI ABSTRACT. Objective. Recently, microsomal prostaglandin (PG) E synthase (mPGES) was cloned as a terminal enzyme catalyzing PGH2 to PGE2. We investigated mPGES as well as cyclooxygenase (COX)-2, catalyzing arachidonic acid to PGH2, in synovial cells from patients with rheumatoid arthritis (RA). The effect of dexamethasone on mPGES expression was also studied. Methods. Synovial cells were treated with interleukin 1ß (IL-1ß) and dexamethasone under various conditions, and expression of mPGES mRNA and protein was analyzed by Northern blot and Western blot, respectively. Conversions of arachidonic acid or PGH2 to PGE2 were measured by ELISA. Subcellular localization of mPGES and COX-2 was determined by immunofluorescent microscopic analysis. Results. mPGES mRNA and protein expression were significantly upregulated by IL-1ß in synovial cells. COX-2 mRNA and protein were also upregulated by IL-1ß, but with a different time course from that of mPGES. Conversion of PGH2 to PGE2 was increased by IL-1ß and was correlated with mPGES expression. Increased conversion of arachidonic acid to PGE2 was maintained when mPGES and COX-2 were coexpressed. Subcellular localization of mPGES and COX-2 overlapped in the perinuclear region in IL-1ß stimulated synovial cells. Dexamethasone inhibited mRNA and protein expression for mPGES and increased conversion of arachidonic acid to PGE2, but inhibition of mPGES was weaker compared with that of COX-2 in IL-1ß stimulated cells. Conclusion. The results suggest that abundant PGE2 production at inflammation sites such as rheumatoid synovia is caused by the coordinated upregulation of mPGES and COX-2. -
Expression and Regulation of Microsomal Prostaglandin E Synthase
Expression and Regulation of Microsomal Prostaglandin E Synthase-1 in Human Osteoarthritic Cartilage and Chondrocytes XINFANG LI, HASSAN AFIF, SARANETTE CHENG, JOHANNE MARTEL-PELLETIER, JEAN-PIERRE PELLETIER, PIERRE RANGER, and HASSAN FAHMI ABSTRACT. Objective. Elevated production of prostaglandin E2 (PGE2) plays an important role in the pathogen- esis of arthritis. Recently, an inducible microsomal prostaglandin E synthase-1 (mPGES-1) was identified. This enzyme is functionally coupled with cyclooxygenase-2 (COX-2) and converts the COX product PGH2 to PGE2. We analyzed expression of mPGES-1 in human normal and osteoarthritic (OA) cartilage and determined the effect of different inflammatory agonists on the expression of mPGES-1 in OA chondrocytes. Methods. Expression of mPGES-1 mRNA and protein in cartilage was determined by quantitative real-time reverse transcriptase-polymerase chain reaction and immunohistochemistry, respectively. OA chondrocytes were treated with different inflammatory agents, and mPGES-1 protein expression was evaluated by Western blot. Activation of the mPGES-1 promoter was assessed in transient trans- fection experiments. Results. Levels of mPGES-1 mRNA and protein were markedly elevated in OA versus normal car- tilage. Treatment of chondrocytes with interleukin 1ß (IL-1ß) induced expression of mPGES-1 pro- tein in a dose- and time-dependent manner. This appears to occur at the transcriptional level, as IL- 1ß induced expression of mPGES-1 mRNA and the activity of this gene promoter. Tumor necrosis factor-α (TNF-α) and IL-17 also upregulated expression of mPGES-1 protein and displayed a syn- ergistic effect with IL-1ß. Peroxisome proliferator-activated receptor-γ ligands, 15-deoxy-∆12,14- prostaglandin J2 and troglitazone, inhibited IL-1ß-induced mPGES-1 protein expression, an effect that was reversed by exogenous PGE2. -
1 AGING Supplementary Table 2
SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21. -
Anti-MRPS17 Monoclonal Antibody, Clone FQS23694 (DCABH-6110) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
Anti-MRPS17 monoclonal antibody, clone FQS23694 (DCABH-6110) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit monoclonal to MRPS17 Antigen Description Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S17P family. The encoded protein is moderately conserved between human mitochondrial and prokaryotic ribosomal proteins. Pseudogenes corresponding to this gene are found on chromosomes 1p, 3p, 6q, 14p, 18q, and Xq. Immunogen Recombinant fragment within Human MRPS17. The exact sequence is proprietary.Database link: Q9Y2R5 Isotype IgG Source/Host Rabbit Species Reactivity Human Clone FQS23694 Purity Tissue culture supernatant Conjugate Unconjugated Applications IHC-P, WB, ICC/IF, IP Positive Control HeLa, HepG2 and U937 cell lysate; Human kidney and liver tissue; HeLa cells Format Liquid Size 100 μl Buffer pH: 7.2; Preservative: 0.01% Sodium azide; Constituents: 49% PBS, 0.05% BSA, 50% Glycerol 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Preservative 0.01% Sodium Azide Storage Store at +4°C short term (1-2 weeks). -
Effect of Prostanoids on Human Platelet Function: an Overview
International Journal of Molecular Sciences Review Effect of Prostanoids on Human Platelet Function: An Overview Steffen Braune, Jan-Heiner Küpper and Friedrich Jung * Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany; steff[email protected] (S.B.); [email protected] (J.-H.K.) * Correspondence: [email protected] Received: 23 October 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors. Keywords: prostacyclin; thromboxane; prostaglandin; platelets 1. Introduction Hemostasis is a complex process that requires the interplay of multiple physiological pathways. Cellular and molecular mechanisms interact to stop bleedings of injured blood vessels or to seal denuded sub-endothelium with localized clot formation (Figure1). -
