Versatile Mixotrophs Employ CO2 Fixation As Fill-Up Function

Total Page:16

File Type:pdf, Size:1020Kb

Versatile Mixotrophs Employ CO2 Fixation As Fill-Up Function bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428071; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Versatile mixotrophs employ CO2 fixation as 2 fill-up function to dominate in modern 3 groundwater 4 Martin Taubert1,+, Will A. Overholt1, Beatrix M. Heinze1, Georgette Azemtsop Matanfack2,5, Rola 5 Houhou2,5, Nico Jehmlich3, Martin von Bergen3,4, Petra Rösch2, Jürgen Popp2,5, Kirsten Küsel1,6 6 1Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 7 159, 07743 Jena, Germany 8 2Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 9 Helmholtzweg 4, 07743 Jena, Germany 10 3Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, 11 Permoserstrasse 15, 04318 Leipzig, Germany 12 4Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 13 Brüderstraße 32, 04103 Leipzig, Germany 14 5Leibniz-Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany 15 6German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 16 04103 Leipzig, Germany 17 +Corresponding author: Martin Taubert; Tel.: +49 3641 949459; Fax: +49 3641 949402; E-mail: 18 [email protected] 13 19 Keywords: Chemolithoautotrophy, groundwater, CO2 stable isotope probing, genome-resolved 20 metaproteomics, metagenomics, Raman microspectroscopy 21 Short title: Chemolithoautotrophy in shallow groundwater 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428071; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 Abstract 23 The processes for organic carbon inputs in ecosystems without photosynthetic primary production 24 are poorly constrained, by data almost entirely derived from metagenomics studies. In modern 25 groundwater, such studies reported a high abundance of putative chemolithoautotrophs. Here we 26 quantitatively and temporally tracked the flux of CO2-derived carbon in a groundwater microbial 13 27 community stimulated with reduced sulfur compounds, by combining CO2-stable isotope probing, 28 multi-omics and Raman microspectroscopy. We demonstrate that metabolically flexible mixotrophs 29 drove the recycling of organic carbon and supplemented their carbon requirements by 30 chemolithoautotrophy alongside the preferential uptake of available organic compounds. These 31 mixotrophs, including Hydrogenophaga, Polaromonas and Dechloromonas, dominated the microbial 32 community, being five times more abundant than strict autotrophs based on metagenomics 33 coverage. Due to their activity, 43% of total microbial carbon was replaced by 13C within 21 days, 34 increasing to 80% after 70 days. Sixteen of 31 taxa investigated, including both autotrophs and 35 heterotrophs, were supported by sulfur oxidation pathways, highlighting its importance as an energy 36 source in an environment with little available organic carbon. The versatile strategy employed by 37 these organisms might also be successful in other oligotrophic habitats, like the upper ocean or 38 boreal lakes, explaining the high abundance of mixotrophs found there. 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428071; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 39 From soils to deep-sea sediments, the majority of cells on Earth have to survive in environments 40 without photosynthetic primary production [1]. To understand the global carbon cycle, it is critical to 41 know to what extent these cells depend on allochthonous carbon for a heterotrophic lifestyle, or on 42 chemolithoautotrophy. The determination of CO2 fixation rates and turnover is challenging in these 43 habitats, but metagenomics studies recovered thousands of metagenome-assembled genomes 44 (MAGs) from the organisms present to shed light on their metabolic capabilities [2-5]. 45 Modern groundwater, having entered the subsurface less than 50 years ago [6], represents a 46 transitionary ecosystem, connecting surface habitats dominated by photosynthetic carbon with the 47 deep subsurface that lacks this energy source [7-9]. There, metagenomics studies have unveiled the 48 presence of a variety of organisms with the metabolic potential for CO2 fixation and for the utilization 49 of inorganic electron donors [4, 10-13]. Such organisms with the ability to grow 50 chemolithoautotrophically constitute between 12 and 47% of the microbial communities in 51 groundwater [14-17]. These discoveries shake the paradigm that modern groundwater is primarily 52 fueled by surface input of organic material and dominated by heterotrophs. We thus hypothesize 53 that modern groundwater ecosystems are dominated by chemolithoautotrophic primary production. 