Solar Orbiter Assessment Study and Model Payload
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AE Newsletter 2020
Colonel Shorty Powers Composite Squadron July 25, 2020 AEROSPACE Aircraft | Spacecraft | Biography | Squadron Gen. Ira C. Eaker A New Eagle Boeing to build new F-15EXs for USAF The Department of the Air Force and Boeing recently signed a deal worth 1.2 billion dollars for the first lot of eight F-15EX jets that will be delivered to Eglin Air Force Base, Florida. The aircraft will replace the oldest F-15Cs and F-15Ds in the U.S. Air Force fleet. The first two already built F-15EX aircraft will be delivered during the second quarter of 2021, while the remaining aircraft will be delivered in 2023. The Air Force plans to buy 76 F-15EX aircraft. The new F-15EX was developed to meet needs identified by the National Defense Strategy review which directed the U.S. armed services to adapt to the new threats from China and Russia. The most burdensome requirement is the need for the Air Force to add 74 new squadrons to the existing 312 squadrons by 2030. The General Ira C. Eaker was one of the forefathers of an independent Air Force. With General (then major) Spaatz, in 1929 Eaker remained aloft aboard The Question Mark, a modified Atlantic-Fokker C-2A, for nearly a week, to demonstrate a newfound capability of aerial refueling. During WWII, Eaker rose to the grade of lieutenant general and commanded the Eighth Air Force, "The Mighty Eighth" force of strategic The first F-15EX being assembled at Boeing facilities. (Photo: Boeing) Aerospace Newsletter 1 Colonel Shorty Powers Composite Squadron July 25, 2020 Eaker (continued) Air Force also seeks to lower the average aircraft age of 28 years down to 15 years without losing any capacity. -
Ulysses Awardees
Ulysses Awardees Irish Higher Project Leader - Project Leader - French Higher Funding Education Disciplinary Area Project Title Ireland France Education Institution Institution Comparing Laws with Help from Humanities including Peter Arnds IRC / Embassy TCD Renaud Colson ENSCM, Montpellier the Humanities: Translation Theory languages, Law to the Rescue of Legal Studies Novel biomarkers of interplay between neuroglobin and George Barreto HRB / Embassy UL Karim Belarbi Université de Nantes Life Sciences neuroinflammation in Parkinson’s disease Geometric Constructions of Codes Eimear Byrne IRC / Embassy UCD Martino Borello University of Lille Mathematics for Secret Sharing Schemes BOUHÉREAU: EXILE, TOLERATION Didier Poton de Humanities including Derval Conroy IRC / Embassy UCD University Paris 8 - LAGA AND CARE IN THE EARLY MODERN Xaintrailles languages PERIOD Knotting peptides for DNA Fabian Cougnon IRC / Embassy NUIG Sebastian Ulrich La Rochelle University Chemistry recognition and gene delivery Automating Segmentation and Computer Science & Kathleen Curran HRB / Embassy UCD David Bendahan Muscle Architecture Analysis from Telecommunications Aix Marseille University Diffusion Tensor Imaging The Impact of Student Exchanges Social science and Ronald Davies IRC / Embassy UCD Farid Toubal on International Trade: The Role of University of Paris- economics Cultural Similarity Dauphine -- PSL Computer Science & Three dimensional audio and Gordon Delap IRC / Embassy MU Thibaud Keller Telecommunications musical experimentation CNRS – LaBRI Multi-scale, -
Let's Go to a Comet!