133A Cluster Enhances Cancer Cell Migration and Invasion in Lung-Squamous Cell Carcinoma Via Regulation of Coronin1c
Journal of Human Genetics (2015) 60, 53–61 & 2015 The Japan Society of Human Genetics All rights reserved 1434-5161/15 www.nature.com/jhg ORIGINAL ARTICLE Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C Hiroko Mataki1, Hideki Enokida2, Takeshi Chiyomaru2, Keiko Mizuno1, Ryosuke Matsushita2, Yusuke Goto3, Rika Nishikawa3, Ikkou Higashimoto1, Takuya Samukawa1, Masayuki Nakagawa2, Hiromasa Inoue1 and Naohiko Seki3 Lung cancer is clearly the primary cause of cancer-related deaths worldwide. Recent molecular-targeted strategy has contributed to improvement of the curative effect of adenocarcinoma of the lung. However, such current treatment has not been developed for squamous cell carcinoma (SCC) of the disease. The new genome-wide RNA analysis of lung-SCC may provide new avenues for research and the development of the disease. Our recent microRNA (miRNA) expression signatures of lung-SCC revealed that clustered miRNAs miR-1/133a were significantly reduced in cancer tissues. Here, we found that restoration of both mature miR-1 and miR-133a significantly inhibited cancer cell proliferation, migration and invasion. Coronin-1C (CORO1C) was a common target gene of the miR-1/133a cluster, as shown by the genome-wide gene expression analysis and the luciferase reporter assay. Silencing of CORO1C gene expression inhibited cancer cell proliferation, migration and invasion. Furthermore, CORO1C-regulated molecular pathways were categorized by using si-CORO1C transfectants. Further analysis of novel cancer signaling pathways modulated by the tumor-suppressive cluster miR-1/133a will provide insights into the molecular mechanisms of lung-SCC oncogenesis and metastasis. -
Prostaglandin Signaling Regulates Nephron Segment Patterning Of
RESEARCH ARTICLE Prostaglandin signaling regulates nephron segment patterning of renal progenitors during zebrafish kidney development Shahram Jevin Poureetezadi1,2, Christina N Cheng1,2, Joseph M Chambers1,2, Bridgette E Drummond1,2, Rebecca A Wingert1,2* 1Department of Biological Sciences, University of Notre Dame, Notre Dame, United States; 2Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, United States Abstract Kidney formation involves patterning events that induce renal progenitors to form nephrons with an intricate composition of multiple segments. Here, we performed a chemical genetic screen using zebrafish and discovered that prostaglandins, lipid mediators involved in many physiological functions, influenced pronephros segmentation. Modulating levels of prostaglandin E2 (PGE2) or PGB2 restricted distal segment formation and expanded a proximal segment lineage. Perturbation of prostaglandin synthesis by manipulating Cox1 or Cox2 activity altered distal segment formation and was rescued by exogenous PGE2. Disruption of the PGE2 receptors Ptger2a and Ptger4a similarly affected the distal segments. Further, changes in Cox activity or irx3b sim1a PGE2 levels affected expression of the transcription factors and that mitigate pronephros segment patterning. These findings show for the first time that PGE2 is a regulator of nephron formation in the zebrafish embryonic kidney, thus revealing that prostaglandin signaling may have implications for renal birth defects and other diseases. DOI: 10.7554/eLife.17551.001 *For correspondence: rwingert@ nd.edu Introduction Competing interests: The The kidney serves central functions in metabolic waste excretion, osmoregulation, and electrolyte authors declare that no homeostasis. Vertebrate kidney organogenesis is a dynamic process involving the generation of up competing interests exist. -
MPV17L2 Is Required for Ribosome Assembly in Mitochondria Ilaria Dalla Rosa1,†, Romina Durigon1,†, Sarah F
8500–8515 Nucleic Acids Research, 2014, Vol. 42, No. 13 Published online 19 June 2014 doi: 10.1093/nar/gku513 MPV17L2 is required for ribosome assembly in mitochondria Ilaria Dalla Rosa1,†, Romina Durigon1,†, Sarah F. Pearce2,†, Joanna Rorbach2, Elizabeth M.A. Hirst1, Sara Vidoni2, Aurelio Reyes2, Gloria Brea-Calvo2, Michal Minczuk2, Michael W. Woellhaf3, Johannes M. Herrmann3, Martijn A. Huynen4,IanJ.Holt1 and Antonella Spinazzola1,* 1MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK, 2MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK, 3Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany and 4Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Geert Grooteplein Zuid 26–28, 6525 GA Nijmegen, Netherlands Received January 15, 2014; Revised May 7, 2014; Accepted May 23, 2014 ABSTRACT INTRODUCTION MPV17 is a mitochondrial protein of unknown func- The mammalian mitochondrial proteome comprises 1500 tion, and mutations in MPV17 are associated with or more gene products. The deoxyribonucleic acid (DNA) mitochondrial deoxyribonucleic acid (DNA) mainte- inside mitochondria DNA (mtDNA) contributes only 13 ∼ nance disorders. Here we investigated its most sim- of these proteins, and they make up 20% of the subunits ilar relative, MPV17L2, which is also annotated as of the oxidative phosphorylation (OXPHOS) system, which produces much of the cells energy. All the other proteins a mitochondrial protein. Mitochondrial fractionation