54 For validating this hypothesis, we established Stable Isotope Cluster Analysis (SIsCA) to provide a 55 time-resolved and quantitative assessment of the flow of CO2-derived carbon through the 56 groundwater microbial food web. By combining stable isotope probing (SIP) [18, 19] with genome- 57 resolved metaproteomics, we leveraged the high sensitivity of Orbitrap mass spectrometry in SIP- 58 metaproteomics to acquire highly accurate quantitative data on 13C incorporation [20, 21]. The novel 59 SIsCA method then employs a dimensionality reduction approach to integrate the molecule-specific 60 temporal dynamics in the acquired isotopologue patterns from this 13C-SIP time-series experiment, to 61 discern trophic fluxes between individual members of a microbial community. 62 We employed this approach to unravel the role of chemolithoautotrophy for the groundwater 13 63 microbiome by amending groundwater microcosms with CO2. In modern groundwater, different 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428071; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 64 inorganic electron donors like reduced nitrogen, iron and sulfur can fuel the chemolithoautotrophic 65 primary production, while hydrogen is rather of relevance in the deeper subsurface [9, 22-24]. 66 Reduced sulfur compounds released from aquifer rocks by weathering create an energy source 67 independent of surface inputs [25-27]. Organisms with the genetic potential to oxidize reduced sulfur 68 compounds are widespread in groundwater, but little is known about their lifestyle [12, 13, 28]. 69 Hence, we stimulated sulfur oxidizers in groundwater microcosms by the addition of thiosulfate, 70 which is commonly found in the environment [29]. Under these conditions favoring lithotrophic 71 growth, we expected chemolithoautotrophy to be the main source of organic carbon, and a 72 unidirectional carbon flux from autotrophs to heterotrophs in the groundwater microbiome. By 73 mapping the quantitative information derived from SIsCA to MAGs, we were able to characterize 74 carbon utilization and trophic interactions of the active autotrophic and heterotrophic key players in 75 the groundwater microbiome over a period of 70 days. This accurate resolution of the carbon fluxes 76 through a microbial community and the determination of taxon-specific microbial activities have the 77 power to provide novel insights into the metabolic strategies and trophic interactions of microbes. 78 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428071; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 79 Materials and Methods 80 Groundwater sampling & setup of groundwater microcosms 81 Groundwater was obtained in June 2018 from the Hainich Critical Zone Exploratory (CZE) well H41 82 (51.1150842N, 10.4479713E), accessing an aquifer assemblage in 48 m depth in a trochite limestone 83 stratum. Groundwater from this well is oxic with average dissolved oxygen concentrations of 5.0 ± 84 1.5 mg L-1, pH 7.2, < 0.1 mg L-1 ammonium, 1.9 ± 1.5 mg L-1 dissolved organic carbon, and 70.8 ± 12.7 85 mg L-1 total inorganic carbon [27, 30]. The recharge area of this aquifer assemblage is located in a 86 beech forest (Fagus sylvatica). In total, 120 L of groundwater was sampled using a submersible pump 87 (Grundfos MP1, Grundfos, Bjerringbro, Denmark). To collect biomass from the groundwater, 5 L each 88 were filtered through twenty 0.2-µm Supor filters (Pall Corporation, Port Washington, NY, USA). To 89 replace the natural background of inorganic carbon in the groundwater by defined concentrations of 90 12C or 13C, two times 3 L of filtered groundwater were acidified to pH 4 in 5-L-bottles to remove the 91 bicarbonate
Recommended publications
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • (Antarctica) Glacial, Basal, and Accretion Ice
    CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa.