Mission Rosetta Let’s go to a comet! Elsa Montagnon European Space Agency 1 What is left to explore today? 15th century Credits: ESA/AOES Medialab 21st century 2 Back to the origins… 3 What has happened since the big bang? Big bang 13 billion years ago ejects hydrogen and helium From elements to dust From water to heavy elements From dust to gas From solar cloud to the solar system: planets, asteroids, comets 4 How do we see the solar system today? Galactic Tides Nearby Stars Large Clouds LPidCtLong Period Comets Short Period Comets Galactic Tides Inner Outer Oort Oort Pluto Cloud Cloud ? Stable Stable Kuiper Belt 10 Gy 1 Gy ? 10 50 100 Alpha I, e 1000 Centauri 10^4 Ejected AU 10^5 3.10^5 5 Where are we going? Comet 67P / Churyumow-Gerasimenko 3-D reconstruction of nucleus based on 12 March, 2003 Hubble Space Telescope observations Nucleus diameter: 4km Discovered in 1969 Orbital period: 6.6 years Pole End Side Nasa, Esa and Philippe Lamy (Laboratoire d’Astrobomie Spatiale) - STScl-PRC03-26 6 A picture of the comet… Credits: ESA and European Southern Observatory 7 The Mission Rendezvous with the comet shortly after aphelion Follow the comet up to perihelion and beyond Deploy a lander on the comet surface QuickTime™ and a YUV420 codec decompressor are needed to see this picture. 8 The Journey Launch: March 2004 Launcher: Ariane 5 Rendezvous with comet: August 2014 Distance: 6.5 billions km Cruise duration: 10 years Mission duration: 2 years 9 The Cruise The comet is very far away. -
List of Missions Using SPICE (PDF)
1/7/20 Data Restorations Selected Past Users Current/Pending Users Examples of Possible Future Users Apollo 15, 16 [L] Magellan [L] Cassini Orbiter NASA Discovery Program Mariner 2 [L] Clementine (NRL) Mars Odyssey NASA New Frontiers Program Mariner 9 [L] Mars 96 (RSA) Mars Exploration Rover Lunar IceCube (Moorehead State) Mariner 10 [L] Mars Pathfinder Mars Reconnaissance Orbiter LunaH-Map (Arizona State) Viking Orbiters [L] NEAR Mars Science Laboratory Luna-Glob (RSA) Viking Landers [L] Deep Space 1 Juno Aditya-L1 (ISRO) Pioneer 10/11/12 [L] Galileo MAVEN Examples of Users not Requesting NAIF Help Haley armada [L] Genesis SMAP (Earth Science) GOLD (LASP, UCF) (Earth Science) [L] Phobos 2 [L] (RSA) Deep Impact OSIRIS REx Hera (ESA) Ulysses [L] Huygens Probe (ESA) [L] InSight ExoMars RSP (ESA, RSA) Voyagers [L] Stardust/NExT Mars 2020 Emmirates Mars Mission (UAE via LASP) Lunar Orbiter [L] Mars Global Surveyor Europa Clipper Hayabusa-2 (JAXA) Helios 1,2 [L] Phoenix NISAR (NASA and ISRO) Proba-3 (ESA) EPOXI Psyche Parker Solar Probe GRAIL Lucy EUMETSAT GEO satellites [L] DAWN Lunar Reconnaissance Orbiter MOM (ISRO) Messenger Mars Express (ESA) Chandrayan-2 (ISRO) Phobos Sample Return (RSA) ExoMars 2016 (ESA, RSA) Solar Orbiter (ESA) Venus Express (ESA) Akatsuki (JAXA) STEREO [L] Rosetta (ESA) Korean Pathfinder Lunar Orbiter (KARI) Spitzer Space Telescope [L] [L] = limited use Chandrayaan-1 (ISRO) New Horizons Kepler [L] [S] = special services Hayabusa (JAXA) JUICE (ESA) Hubble Space Telescope [S][L] Kaguya (JAXA) Bepicolombo (ESA, JAXA) James Webb Space Telescope [S][L] LADEE Altius (Belgian earth science satellite) ISO [S] (ESA) Armadillo (CubeSat, by UT at Austin) Last updated: 1/7/20 Smart-1 (ESA) Deep Space Network Spectrum-RG (RSA) NAIF has or had project-supplied funding to support mission operations, consultation for flight team members, and SPICE data archive preparation. -
A Free Spacecraft Simulation Tool
Orbiter: AFreeSpacecraftSimulationTool MartinSchweiger DepartmentofComputerScience UniversityCollegeLondon www.orbitersim.com 2nd ESAWorkshoponAstrodynamics ToolsandTechniques ESTEC,Noordwijk 13-15September2004 Contents • Overview • Scope • Limitations • SomeOrbiterfeatures: • Timepropagation • Gravitycalculation • Rigid-bodymodelandsuperstructures • OrbiterApplicationProgrammingInterface: • Concept • Orbiterinstrumentation • TheVESSELinterfaceclass • Newfeatures: • Air-breatingengines:scramjetdesign • Virtualcockpits • Newvisualeffects • Orbiterasateachingtool • Summaryandfutureplans • Demonstration Overview · Orbiterisareal-timespaceflightsimulationforWindowsPC