    [Show full text]
  • When Bioelectrochemical Systems Meet Extremophiles, Possibilities and Challenges
    Gaofeng Ni Gaofeng Linnaeus University Dissertations [framsida] No 325/2018 Linnaeus University Dissertations No 325/2018 When bioelectrochemical systems meet extremophiles, possibilities bioelectrochemical meet systems challenges and extremophiles, When Gaofeng Ni [Huvudtitel] Linnaeus University Press When bioelectrochemical systems [rygg] meet extremophiles, possibilities and challenges [baksida] Lnu.se Lnu.se ISBN: 978-91-88761-82-8 (print) 978-91-88761-83-5 (pdf) linnaeus university press When bioelectrochemical systems meet extremophiles, possibilities and challenges Linnaeus University Dissertations No 325/2018 WHEN BIOELECTROCHEMICAL SYSTEMS MEET EXTREMOPHILES, POSSIBILITIES AND CHALLENGES GAOFENG NI LINNAEUS UNIVERSITY PRESS Linnaeus University Dissertations No 325/2018 WHEN BIOELECTROCHEMICAL SYSTEMS MEET EXTREMOPHILES, POSSIBILITIES AND CHALLENGES GAOFENG NI LINNAEUS UNIVERSITY PRESS Abstract Ni, Gaofeng (2018). When bioelectrochemical systems meet extremophiles, possibilities and challenges, Linnaeus University Dissertations No 325/2018, ISBN: 978-91-88761-82-8 (print), 978-91-88761-83-5 (pdf). Written in English. Extremophiles are microorganisms live and thrive in extreme environments that are harsh and hostile to most forms of life on earth (e.g. low pH, low temperature, high pH and high salinity). They have developed strategies to obtain nutrients and conserve energy to sustain life under these adverse conditions. Such metabolic capabilities are valuable to be exploit for industrial applications such as the remediation
    [Show full text]
  • A Report of 39 Unrecorded Bacterial Species in Korea Belonging to the Classes Betaproteobacteria and Gammaproteobacteria Isolated in 2018
    Journal346 of Species Research 9(4):346-361, 2020JOURNAL OF SPECIES RESEARCH Vol. 9, No. 4 A report of 39 unrecorded bacterial species in Korea belonging to the classes Betaproteobacteria and Gammaproteobacteria isolated in 2018 Yong-Seok Kim1, Hana Yi2, Myung Kyum Kim3, Chi-Nam Seong4, Wonyong Kim5, Che Ok Jeon6, Seung-Bum Kim7, Wan-Taek Im8, Kiseong Joh9 and Chang-Jun Cha1,* 1Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea 2Department of Public Health Sciencs & Guro Hospital, Korea University, Seoul 02841, Republic of Korea 3Department of Bio and Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 01797, Republic of Korea 4Department of Biology, Sunchon National University, Suncheon 57922, Republic of Korea 5Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea 6Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea 7Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea 8Department of Biotechnology, Hankyoung National University, Anseong 17579, Rpublic of Korea 9Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea *Correspondent: [email protected] In the project of a comprehensive investigation of indigenous prokaryotic species in Korea, a total of 39 bacterial strains phylogenetically belonging to the classes Betaproteobacteria and Gammaproteobacteria were isolated from various environmental sources such as soil, cultivated soil, sludge, seawater, marine sediment, algae, human, tree, moss, tidal flat, beach sand and lagoon. Phylogenetic analysis based on 16S rRNA gene sequences revealed that 39 strains showed the high sequence similarities (≥98.7%) to the closest type strains and formed robust phylogenetic clades with closely related species in the classes Betaproteobacteria and Gammaproteobacteria.
    [Show full text]
  • Sulfur-Fueled Chemolithoautotrophs Replenish Organic Carbon Inventory
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428071; this version posted January 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Sulfur-fueled chemolithoautotrophs 2 replenish organic carbon inventory in 3 groundwater 4 Martin Taubert1,+, Beatrix M. Heinze1, Will A. Overholt1, Georgette Azemtsop2, Rola Houhou2, Nico 5 Jehmlich3, Martin von Bergen3,4, Petra Rösch2, Jürgen Popp2,5, Kirsten Küsel1,6 6 1Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 7 159, 07743 Jena, Germany 8 2Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 9 Helmholtzweg 4, 07743 Jena, Germany 10 3Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, 11 Permoserstrasse 15, 04318 Leipzig, Germany 12 4Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 13 Brüderstraße 32, 04103 Leipzig, Germany 14 5Leibniz-Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany 15 6German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 16 04103 Leipzig, Germany 17 +Corresponding author: Martin Taubert; Tel.: +49 3641 949459; Fax: +49 3641 949402; E-mail: 18 [email protected] 13 19 Keywords: Chemolithoautotrophy, groundwater, CO2 stable isotope probing, genome-resolved 20 metaproteomics, metagenomics, Raman microspectroscopy 21 Short title: Chemolithoautotrophy in shallow groundwater 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428071; this version posted January 26, 2021.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • Microbial Degradation of Organic Micropollutants in Hyporheic Zone Sediments
    Microbial degradation of organic micropollutants in hyporheic zone sediments Dissertation To obtain the Academic Degree Doctor rerum naturalium (Dr. rer. nat.) Submitted to the Faculty of Biology, Chemistry, and Geosciences of the University of Bayreuth by Cyrus Rutere Bayreuth, May 2020 This doctoral thesis was prepared at the Department of Ecological Microbiology – University of Bayreuth and AG Horn – Institute of Microbiology, Leibniz University Hannover, from August 2015 until April 2020, and was supervised by Prof. Dr. Marcus. A. Horn. This is a full reprint of the dissertation submitted to obtain the academic degree of Doctor of Natural Sciences (Dr. rer. nat.) and approved by the Faculty of Biology, Chemistry, and Geosciences of the University of Bayreuth. Date of submission: 11. May 2020 Date of defense: 23. July 2020 Acting dean: Prof. Dr. Matthias Breuning Doctoral committee: Prof. Dr. Marcus. A. Horn (reviewer) Prof. Harold L. Drake, PhD (reviewer) Prof. Dr. Gerhard Rambold (chairman) Prof. Dr. Stefan Peiffer In the battle between the stream and the rock, the stream always wins, not through strength but by perseverance. Harriett Jackson Brown Jr. CONTENTS CONTENTS CONTENTS ............................................................................................................................ i FIGURES.............................................................................................................................. vi TABLES ..............................................................................................................................
    [Show full text]
  • Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School August 2020 Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site Madison Mikes Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Civil and Environmental Engineering Commons, and the Microbiology Commons Recommended Citation Mikes, Madison, "Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site" (2020). LSU Master's Theses. 5206. https://digitalcommons.lsu.edu/gradschool_theses/5206 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. ISOLATION AND CHARACTERIZATION OF BACTERIA IN A TOLUENE- PRODUCING ENRICHMENT CULTURE DERIVED FROM CONTAMINATED GROUNDWATER AT A LOUISIANA SUPERFUND SITE A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agriculture and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Civil and Environmental Engineering by Madison Colleen Mikes B.S., Louisiana State University, 2018 December 2020 1 ACKNOWLEDGEMENTS I would like to take the time to thank all of those who have supported and assisted me during my graduate program. First and foremost, I would like to thank Dr. Bill Moe for all of the time he has spent teaching me and mentoring me through my thesis work.
    [Show full text]
  • Investigation of Biofilms Formed on Steelmaking Slags in Marine
    International Journal of Molecular Sciences Article Investigation of Biofilms Formed on Steelmaking Slags in Marine Environments for Water Depuration Akiko Ogawa 1,* , Reiji Tanaka 2, Nobumitsu Hirai 1, Tatsuki Ochiai 1, Ruu Ohashi 1, Karin Fujimoto 1, Yuka Akatsuka 1 and Masanori Suzuki 3 1 National Institute of Technology (KOSEN), Suzuka College, Shiroko-cho, Suzuka, Mie 510-0294, Japan; [email protected] (N.H.); [email protected] (T.O.); [email protected] (R.O.); [email protected] (K.F.); [email protected] (Y.A.) 2 Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; [email protected] 3 Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-(0)59-368-1768 Received: 21 July 2020; Accepted: 18 September 2020; Published: 22 September 2020 Abstract: Steelmaking slags are a promising resource as artificial seaweed beds for the reconstitution of marine environments. To grow seaweed well, the formation of biofilms is an essential process in biofouling. This study focused on the formation of initial biofilms on steelmaking slag samples and analyzed the resulting bacterial communities using the next-generation sequencing technique. Three types of steelmaking slag were submerged in an area of Ise Bay in Mie Prefecture, Japan, for 3 and 7 days in the summer and winter seasons to allow the formation of biofilms. The bacterial communities of these biofilms were richer in sulfur-oxidizing bacteria compared to the biofilms formed on polyurethane sponges.