platforms. · Modellingofatmosphericflight(launchandreentry), suborbital,orbitalandinterplanetarymissions(rendezvous, docking,transfer,swing-byetc.) · Newtonianmechanics,rigidbodymodelofrotation,basic atmosphericflightmodel. · Planetpositionsfrompublicperturbationsolutions.Time integrationofstatevectorsorosculatingelements. · Developedsince2000asaneducationalandrecreational applicationfororbitalmechanicssimulation. · WritteninC++,usingDirectXfor3-Drendering.Public programminginterfacefordevelopmentofexternalmodule plugins. · WithanincreasinglyversatileAPI,developmentfocusis beginningtoshiftfromtheOrbitercoreto3rd partyaddons. Scope · Launchsequencefromsurfacetoorbitalinsertion(including atmosphericeffects:drag,pressure-dependentengineISP...) · Orbitalmanoeuvres(alignmentoforbitalplane,orbit-to-orbit transfers,rendezvous) · Vessel-to-vesselapproachanddocking.Buildingof superstructuresfromvesselmodules(includingsimplerules -
ESA & ESOC Overview
NASA PM Challenge 2010 Developing the International Program/Project Management Community 9/10 February 2010 Dr. Bettina Böhm Program & Project Manager Career at ESA | Bettina Böhm | ESA/HQ | 23/11/09 | Page 1 Used with Permission PURPOSE OF ESA / ACTIVITIES “To provide for and promote, for exclusively Space science peaceful purposes, cooperation among Human spaceflight European states in space research and Exploration technology and their space applications.” Earth observation Launchers [Article 2 of ESA Convention] Navigation ESA is one of the few space agencies Telecommunications in the world to combine responsibility Technology in all areas of space activity. Operations Program & Project Manager Career at ESA | Bettina Böhm | ESA/HQ | 23/11/09 | Page 2 ESA FACTS AND FIGURES Over 30 years of experience 18 Member States 2080 staff, thereof 880 in Program Directorates, 790 in Operations and Technical Support and 410 in other Support Directorates 3 500 million Euros budget Over 60 satellites designed and tested Over 60 satellites operated in-flight and 8 missions rescued 16 scientific satellites in operation Five types of launcher developed More than 180 launches made Program & Project Manager Career at ESA | Bettina Böhm | ESA/HQ | 23/11/09 | Page 3 ESA Locations EAC (Cologne) Salmijaervi ESTEC Astronaut training (Noordwijk) Satellite technology development and testing Harwell ESOC ESA HQ (Darmstadt) (Paris) Brussels Satellite operations and ground system technology development ESAC (Villanueva de la Cañada Oberpfaffenhofen -
Building and Maintaining the International Space Station (ISS)
/ Building and maintaining the International Space Station (ISS) is a very complex task. An international fleet of space vehicles launches ISS components; rotates crews; provides logistical support; and replenishes propellant, items for science experi- ments, and other necessary supplies and equipment. The Space Shuttle must be used to deliver most ISS modules and major components. All of these important deliveries sustain a constant supply line that is crucial to the development and maintenance of the International Space Station. The fleet is also responsible for returning experiment results to Earth and for removing trash and waste from the ISS. Currently, transport vehicles are launched from two sites on transportation logistics Earth. In the future, the number of launch sites will increase to four or more. Future plans also include new commercial trans- ports that will take over the role of U.S. ISS logistical support. INTERNATIONAL SPACE STATION GUIDE TRANSPORTATION/LOGISTICS 39 LAUNCH VEHICLES Soyuz Proton H-II Ariane Shuttle Roscosmos JAXA ESA NASA Russia Japan Europe United States Russia Japan EuRopE u.s. soyuz sL-4 proton sL-12 H-ii ariane 5 space shuttle First launch 1957 1965 1996 1996 1981 1963 (Soyuz variant) Launch site(s) Baikonur Baikonur Tanegashima Guiana Kennedy Space Center Cosmodrome Cosmodrome Space Center Space Center Launch performance 7,150 kg 20,000 kg 16,500 kg 18,000 kg 18,600 kg payload capacity (15,750 lb) (44,000 lb) (36,400 lb) (39,700 lb) (41,000 lb) 105,000 kg (230,000 lb), orbiter only Return performance -
Orbiter Processing Facility
National Aeronautics and Space Administration Space Shuttle: Orbiter Processing From Landing To Launch he work of preparing a space shuttle for the same facilities. Inside is a description of an flight takes place primarily at the Launch orbiter processing flow; in this case, Discovery. Complex 39 Area. TThe process actually begins at the end of each acts Shuttle Landing Facility flight, with a landing at the center or, after landing At the end of its mission, the Space Shuttle f at an alternate site, the return of the orbiter atop a Discovery lands at the Shuttle Landing Facility on shuttle carrier aircraft. Kennedy’s Shuttle Landing one of two runway headings – Runway 15 extends Facility is the primary landing site. from the northwest to the southeast, and Runway There are now three orbiters in the shuttle 33 extends from the southeast to the northwest fleet: Discovery, Atlantis and Endeavour. Chal- – based on wind currents. lenger was destroyed in an accident in January After touchdown and wheelstop, the orbiter 1986. Columbia was lost during approach to land- convoy is deployed to the runway. The convoy ing in February 2003. consists of about 25 specially designed vehicles or Each orbiter is processed independently using units and a team of about 150 trained personnel, NASA some of whom assist the crew in disembarking from the orbiter. the orbiter and a “white room” is mated to the orbiter hatch. The The others quickly begin the processes necessary to “safe” the hatch is opened and a physician performs a brief preliminary orbiter and prepare it for towing to the Orbiter Processing Fa- medical examination of the crew members before they leave the cility. -
(IES) Measurement of the Development of Pickup Ions from Comet 67P/Churyumov-Gerasimenko
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER The Rosetta Ion and Electron Sensor (IES) measurement 10.1002/2015GL063939 of the development of pickup ions from comet Key Point: 67P/Churyumov-Gerasimenko • IES observed low-energy ions in August 2014, at an 80 km distance R. Goldstein1, J. L. Burch1, P. Mokashi1, T. Broiles1, K. Mandt1, J. Hanley1, T. Cravens2, A. Rahmati2, from the comet M. Samara3, G. Clark3, M. Hässig1,4, and J. M. Webster1 1Southwest Research Institute, San Antonio, Texas, USA, 2Physics and Astronomy, University of Kansas, Lawrence, Kansas, USA, 3 4 Correspondence to: NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, Physikalisches Institut, University of Bern, Bern, Switzerland R. Goldstein, [email protected] Abstract The Rosetta Ion and Electron Sensor (IES) has been measuring solar wind ions intermittently since exiting from hibernation in May 2014. On 19 August, when Rosetta was ~80 km from the comet Citation: Goldstein, R., et al. (2015), The Rosetta Ion 67P/Churyumov-Gerasimenko, which was ~3.5 AU from the Sun, IES began to see ions at its lowest energy and Electron Sensor (IES) measurement range, ~4–10 eV. We identify these as ions created from neutral species emitted by the comet nucleus, of the development of pickup ions from photoionized by solar UV radiation in the neighborhood of the Rosetta spacecraft (S/C), and attracted by the comet 67P/Churyumov-Gerasimenko, Geophys. Res. Lett., 42,3093–3099, small negative potential of the S/C resulting from the population of thermal electrons. Later, IES began to doi:10.1002/2015GL063939. see higher-energy ions that we identify as having been picked up and accelerated by the solar wind. -
Exploring the Solar Poles and the Heliosphere from High Helio-Latitude
A white paper submitted to ESA for the Voyage 2050 long- term plan ? A journey to the polar regions of a star: Exploring the solar poles and the heliosphere from high helio-latitude Louise Harra ([email protected]) and the solar polar team PMOC/WRC, Dorfstrasse 33, CH-7260 Davos Dorf & ETH-Zürich, Switzerland [Image: Polar regions of major Solar System bodies. Top left, clockwise - Near-surface zonal flows around the solar north pole Bogart et al. (2015); Earth’s changing magnetic field from ESA’s Swarm constellation; Southern polar cap of Mars from ESA’s ExoMars; Jupiter’s poles from the NASA Juno mission; Saturn’s poles from the NASA Cassini mission.] Overview We aim to embark on one of humankind’s great journeys – to travel over the poles of our star, with a spacecraft unprecedented in its technology and instrumentation – to explore the polar regions of the Sun and their effect on