    [Show full text]
  • Coastal New England Septic System Drainfields: Groundwater Table and Greenhouse Gas Cycling Dynamics
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2020 COASTAL NEW ENGLAND SEPTIC SYSTEM DRAINFIELDS: GROUNDWATER TABLE AND GREENHOUSE GAS CYCLING DYNAMICS Alissa H. Cox University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Cox, Alissa H., "COASTAL NEW ENGLAND SEPTIC SYSTEM DRAINFIELDS: GROUNDWATER TABLE AND GREENHOUSE GAS CYCLING DYNAMICS" (2020). Open Access Dissertations. Paper 1163. https://digitalcommons.uri.edu/oa_diss/1163 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. COASTAL NEW ENGLAND SEPTIC SYSTEM DRAINFIELDS: GROUNDWATER TABLE AND GREENHOUSE GAS CYCLING DYNAMICS BY ALISSA HELEN COX A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL AND ENVIRONMENTAL SCIENCES UNIVERSITY OF RHODE ISLAND 2020 DOCTOR OF PHILOSOPHY DISSERTATION OF ALISSA COX APPROVED: Dissertation Committee: Major Professor: José A. Amador Arthur J. Gold Bethany D. Jenkins Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2020 Abstract Septic systems, or onsite wastewater treatment systems (OWTS), are a common means of treating wastewater across the world in areas where centralized wastewater treatment is not a feasible option. In the US, one in five households are served by septic systems, with a quarter to over half of New England households relying on this technology to treat wastewater. A well- functioning septic system protects public health by reducing pathogen loading to ground and surface waters, and attenuating nutrients and pollutants found in wastewater before it is recharged to local groundwater.
    [Show full text]
  • River Bank Inducement Influence on a Shallow Groundwater Microbial Community and Its Effects on Aquifer Reactivity
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2018 River Bank Inducement Influence on a Shallow Groundwater Microbial Community and Its Effects on Aquifer Reactivity Natalie June Gayner University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Biogeochemistry Commons, Ecology and Evolutionary Biology Commons, and the Molecular Biology Commons Recommended Citation Gayner, Natalie June, "River Bank Inducement Influence on a Shallow Groundwater Microbial Community and Its Effects on Aquifer Reactivity" (2018). Theses and Dissertations. 1990. https://dc.uwm.edu/etd/1990 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. RIVERBANK INDUCEMENT INFLUENCE ON A SHALLOW GROUNDWATER MICROBIAL COMMUNITY AND ITS EFFECTS ON AQUIFER REACTIVITY by Natalie Gayner A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Freshwater Sciences & Technology at The University of Wisconsin-Milwaukee December 2018 ABSTRACT RIVER BANK INDUCEMENT INFLUENCE ON A SHALLOW GROUNDWATER MICROBIAL COMMUNITY AND ITS AFFECT ON AQUIFER REACTIVITY by Natalie Gayner The University of Wisconsin-Milwaukee, 2018 Under the Supervision of Professor Ryan J. Newton, PhD Placing groundwater wells next to riverbanks to draw in surface water, known as riverbank inducement (RBI), is common and proposed as a promising and sustainable practice for municipal and public water production across the globe. However, these systems require further investigation to determine risks associated with river infiltration especially with rivers containing wastewater treatment plant (WWTP) effluent.
    [Show full text]
  • Denitrification Performance and Microbial Community Variation During Reverse Osmosis Concentrate Treatment by Sulfur Denitrification Process
    Desalination and Water Treatment 183 (2020) 54–62 www.deswater.com April doi: 10.5004/dwt.2020.25250 Denitrification performance and microbial community variation during reverse osmosis concentrate treatment by sulfur denitrification process Minji Honga, Yeo-Myeong Yunb,*, Tae-Jin Leea, No-Suk Parkc, Yongtae Ahnd, Sokhee P. Junge, Yuhoon Hwanga,* aDepartment of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea, Tel. +82-2-970-6626; Fax: +82-2-971-5776; email: [email protected] (Y. Hwang) bDepartment of Environmental Engineering, Chungbuk National University, Chungbuk 28644, Korea, Tel. +82-43-261-2466; Fax: +82-43-264-2465; email: [email protected] (Y.-M. Yun) cDepartment of Civil Engineering and Engineering Research Institute, Gyeongsang National University, Gyeongnam 52828, Korea dDepartment of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Gyeongnam 52725, Korea eDepartment of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Korea Received 23 August 2019; Accepted 23 November 2019 abstract Heterotrophic denitrification is widely used as a method for removing nitrate, but incomplete denitri- fication was reported in the case of wastewater having a low C/N ratio. Specifically, the reverse osmosis concentrate (ROC) generated during the water reuse process contains a high concentration of nitrate but a low amount of biodegradable organic carbon for heterotrophic denitrification. In this study, a sulfur denitrification process was considered as an alternative method to eliminate nitrate in ROC. We studied the possibility of microbial community formation in a continuous process and the period required for culture and stabilization. To this end, in this study, a denitrification efficiency according to the initial cultivation methods was compared to determine the effect of the reactor start-up strategy, and the optimal hydraulic retention time was obtained.
    [Show full text]