the inner heliosphere in which we live. The polar vantage point provides a unique opportunity for major scientific advances in the field of heliophysics, and thus also provides the scientific underpinning for space weather applications. It has long been a scientific goal to study the poles of the Sun, illustrated by the NASA/ESA International Solar Polar Mission that was proposed over four decades ago, which led to the flight of ESA’s Ulysses spacecraft (1990 to 2009). Indeed, with regard to the Earth, we took the first tentative steps to explore the Earth’s polar regions only in the 1800s. Today, with the aid of space missions, key measurements relating to the nature and evolution of Earth’s polar regions are being made, providing vital input to climate-change models. -
Alejandro Cardesín Moinelo ESA Science Operations Center Mars Express & Exomars 2016 (Slides Courtesy of Christian Erd & Peter Falkner, ESA-ESTEC)
Alejandro Cardesín Moinelo ESA Science Operations Center Mars Express & ExoMars 2016 (slides courtesy of Christian Erd & Peter Falkner, ESA-ESTEC) ESAC, 7th February 2017 Mission Flow Diagram Slide 2 Space Mission Timeline: Phases Slide 3 Science Mission Design Process Slide 4 Science Objectives – Requirements - Solutions Science Objective is the high level motivation • Which scientific question/application purpose shall the WHY? project address and what answer is sought Requirement is the translation of this objective into verifiable statements of what is needed to achieve the objective With detailed quantities (unambiguous) • WHAT? • Several levels of detail • Traceable, all the way back to the top level • Careful with conflicting requirements Solution is the response to the all requirements • There can be several solutions meeting requirements HOW? • Non-compliance needs to be negotiated Slide 5 Conflicting Requirements Farm “Optimal” Animal : Eierlegende Wollmilchsau (famous Austrian animal) Slide 6 Trade-off Trade-off allows exploring alternative solutions to a baseline Most common criteria: mass, cost budget; several System Performance system properties can be translated into them Power consumption generation of more power solar array size mass Higher telemetry volume larger HGA, more power for TM&C mass High performance complex solutions Cost more effort for verification Mass longer integration time cost Slide 7 Mission Segments, Systems & Subsystems Slide 8 Mission Analysis Launch Transfer trajectory Insertion into -
Advance Level Module 2
Ministry of Education - Guyana In collaboration with the OAS and ProFuturo FOUNDATION 2020. CARICOM. ICT Route: Advanced Level MODULE 2 – DESIGNING NETWORKED INFORMATION EXPERIENCES Training Manual for Teachers of Riverine and Hinterland Regions MINISTRY OF EDUCATION ELIMINATING LITERACY, MODERNIZING EDUCATION, STRENGTHENING TOLERANCE Message form the Minister of Education Dear Teachers Across the world, the COVID 19 pandemic (Corona Virus) continues to cause undesirable disruption to the global education systems. Guyana, as you know, was not spared. As such, we implore you to keep engaging our nation’s learners and we applaud those of you who have tried and continue to try. We heard your concerns when you told us you were uncertain about how to teach using different means, that you lacked confidence, and that you felt you were not equipped. This is our first response in partnership with the OAS and ProFuturo Foundation. This training will give you the much- needed knowledge and expose you to the tools you need to deliver education differently by being innovative and by using easily available technology. We are aware that the cost of data is of great concern to you and we have remedied that by partnering with GTT and Digicel to zero rate the ProFuturo platform domain. This means that when anyone accesses the training platform, data will not be consumed. If teachers have neither devices nor connectivity, we will arrange a suitable location and if teachers, as those in the hinterland and riverine areas, cannot access either, even with our help, we have arranged for part of the program to be done through these printed modules because we know that it is only a matter of time before you are able to access connectivity and devices.